Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521789

RESUMO

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Humanos , Encéfalo , Substância Cinzenta , Imageamento por Ressonância Magnética/métodos , Substância Branca/fisiologia , Análise da Randomização Mendeliana
2.
Clin Neurophysiol ; 162: 9-27, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552414

RESUMO

OBJECTIVE: In tasks involving new visuospatial information, we rely on working memory, supported by a distributed brain network. We investigated the dynamic interplay between brain regions, including cortical and white matter structures, to understand how neural interactions change with different memory loads and trials, and their subsequent impact on working memory performance. METHODS: Patients undertook a task of immediate spatial recall during intracranial EEG monitoring. We charted the dynamics of cortical high-gamma activity and associated functional connectivity modulations in white matter tracts. RESULTS: Elevated memory loads were linked to enhanced functional connectivity via occipital longitudinal tracts, yet decreased through arcuate, uncinate, and superior-longitudinal fasciculi. As task familiarity grew, there was increased high-gamma activity in the posterior inferior-frontal gyrus (pIFG) and diminished functional connectivity across a network encompassing frontal, parietal, and temporal lobes. Early pIFG high-gamma activity was predictive of successful recall. Including this metric in a logistic regression model yielded an accuracy of 0.76. CONCLUSIONS: Optimizing visuospatial working memory through practice is tied to early pIFG activation and decreased dependence on irrelevant neural pathways. SIGNIFICANCE: This study expands our knowledge of human adaptation for visuospatial working memory, showing the spatiotemporal dynamics of cortical network modulations through white matter tracts.


Assuntos
Córtex Cerebral , Memória de Curto Prazo , Substância Branca , Humanos , Memória de Curto Prazo/fisiologia , Substância Branca/fisiologia , Substância Branca/diagnóstico por imagem , Masculino , Feminino , Adulto , Córtex Cerebral/fisiologia , Percepção Espacial/fisiologia , Pessoa de Meia-Idade , Percepção Visual/fisiologia , Adulto Jovem
3.
Neuroimage ; 269: 119916, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736638

RESUMO

There is growing evidence that blood-oxygen-level-dependent (BOLD) activity in the white matter (WM) can be detected by functional magnetic resonance imaging (fMRI). However, the functional relevance and significance of WM BOLD signals remain controversial. Here we investigated whether 7T BOLD fMRI can reveal fine-scale functional organizations of a WM bundle. Population receptive field (pRF) analyses of the 7T retinotopy dataset from the Human Connectome Project revealed clear contralateral retinotopic organizations of two visual WM bundles: the optic radiation (OR) and the vertical occipital fasciculus (VOF). The retinotopic maps of OR are highly consistent with post-mortem dissections and diffusion tractographies, while the VOF maps are compatible with the dorsal and ventral visual areas connected by the WM. Similar to the grey matter (GM) visual areas, both WM bundles show over-representations of the central visual field and increasing pRF size with eccentricity. Hemodynamic response functions of visual WM were slower and wider compared with those of GM areas. These findings clearly demonstrate that WM BOLD at 7 Tesla is closely coupled with neural activity related to axons, encoding highly specific information that can be used to characterize fine-scale functional organizations of a WM bundle.


Assuntos
Substância Branca , Humanos , Substância Branca/fisiologia , Campos Visuais , Imageamento por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Substância Cinzenta
4.
Brain Stimul ; 15(1): 87-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34801750

RESUMO

BACKGROUND: In jargonaphasia, speech is fluent but meaningless. While neuropsychological evaluation may distinguish a neologistic component characterised by non-word production and a semantic component where pronounced words are real but speech is senseless, how this relates to the underlying white matter anatomy is debated. OBJECTIVE: To identify white matter pathways causally involved in jargonaphasia. METHODS: We retrospectively screened the intraoperative brain mapping data of 571 awake oncological resections using direct cortico-subcortical electrostimulation. Jargonaphasia was induced in 17 patients (19 sites) during a naming task. Stimulation sites were normalized to the Montreal Neurological Institute template space and used to generate individual disconnectome maps. Non-parametric voxelwise one and two sample t-tests were performed to identify the underlying white matter anatomy. RESULTS: Jargonaphasia was induced only during stimulation of the left hemisphere. No cortical stimulation generated jargonaphasia. Subcortical sites causally associated with jargonaphasia clustered in 3 regions: in the temporal lobe (middle to inferior temporal gyri; n = 12), in the parietal lobe (supramarginal gyrus; n = 3) and in the temporal stem (n = 4). Disconnectome analysis indicated the inferior-fronto-occipital fasciculus (IFOF) was damaged in both neologistic and semantic jargonaphasia, while the involvement of the arcuate fasciculus was specific to neologistic jargonaphasia. CONCLUSION: For the first time, we show that jargonaphasia is induced by white matter stimulation, hinting at disconnection. As IFOF disconnection unites both variants, these may represent a continuum of disorders distinguished by semantic impairment. Conversely, damage to the arcuate fasciculus in addition to the IFOF is specific to neologistic jargonaphasia, thus suggesting a dual-disconnection syndrome.


