Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109269, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056579

RESUMO

Streptococcosis and columnaris caused by Streptococcus spp. and Flavobacterium spp. have been recognized as critical problems in Asian seabass aquaculture development because they cause severe mortality. In this study, we identified various isolates of S. iniae and F. covae from diseased Asian seabass farmed in Thailand for use as candidates for vaccine development. The efficacy of the vaccines was evaluated by challenge tests and immune parameter analyses in fish that received whole-cell-based monovalent and bivalent vaccines containing S. iniae (Sin) and F. covae (Fco) delivered by top-dressed feed (TD) and intraperitoneal injection (IP). The results showed that all vaccinated groups exhibited increased antibody titers compared with control fish that peaked on day 28 after booster administration with high detection levels in the Sin-IP and Fco-IP groups. Moreover, the immune responses to the injected monovalent vaccines (Sin-IP and Fco-IP) were better than the responses in the other vaccinated groups. The hematological and innate immunological parameters were significantly increased by Sin-IP and Fco-IP, particularly lysozyme activity, nitroblue tetrazolium (NBT) activity, bactericidal activity, and white blood cell numbers, and immune-related genes, including IgM, MHC-IIα, TCRß and CD4, were significantly upregulated in the head kidney, whole blood and spleen (P < 0.05). After experimental challenge, survival in the Sin-IP and Fco-IP groups was significantly higher than that in the Sin-TD, Fco-TD, Sin + Fco-TD, and Sin + Fco-IP groups, with 80.0 % and 60.0 % survival after S. iniae and F. covae infection, respectively. In contrast, survival after bacterial challenge in the control groups was 10 % in each group. Histopathological analysis revealed that Sin-IP- and Fco-IP-vaccinated fish exhibited significantly more goblet cells in the intestines and melanomacrophage centers (MMCs) in the head kidney and spleen than those in the other groups (P < 0.05). Overall, the results of our study indicated that the monovalent vaccines Sin-IP and Fco-IP provoked better vaccine efficacy and immune responses than their orally administered counterparts, and these results are consistent with those from the immunological assays that showed significantly increased responses after immunization.


Assuntos
Doenças dos Peixes , Perciformes , Infecções Estreptocócicas , Animais , Streptococcus iniae , Flavobacterium , Vacinas Combinadas , Streptococcus , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Vacinas Bacterianas
2.
J Fish Dis ; 46(10): 1137-1149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422900

RESUMO

Biofloc technology is a rearing technique that maintains desired water quality by manipulating carbon and nitrogen and their inherent mixture of organic matter and microbes. Beneficial microorganisms in biofloc systems produce bioactive metabolites that may deter the growth of pathogenic microbes. As little is known about the interaction of biofloc systems and the addition of probiotics, this study focused on this integration to manipulate the microbial community and its interactions within biofloc systems. The present study evaluated two probiotics (B. velezensis AP193 and BiOWiSH FeedBuilder Syn 3) for use in Nile tilapia (Oreochromis niloticus) culture in a biofloc system. Nine independent 3785 L circular tanks were stocked with 120 juveniles (71.4 ± 4.4 g). Tilapia were fed for 16 weeks and randomly assigned three diets: a commercial control diet or a commercial diet top-coated with either AP193 or BiOWiSH FeedBuilder Syn3. At 14 weeks, the fish were challenged with a low dose of Streptococcus iniae (ARS-98-60, 7.2 × 107 CFU mL-1 , via intraperitoneal injection) in a common garden experimental design. At 16 weeks, the fish were challenged with a high dose of S. iniae (6.6 × 108 CFU mL-1 ) in the same manner. At the end of each challenge trial, cumulative per cent mortality, lysozyme activity and expression of 4 genes (il-1ß, il6, il8 and tnfα) from the spleen were measured. In both challenges, the mortalities of the probiotic-fed groups were significantly lower (p < .05) than in the control diet. Although there were some strong trends, probiotic applications did not result in significant immune gene expression changes related to diet during the pre-trial period and following exposure to S. iniae. Nonetheless, overall il6 expression was lower in fish challenged with a high dose of ARS-98-60, while tnfα expression was lower in fish subjected to a lower pathogen dose. Study findings demonstrate the applicability of probiotics as a dietary supplement for tilapia reared in biofloc systems.


Assuntos
Ciclídeos , Doenças dos Peixes , Probióticos , Infecções Estreptocócicas , Animais , Streptococcus iniae , Fator de Necrose Tumoral alfa , Interleucina-6 , Doenças dos Peixes/prevenção & controle , Suplementos Nutricionais , Dieta/veterinária , Ração Animal/análise , Resistência à Doença , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária
3.
Fish Shellfish Immunol ; 138: 108804, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207886