Assuntos
Substância Branca , Mapeamento Encefálico , Estimulação Elétrica , Humanos , Rede Nervosa , Vias Neurais/fisiologia , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206635

RESUMO

White matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood. Cortisol is a steroid hormone released in response to prolonged stress, and elevated levels of cortisol have been reported to interfere with brain recovery. The objective of this study was to investigate the influence of corticosterone (CORT; the rodent equivalent of cortisol) on WMT structure post-stroke. Photothrombotic stroke (or sham surgery) was induced in 8-week-old male C57BL/6 mice. At 72 h, mice were exposed to standard drinking water ± CORT (100 µg/mL). After two weeks of CORT administration, mice were euthanised and brain tissue collected for histological and biochemical analysis of WMT (particularly the corpus callosum and corticospinal tract). CORT administration was associated with increased tissue loss within the ipsilateral hemisphere, and modest and inconsistent WMT reorganization. Further, a structural and molecular analysis of the WMT components suggested that CORT exerted effects over axons and glial cells. Our findings highlight that CORT at stress-like levels can moderately influence the reorganization and microstructure of WMT post-stroke.


Assuntos
Corticosterona/administração & dosagem , Gliose/metabolismo , Gliose/patologia , Vias Neurais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Substância Branca/efeitos dos fármacos , Substância Branca/fisiologia , Animais , Axônios/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Gliose/tratamento farmacológico , Gliose/etiologia , Imuno-Histoquímica , Masculino , Camundongos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
6.
Science ; 372(6548)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34140357

RESUMO

Brain regions communicate with each other through tracts of myelinated axons, commonly referred to as white matter. We identified common genetic variants influencing white matter microstructure using diffusion magnetic resonance imaging of 43,802 individuals. Genome-wide association analysis identified 109 associated loci, 30 of which were detected by tract-specific functional principal components analysis. A number of loci colocalized with brain diseases, such as glioma and stroke. Genetic correlations were observed between white matter microstructure and 57 complex traits and diseases. Common variants associated with white matter microstructure altered the function of regulatory elements in glial cells, particularly oligodendrocytes. This large-scale tract-specific study advances the understanding of the genetic architecture of white matter and its genetic links to a wide spectrum of clinical outcomes.


Assuntos
Variação Genética , Substância Branca/fisiologia , Substância Branca/ultraestrutura , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Encefalopatias/genética , Cognição , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Transtornos Mentais/genética , Herança Multifatorial , Vias Neurais , Neuroglia/fisiologia , Neurônios/fisiologia , Análise de Componente Principal , Locos de Características Quantitativas , Fatores de Risco , Substância Branca/diagnóstico por imagem
7.
Clin Neurophysiol ; 132(8): 1919-1926, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182277

RESUMO

OBJECTIVE: In order to evaluate the clinical utility even under general anesthesia, the present study aimed to clarify the effect of anesthesia on the cortico-cortical evoked potentials (CCEPs). METHODS: We analyzed 14 patients' data in monitoring the integrity of the dorsal language pathway by using CCEPs both under general anesthesia with propofol and remifentanil and awake condition, with the main aim of clarifying the effect of anesthesia on the distribution and waveform of CCEPs. RESULTS: The distribution of larger CCEP response sites, including the locus of the maximum CCEP response site, was marginally affected by anesthesia. With regard to similarity of waveforms, the mean waveform correlation coefficient indicated a strong agreement. CCEP N1 amplitude increased by an average of 25.8% from general anesthesia to waking, except three patients. CCEP N1 latencies had no correlation in changes between the two conditions. CONCLUSIONS: We demonstrated that the distribution of larger CCEP responses was marginally affected by anesthesia and that the CCEP N1 amplitude had tendency to increase from general anesthesia to the awake condition. SIGNIFICANCE: The CCEP method provides the efficiency of intraoperative monitoring for dorsal language white matter pathway even under general anesthesia.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Monitorização Neurofisiológica Intraoperatória/métodos , Idioma , Propofol/farmacologia , Substância Branca/fisiologia , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Córtex Cerebral/efeitos dos fármacos , Craniotomia/métodos , Feminino , Humanos , Hipnóticos e Sedativos/farmacologia , Masculino , Pessoa de Meia-Idade , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Substância Branca/efeitos dos fármacos , Adulto Jovem
8.
Pediatr Blood Cancer ; 68(2): e28817, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33251768

RESUMO

PURPOSE: Children with brain tumors experience cognitive late