RESUMO

Cystatins are natural inhibitors of lysosomal cysteine proteases, including cathepsins B, L, H, and S. Cystatin C (CSTC) is a member of the type 2 cystatin family and is an essential biomarker in the prognosis of several diseases. Emerging evidence suggests the immune regulatory roles of CSTC in antigen presentation, the release of different inflammatory mediators, and apoptosis in various pathophysiologies. In this study, the 390-bp cystatin C (HaCSTC) cDNA from big-belly seahorse (Hippocampus abdominalis) was cloned and characterized by screening the pre-established cDNA library. Based on similarities in sequence, HaCSTC is a homolog of the teleost type 2 cystatin family with putative catalytic cystatin domains, signal peptides, and disulfide bonds. HaCSTC transcripts were ubiquitously expressed in all tested big-belly seahorse tissues, with the highest expression in ovaries. Immune challenge with lipopolysaccharides, polyinosinic:polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae caused significant upregulation in HaCSTC transcript levels. Using a pMAL-c5X expression vector, the 14.29-kDa protein of recombinant HaCSTC (rHaCSTC) was expressed in Escherichia coli BL21 (DE3), and its protease inhibitory activity against papain cysteine protease was determined with the aid of a protease substrate. Papain was competitively blocked by rHaCSTC in a dose-dependent manner. In response to viral hemorrhagic septicemia virus (VHSV) infection, HaCSTC overexpression strongly decreased the expression of VHSV transcripts, pro-inflammatory cytokines, and pro-apoptotic genes; while increasing the expression of anti-apoptotic genes in fathead minnow (FHM) cells. Furthermore, HaCSTC overexpression protected VHSV-infected FHM cells against VHSV-induced apoptosis and increased cell viability. Our findings imply the profound role of HaCSTC against pathogen infections by modulating fish immune responses.


Assuntos
Smegmamorpha , Animais , Cistatina C/genética , Papaína/genética , Streptococcus iniae/fisiologia , Poli I-C/farmacologia , Proteínas de Peixes/química , Filogenia
4.
J Fish Dis ; 46(6): 629-641, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866813

RESUMO

The giant snakehead, Channa micropeltes, is an increasingly important economic freshwater fish in Thailand and other regions of Asia. Presently, giant snakehead are cultured under intensive aquaculture conditions, leading to high stress and conditions favouring disease. In this study, we reported a disease outbreak in farmed giant snakehead with a cumulative mortality of 52.5%, continuing for 2 months. The affected fish exhibited signs of lethargy, anorexia and haemorrhage of the skin and eyes. Further bacterial isolations revealed two different types of colonies on tryptic soy agar: small white, punctate colonies of gram-positive cocci and cream-coloured, round and convex colonies of rod-shaped gram-negative bacteria. Additional biochemical and species-specific PCR analysis based on 16S rRNA confirmed the isolates as Streptococcus iniae and Aeromonas veronii. Multilocus sequence analysis (MLSA) placed the S. iniae isolate into a large clade of strains from clinically infected fish worldwide. Gross necropsy findings showed liver congestion, pericarditis and white nodules in the kidney and liver. Histologically, the affected fish showed focal to multifocal granulomas with inflammatory cell infiltration in kidney and liver, enlarged blood vessels with mild congestion within the meninges of the brain and severe necrotizing and suppurative pericarditis with myocardial infarction. Antibiotic susceptibility tests revealed that S. iniae was sensitive to amoxicillin, erythromycin, enrofloxacin, oxytetracycline, doxycycline and resistant to sulfamethoxazole-trimethoprim, while the A. veronii was susceptible to erythromycin, enrofloxacin, oxytetracycline, doxycycline, sulfamethoxazole-trimethoprim and resistant to amoxicillin. Conclusively, our findings highlighted the natural concurrent bacterial infections in cultured giant snakehead, which support the implementation of appropriate treatment and control strategies.


Assuntos
Aeromonas , Doenças dos Peixes , Oxitetraciclina , Pericardite , Animais , Aeromonas veronii/genética , Streptococcus iniae/genética , Doxiciclina , Enrofloxacina , RNA Ribossômico 16S/genética , Doenças dos Peixes/microbiologia , Peixes/genética , Amoxicilina , Eritromicina , Sulfametoxazol , Trimetoprima , Tailândia , Aeromonas/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835242

RESUMO

Streptococcus iniae is a Gram-positive bacterium and is considered a harmful aquaculture pathogen worldwide. In this study, S. iniae strains were isolated from East Asian fourfinger threadfin fish (Eleutheronema tetradactylum) reared on a farm in Taiwan. A transcriptome analysis of the head kidney and spleen was performed in the fourfinger threadfin fish 1 day after infection using the Illumina HiSeq™ 4000 platform for RNA-seq to demonstrate the host immune mechanism against S. iniae. A total of 7333 genes based on the KEGG database were obtained after the de novo assembly of transcripts and functional annotations. Differentially expressed genes (DEGs) (2-fold difference) were calculated by comparing the S. iniae infection and phosphate-buffered saline control group gene expression levels in each tissue sample. We identified 1584 and 1981 differentially expressed genes in the head kidney and spleen, respectively. Based on Venn diagrams, 769 DEGs were commonly identified in both the head kidney and spleen, and 815 and 1212 DEGs were specific to the head kidney and spleen, respectively. The head-kidney-specific DEGs were enriched in ribosome biogenesis. The spleen-specific and common DEGs were found to be significantly enriched in immune-related pathways such as phagosome, Th1, and Th2 cell differentiation; complement and coagulation cascades; hematopoietic cell lineage; antigen processing and presentation; and cytokine-cytokine receptor interactions, based on the KEGG database. These pathways contribute to immune responses against S. iniae infection. Inflammatory cytokines (IL-1ß, IL-6, IL-11, IL-12, IL-35, and TNF) and chemokines (CXCL8 and CXCL13) were upregulated in the head kidney and spleen. Neutrophil-related genes, including phagosomes, were upregulated post-infection in the spleen. Our results could offer a strategy for the treatment and prevention of S. iniae infection in fourfinger threadfin fish.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Animais , Peixes , Rim Cefálico , Baço , Streptococcus iniae
6.
Dev Comp Immunol ; 138: 104553, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122732

RESUMO

The intensification and diversification of production systems have increased the incidence of diseases, which are usually treated with antibiotics. However, its use should be restricted due to the increasing prevalence of antibiotic-resistant bacteria. Probiotics represent therefore an alternative environmentally friendly strategy for improving growth and disease resistance in aquaculture. Considering that host-derived probiotics may offer greater advantages than those from other environments in terms of safety and efficacy, two potential host-associated probiotic strains (Bacillus mojavensis B191 and Bacillus subtilis MRS11) were used in the present study, which were previously isolated from intestinal mucus of Nile tilapia (Oreochromis niloticus). This study was conducted to assess the effects of dietary administration of two Bacillus strains on growth performance, intestinal morphology, immunity, and disease resistance of Nile tilapia. A total of 375 fish were randomly divided into five groups in triplicate. Nile tilapia were fed a basal diet (control group) or a basal diet supplemented with Bacillus mojavensis B191 (BM) or Bacillus subtilis MRS11 (BS) spores at different concentrations of 1 × 106 (BM6 and BS6, respectively) and 1 × 108 (BM8 and BS8, respectively) CFU/g of feed for 60 days. Moreover, the survival rate of tilapia upon challenge with Streptococcus iniae was determined following the feeding trial. After the feeding trial, the growth performances were significantly improved in all probiotic-fed groups, with the BS8 group being the highest. Light and electron microscopy observations revealed elevated goblet cells, intestinal villus length (except BM8), microvilli length, microvilli density, and perimeter ratio increase in the intestine of all probiotic-fed groups compared with the control group. Regarding the expression analysis, HSP70 gene was only up-regulated in the BM8 group and a general trend of up-regulation of some immune-related cytokines (TGF-ß, IL-10, TNF-α and IL-1ß) was observed in all probiotic-fed groups. Likewise, the best protection against Streptococcus iniae was observed in the BS8 group, followed by BS6, BM6 and BM8 groups. Altogether, dietary probiotic supplementation with BS8 and BM6 may improve growth performance, intestinal morphology, immunity, and disease resistance in Nile tilapia.


Assuntos
Bacillus , Ciclídeos , Doenças dos Peixes , Probióticos , Ração Animal/análise , Animais , Antibacterianos/farmacologia , Bacillus subtilis , Dieta , Suplementos Nutricionais , Resistência à Doença , Interleucina-10 , Intestinos , Streptococcus iniae/fisiologia , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa
7.
Dev Comp Immunol ; 137: 104518, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044968

RESUMO

The overuse and misuse of antibiotics has led to the emergence of antibiotic-resistant bacterial species which remain a challenge to treat therapeutically. Novel and efficacious drugs are desperately needed to combat pathogens. One method to facilitate these discoveries is the use of in silico methods. Computational biology has the power to scan large data sets and screen for potential molecules with antibacterial function. In the current study, an in silico approach was used to identify an antimicrobial peptide (AMP) derived from rainbow trout von Willebrand Factor. The AMP was tested against a panel of aquatic bacterial pathogens and was found to possess antibacterial activity against Streptococcus iniae (S. iniae). Since S. iniae is a zoonotic pathogen, this may be useful in other species as well. The peptide was non-hemolytic and non-cytotoxic at the concentrations tested in rainbow trout cells. Pre-treatment of rainbow trout cells with the peptide did not result in an upregulation of immune genes but stimulating the rainbow trout macrophage/monocyte-like cell line, RTS11, with heat-killed S. iniae, did result in a significant upregulation of the tumor necrosis factor alpha (tnfa) gene. In this study, a new AMP has been identified but its expression, synthesis and role in vivo remains unknown. Nevertheless, the findings presented improve our understanding of fish gill and macrophage responses towards this important zoonotic pathogen.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Animais , Antibacterianos/farmacologia , Peptídeos/genética , Streptococcus iniae , Fator de Necrose Tumoral alfa , Fator de von Willebrand
8.
Fish Shellfish Immunol ; 119: 42-50, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597813

RESUMO

Short-chain bioactive peptides are new and promising antimicrobial, immune moderating, and antioxidant agents. Therefore, the present study was conducted to evaluate in vitro antibacterial activity of CM11, a short antimicrobial peptide (AMP), against Streptococcus iniae and Yersinia ruckeri as fish pathogenic bacteria using standard disk diffusion and microdilution assays. In addition, in vivo effects of CM11 on fish growth, immunity, antioxidant activity, and disease resistance were evaluated using zebrafish (Danio rerio) as an animal model. For in vivo study, based on in vitro susceptibility results, four diets were designed to include zero (as control), 10, 20, and 50 µg of CM11 per g diet referred to as control, P1, P2, and P3 treatments, respectively. After eight weeks of dietary trial, fish were challenged with Streptococcus iniae, and the survival rate was calculated for a period of two weeks. Results showed that CM11 effectively inhibited the growth of S. iniae and Y. ruckeri on agar plates at a concentration of eight µg/ml. Minimum inhibitory and minimum bactericidal concentrations of CM11 were measured at 8 and 32 µg/ml for S. iniae and 16 and 64 µg/ml Y. ruckeri, respectively. In vivo results showed no noticeable effects on fish growth parameters, however, feed conversion ratio (FCR) was found lower in P3 and P2 compared to control (P < 0.05). Immunological and antioxidant responses were found strongly affected by CM11 in all treatment groups in which the highest values were found in the P3 treated group. Key immune and antioxidant genes were up-regulated particularly in fish receiving the highest level of CM11 (P3). Fish receiving the CM11 peptide showed better survival when challenged with S. iniae. These findings suggest the potential of CM11 for use in aquaculture as an antibacterial and immunostimulant agent.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Yersiniose , Ração Animal/análise , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Antioxidantes , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Infecções Estreptocócicas/veterinária , Streptococcus iniae , Yersiniose/veterinária , Peixe-Zebra
9.
Dev Comp Immunol ; 114: 103827, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805308

RESUMO

The thioredoxin domain containing 5 (TXNDC5) is a recently discovered member of the protein disulfide isomerase family (PDI), which is mainly involved in the proper folding of and the correct formation of disulfide bonds in newly synthesized proteins via its disulfide isomerase and chaperone activities. Although the structural and functional features of mammalian TXNDC5 have been explored in previous studies, no studies have reported the functional characteristics of TXNDC5 in teleost fish. In this study, we report the identification and characterization of TXNDC5 from big-belly seahorse (Hippocampus abdominalis) (ShTXNDC5) accompanied by functional studies. The in-silico analysis revealed that the gene encodes a 433 amino acid (aa) long polypeptide chain with a predicted molecular weight of 49.3 kDa. According to homology analysis, ShTXNDC5 shares more than 55% sequence similarity with other teleost TXNDC5 proteins, and the alignment of the gene sequence convincingly reflects the accepted phylogeny of teleost. Analysis of the spatial distribution of ShTXNDC5 expression showed that its highest expression was observed in the ovary, gill, and pouch of seahorses. Moreover, significant upregulation of ShTXNDC5 transcription was noted in seahorse blood and kidney tissues in a time-dependent manner upon viral and bacterial immune challenges. Furthermore, considerable NADPH turnover, insulin reduction ability and significant cell survival effects of ShTXNDC5 were determined by the functional assay, revealing its capability to overcome cellular oxidative stress. Altogether, these findings expand our understanding of TXNDC5 at the molecular and functional levels, and its putative role in seahorse immunity.


Assuntos
Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/genética , Ovário/metabolismo , Smegmamorpha/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia , Tiorredoxinas/genética , Animais , Células Cultivadas , Dissulfetos , Feminino , Proteínas de Peixes/metabolismo , Imunomodulação , Estresse Oxidativo , Filogenia , Isomerases de Dissulfetos de Proteínas/genética , Alinhamento de Sequência , Tiorredoxinas/metabolismo , Transcriptoma , Regulação para Cima
10.
Dev Comp Immunol ; 116: 103944, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248045

RESUMO

The NOD-like receptor X1 (NLRX1) is a member of highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family (known as NLR), that localizes to the mitochondrial outer membrane and regulate the innate immunity by interacting with mitochondrial antiviral-signaling protein (MAVS). As one of cytoplasmic PRRs, NLRX1 plays key roles for pathogen recognition, autophagy and regulating of subsequent immune signaling pathways. In this study, we identified the nlrx1 in turbot as well as its expression profiles in mucosal surfaces following bacterial infection. In our results, the full-length nlrx1 transcript consists of an open reading frame (ORF) of 4,886 bp encoding the putative peptide of 966 amino acids. The phylogenetic analysis revealed the SmNlrx1 showed the closest relationship to Cynoglossus semilaevis. In addition, the Nlrx1 mRNA expression could be detected in all the examined tissues, with the most abundant expression level in head kidney, and the lowest expression level in liver. Moreover, Nlrx1 showed similar expression patterns following Vibrio anguillarum and Streptococcus iniae infection, that were both significantly up-regulated following challenge, especially post S. iniae challenge. Finally, fluorescence microscopy unveiled that the SmNlrx1 localized to mitochondria in HEK293T by N-terminal mitochondrial targeting sequence. Characterization of Nlrx1 might have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity and will probably contribute to the development of novel intervention strategies for farming turbot.


Assuntos
Linguados/imunologia , Proteínas Mitocondriais/imunologia , Mucosa/imunologia , Sequência de Aminoácidos , Animais , Citoplasma/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguados/microbiologia , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mucosa/microbiologia , Filogenia , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Streptococcus iniae/fisiologia , Vibrio/fisiologia
11.
Fish Shellfish Immunol ; 107(Pt A): 403-410, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33157200

RESUMO

This study evaluated changes in cutaneous mucosal immunity (total protein (TP) and immunoglobulin (TIg), lysozyme, protease, esterase, and alkaline phosphatase (ALP)) and some immune-related genes expression (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-8, hepcidin-like antimicrobial peptides (HAMP), and immunoglobulin M (IgM)) in the intestine of rainbow trout (Oncorhynchus mykiss) orally-administrated florfenicol (FFC) and/or olive leaf extract (OLE), experimentally infected with Streptococcus iniae. The juvenile fish (55 ± 7.6 g) were divided into different groups according to the use of added OLE (80 g kg-1 food), the presence/absence of FFC (15 mg kg-1 body weight for 10 consecutive days), and the streptococcal infectivity (2.87 × 107 CFU mL-1 as 30% of LD50-96h). The extract's chemical composition was analyzed using the high-performance liquid chromatography (HPLC) system. The skin mucus and intestine of fish were sampled after a 10-day therapeutic period for all groups, and their noted indices were measured. Our results signified that the oleuropein, quercetin, and trans-ferulic acid were the most obvious active components of OLE which were found by HPLC analysis. The combined use of OLE and FFC could lowered some skin mucus immunological indices (e.g., TP, TIg, and ALP), and the gene expression of inflammatory cytokines (e.g., TNF-α and IL-1ß) of rainbow trout. Moreover, lysozyme and protease activities respectively were invigorated by the FFC and OLE treatment. Also, the use of OLE as a potential medicine induced the gene expression of HAMP. As the prevention approach, it would be recommended to find the best dose of OLE alone or in combination with the drug through therapeutics period before the farm involved in the streptococcal infection.


Assuntos
Antibacterianos/metabolismo , Produtos Biológicos/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Expressão Gênica/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Oncorhynchus mykiss/imunologia , Tianfenicol/análogos & derivados , Ração Animal/análise , Animais , Antibacterianos/administração & dosagem , Produtos Biológicos/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Proteínas de Peixes/imunologia , Intestinos/imunologia , Oncorhynchus mykiss/genética , Distribuição Aleatória , Pele/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Tianfenicol/administração & dosagem , Tianfenicol/metabolismo
12.
J Aquat Anim Health ; 32(3): 133-138, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32845532

RESUMO

Streptococcus iniae is a zoonotic pathogen and one of the major aetiologic agents of streptococcosis. In White Sturgeon Acipenser transmontanus, S. iniae infection typically presents as a necrotizing and heterophilic myositis, causing 30-50% mortality in infected fish. To gain a better understanding of the pathogenesis of streptococcosis in White Sturgeon, and to identify the experimental route of infection that most closely mimics the natural disease, fingerlings were challenged with a single dose of 1.3 × 108  cells/fish of S. iniae that was administered via intracoelomic/intraperitoneal (IC) or intramuscular (IM) routes. Acute mortalities were present only in the IM-challenged fish, with first mortality occurring 4 d postchallenge and the mortality rate reaching 18.3% after 9 d. The challenged fish presented erratic swimming, ulcerative skin lesions, and hemorrhages in the liver and swim bladder. Streptococcus iniae was recovered from the kidney and brain tissues of moribund and dead fish. Histopathologic analysis of fish that died acutely revealed massive proliferation of bacteria in the muscle at the injection site and within vascular organs such as the heart and spleen, with variable amounts of tissue necrosis including a necrotizing myositis. Fish that died closer to 9 d postchallenge demonstrated more pronounced multifocal to locally extensive granulomatous inflammation of skeletal muscle at the injection site, liver, kidney, and spleen. No mortality, clinical signs, or gross changes were observed in the control or IC-challenged fish. Postmortem evaluation of 10 survivors in each treatment was performed to determine carrier status in the brain and posterior kidney tissues. The prevalence of S. iniae in survivors was 10% and 0% in the IM- and IC-challenged groups, respectively. The results from this study suggest that IM-injection challenge methods are suitable for inducing streptococcosis in White Sturgeon, and they may be the preferred method for studying the pathogenesis of the naturally occurring disease in this species.


Assuntos
Doenças dos Peixes , Peixes , Injeções Intramusculares/veterinária , Injeções Intraperitoneais/veterinária , Infecções Estreptocócicas/veterinária , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/mortalidade , Infecções Estreptocócicas/patologia , Streptococcus iniae/fisiologia
13.
Fish Shellfish Immunol ; 106: 133-141, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738514

RESUMO

Despite Withania somnifera (WS), stimulating effects have been investigated on many animal species, its role on lipid profile and intestinal histomorphology in healthy animals, and its modulating role on pro-inflammatory cytokines following infection in fish are yet scarce. In this context, lipid profile, liver, and intestinal histomorphology were measured in Nile tilapia fed with a basal diet or diets containing 2.5 and 5% of supplementary WS for 60 days. Besides, cytokines response was measured at 1, 3,7, and 14 days following Streptococcus iniae (S. iniae) infection after the feeding trial. All lipid profile parameters were nominally lowered, excluding high-density lipoprotein (HDL) that exhibited a significant increase in WS 5% group compared to other groups. Improved gut health integrity was observed, especially in WS 5% group in terms of increased goblet cell numbers, villous height, the width of lamina propria in all parts of the intestine, and a decrease in the diameter of the intestinal lumen of the distal intestine only. A significant down-regulation in the mRNA transcript level of cytokine genes (interleukin 1ß/IL-1ß, tumor necrosis factor α/TNFα, and interleukin 6/IL-6) was demonstrated in the kidney and spleen of WS-supplemented groups following S. iniae infection compared with the control infected (positive control/PC) group. Our findings give new insights for the potential roles of WS dietary inclusion not only on lipid profile and intestinal health integrity improvement in healthy fish under normal rearing but also as a prophylactic against the infection. Thus, WS can be incorporated as a promising nutraceutical in aquaculture.


Assuntos
Ciclídeos/imunologia , Citocinas/metabolismo , Doenças dos Peixes/imunologia , Intestinos/anatomia & histologia , Metabolismo dos Lipídeos , Extratos Vegetais/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Intestinos/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Withania
14.
Fish Shellfish Immunol ; 104: 654-662, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32561456

RESUMO

In aquaculture, the incidence of enteritis due to Streptococcus iniae infection in Siberian sturgeon (Acipenser baerii) has increased in recent years. The pathogenesis of S. iniae is largely unknown due to the paucity of experimental studies on fish intestinal inflammation. In this study, S. iniae infection of A. baerii juveniles was induced by anal intubation of 0.15 mL at a low lethal dose (2 × 107 CFU/mL). Intestinal pathology and gene expression studies were conducted within 10 days of the experiment. Histopathological examination showed severe intestinal lesions, inflammatory cell infiltration, intestinal submucosa edema, epithelial cell shedding and necrosis. Predominant symptoms of exudative inflammation, metamorphic inflammation and proliferative inflammation on days 1-3, 4-6, and 7-10 post infection were shown, respectively. Ultrastructural observations also revealed fractured microvilli and shedding on days 4-6. Intestinal villi gradually repaired during the subsequent 7-10 days post infection. Expression of the pro-inflammatory cytokines, tumor necrosis factor and interleukin 1ß were up-regulated on days 1-3 followed by a significant decrease on day 5, ultimately reaching control levels on day 10 post infection. A similar pattern was shown in mucus cells, involving mucin secretion and expression of the mucin encoding gene, Mucin-2. These results showed the cellular response to S. iniae infection associated with inflammatory genes expression in the Siberian sturgeon.


Assuntos
Enterite/veterinária , Doenças dos Peixes/imunologia , Peixes , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Animais , Aquicultura , Enterite/genética , Enterite/imunologia , Enterite/microbiologia , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia
15.
Fish Shellfish Immunol ; 104: 439-446, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32561457

RESUMO

In this study, we examined the function of a Japanese flounder (Paralichthys olivaceus) microRNA (miRNA), pol-miR-363-3p. We found that pol-miR-363-3p targets an ubiquitin-specific protease (USP), USP32. USP is a family of deubiquitinating enzymes essential to the functioning of the ubiquitin proteasome system. In mammals, USP32 is known to be associated with cancer and immunity. In fish, the function of USP32 is unknown. We found that flounder USP32 (PoUSP32) expression was detected in the major tissues of flounder, particularly intestine. In vitro and in vivo studies showed that pol-miR-363-3p directly regulated PoUSP32 in a negative manner by interaction with the 3'UTR of PoUSP32. Overexpression of pol-miR-363-3p or interference with PoUSP32 expression in flounder cells significantly blocked Streptococcus iniae infection. Consistently, in vivo knockdown of pol-miR-363-3p or overexpression of PoUSP32 enhanced dissemination of S. iniae in flounder tissues, whereas in vivo knockdown of PoUSP32 inhibited S. iniae dissemination. In addition, pol-miR-363-3p knockdown also significantly promoted the tissue dissemination of the viral pathogen megalocytivirus, which, as well as S. iniae, regulated pol-miR-363-3p expression. Together these results revealed an important role of pol-miR-363-3p in flounder immune defense against bacterial and viral infection.


Assuntos
Doenças dos Peixes/imunologia , Linguados/imunologia , Imunidade Inata/genética , MicroRNAs/imunologia , Ubiquitina Tiolesterase/genética , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linguados/genética , Iridoviridae/fisiologia , MicroRNAs/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Ubiquitina Tiolesterase/imunologia
16.
Fish Shellfish Immunol ; 104: 478-488, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32470509

RESUMO

This study was designed to evaluate the modulating effect dietary clove essential oil (CL) has on the antioxidant and immunological status of Nile tilapia following Streptococcus iniae (Si) infection. Fish were placed on either control or (1.5 and 3%) CL-supplemented diets for 4 weeks. After sampling, the remaining fish in the control group were divided into 2 groups: an unchallenged (negative control) and an Si-challenged positive control. On the other hand, the remaining fish in CL-supplemented groups were challenged with Si, and mortality was checked for two weeks before the final sampling. Serum immunological parameters, tissue antioxidants, and oxidative stress markers were determined. Moreover, hepatic hepcidin expression was also measured in different groups. The obtained results showed improvements in blood phagocytic, bactericidal, lysozyme, and respiratory burst activities in CL-supplemented fish before and after the Si challenge. Si-challenge caused a remarkable increase in tissue malondialdehyde (MDA) levels that was inhibited by CL supplementation. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) in tissues were significantly elevated in a dose-dependent manner in CL-supplemented groups in both pre- and post-challenge experiments; renal SOD did not show any differences. Hepatic nitric oxide (NO) level was significantly decreased in CL-supplemented fish in a dose-dependent manner. In the post-challenge experiment, nitrosative stress was apparent in the liver and kidney; however, CL supplementation was sufficient to reverse it. Interestingly, a remarkable induction of the hepatic hepcidin expression was observed in all CL-supplemented groups in the pre-challenge experiment and Si-challenged fish, underscoring the role of CL as an antibacterial through inducing hepatic hepcidin expression to combat S. iniae infection. CL-supplementation was associated with lower mortality rates after Si-challenge, which was more pronounced in CL-3% supplemented fish. In conclusion, our results demonstrate that CL has a potent antioxidant role via increasing antioxidant enzymes' activities and antagonizing lipid peroxidation. Moreover, CL has an immune-stimulant effect by inducing the hepatic hepcidin expression and immunological markers in response to S. iniae infection.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/metabolismo , Ciclídeos/imunologia , Óleo de Cravo/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Hepcidinas/metabolismo , Ração Animal/análise , Animais , Ciclídeos/genética , Óleo de Cravo/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Fígado/metabolismo , Óleos Voláteis/administração & dosagem , Óleos Voláteis/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia
17.
Fish Shellfish Immunol ; 99: 59-72, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32006686

RESUMO

Innate immunity is characterized by nonspecific, prompt reactions toward armada of antigens. Animals funnel down a repertoire of immune stimulants to activate non-selective defense mechanisms rapidly. This study was conducted to characterize the rockfish (Sebastes schlegelii) adaptor protein MyD88 (SsMyD88), which interacts with both toll-like receptors and interleukin receptors. The tissue expression of unchallenged SsMyD88 was evaluated by quantitative real time PCR (qPCR). Fish were intraperitoneally injected with immune stimulants including poly I:C, lipopolysaccharides, and Streptococcus iniae. Then, the temporal expression of SsMyD88 was analyzed. Finally, the inflammatory gene expression and downstream promoter activation were analyzed. Strongest expressions were reported in the liver, gills and spleen in unchallenged conditions. All diverse immune stimulants were found to be capable of significantly altering SsMyD88 transcription during the challenge experiment. Evaluation of downstream promoter biases by SsMyD88 found a predominant activation of NF-ĸB transcription factors when compared with the AP-1, revealing significant and substantial upregulation of major inflammatory mediators such as IL-1-ß, IL-6, iNOS, COX-2 and TNF-α. Fluorescent detection confirmed an intense production of NO and the predominant differentiation of macrophages into M1 lineage with the overexpression of SsMyD88 in vitro. These results further corroborate the role of SsMyD88 as a mediatory molecule that bridges distinct immune stimulants to induce drastic immune responses in fish.


Assuntos
Citocinas/genética , Proteínas de Peixes/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/genética , Perciformes/genética , Animais , Citocinas/imunologia , Proteínas de Peixes/imunologia , Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Inflamação , Lipopolissacarídeos , Macrófagos/imunologia , Camundongos , NF-kappa B/imunologia , Perciformes/imunologia , Poli I-C , Células RAW 264.7 , Streptococcus iniae
18.
Fish Shellfish Immunol ; 97: 322-335, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31805413

RESUMO

Cathepsin L (CTSL) is one of the crucial enzymes in cathepsin family, which has been widely known for its involvement in the innate immunity. However, it still remains poorly understood how CTSL modulates the immune system of teleosts. In this study, we captured three cathepsin L genes (SmCTSL, SmCTSL.1 and SmCTSL1) from turbot (Scophthalmus maximus). The coding sequences of SmCTSL, SmCTSL.1 and SmCTSL1 are 1,026 bp, 1,005 bp and 1,017 bp in length and encode 341, 334 and 338 amino acids, respectively. In details, transcripts of CTSL genes share same domains as other CTSL genes, one signal peptide, one propeptide and one papain family cysteine protease domain. Protein interaction network analysis indicated that turbot CTSL genes may play important roles in apoptotic signaling and involve in innate immune response. Evidence from subcellular localization demonstrated that the three Cathepsin L proteins were ubiquitous in nucleus and cytoplasm. The cathepsin L genes were widely expressed in all the tested tissues with the highest expression level of SmCTSL in spleen, and SmCTSL.1 and SmCTSL1 in intestine. Following Vibrio anguillarum, Edwardsiella tarda and Streptococcus iniae challenge, these cathepsin L genes were significantly regulated in mucosal tissues in all the challenges, especially significant down-regulation occurred rapidly in intestine in all the three challenges. In addition, the three cathepsin L genes showed strong binding ability to all the examined microbial ligands (LPS, PGN and LTA). Further studies should be used to analyze the specific function of these three cathepsin L genes. By then, we can use their function to maintain the integrity of the mucosal barrier, thereby promoting the disease resistance line and family selection in turbot.


Assuntos
Catepsina L/genética , Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade nas Mucosas/genética , Animais , Catepsina L/imunologia , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Estrutura Quaternária de Proteína , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
19.
Fish Shellfish Immunol ; 97: 382-389, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841691

RESUMO

Streptococcus agalactiae and Streptococcus iniae are major bacterial pathogens of tilapia that can cause high mortality concomitant with large economic losses to aquaculture. Although development of vaccines using formalin-killed bacteria to control these diseases has been attempted, the mechanism of immunity against streptococcal infections and the cross-protective ability of these two bacteria remains unclear. To explore the immunological role of these vaccines, we compared the immune responses of tilapia after immunization with both vaccines and compared the relative percent survival (RPS) and cross-immunization protection of tilapia after separate infection with S. agalactiae and S. iniae. All results revealed that vaccinated fish had significantly higher (P < 0.05) levels of specific antibodies than control fish 14 days post secondary vaccination (PSV) and 7 days post challenge. In vaccinated fish, the mRNA expression of interleukin-8 (IL-8), interleukin-12 (IL-12), caspase-3 (C-3), tumour necrosis factor (TNF), and interferon (IFN) was significantly up regulated (P < 0.05) in the head kidney after immunized; similar results were found for IL-8, TNF and IFN in the posterior kidney, meanwhile the expression levels of C-3 and IFN were significantly increased (P < 0.05) in the spleen of vaccinated fish. Additionally, the levels of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in vaccinated fish were improved at different degree when compared to the control fish. These results showed that vaccination with formalin-killed cells (FKCs) of either S. agalactiae or S. iniae conferred protection against infection by the corresponding pathogen in Nile tilapia, resulting in RPS values of 92.3% and 91.7%, respectively. Furthermore, cross-protection was observed, as the S. agalactiae FKC vaccine protected fish from S. iniae infection, and vice versa. These results suggested that the S. agalactiae and S. iniae FKC vaccines can induce immune responses and generate excellent protective effects in Nile tilapia.


Assuntos
Ciclídeos , Proteção Cruzada , Doenças dos Peixes/prevenção & controle , Vacinas Estreptocócicas/farmacologia , Streptococcus agalactiae/imunologia , Streptococcus iniae/imunologia , Vacinação/veterinária , Animais , Anticorpos Antibacterianos/sangue , Imunidade Humoral , Imunidade Inata , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/classificação
20.
Fish Shellfish Immunol ; 94: 407-416, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521784

RESUMO

The aims of this study were to investigate the antibacterial, immunostimulatory and antioxidant properties of different derivatives of Oliveria decumbens, in vitro and in vivo. The GC-MS spectrometry analysis showed γ-terpinene as the most frequent compound in essential oil, whereas carvacrol and thymol were the most common ones in aromatic water. Plant essential oil and hydroethanolic extract showed a positive in vitro bactericidal activity against Streptococcus iniae as evaluated by disc diffusion, minimum inhibitory concentration and minimum bactericidal concentration methods. Also, in vivo resistance against S. iniae and immune and antioxidant responses of Nile tilapia (Oreochromis niloticus) were assayed after 60 days treatment with O. decumbens derivatives. Plant hydroethanolic extract and essential oil and their 1:1 combination were added to diet at 0 (negative control), 0.01, 0.1 and 1% (w:w). The plant aromatic water at doses of 0.0312, 0.0625 and 0.1250% were also used as bath treatment. The results showed that aromatic water at lowest dose was more effective than other treatments in increment of fish resistance against S. iniae (7.14% mortality in comparison with 50% mortalities in control fish) and modulation of post-challenge respiratory burst activity. The bactericidal activity and biochemical contents of skin mucus did not change significantly among treatments. The levels of superoxide dismutase and catalase antioxidant enzymes activities in spleen tissue were significantly higher in treatments received extract, essential oils and their combination in comparison to other groups, while treatments did not affect peroxidase level. In conclusion, administration of different derivatives of Oliveria decumbens showed remarkable antibacterial activity against streptococcosis and enhanced antioxidant status and post-challenge immunity in Nile tilapia.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antibacterianos/farmacologia , Apiaceae/química , Ciclídeos/imunologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Streptococcus iniae/efeitos dos fármacos , Adjuvantes Imunológicos/química , Ração Animal/análise , Animais , Antibacterianos/química , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença/imunologia , Relação Dose-Resposta a Droga , Doenças dos Peixes/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Óleos Voláteis/química , Extratos Vegetais/química , Soro/efeitos dos fármacos , Soro/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA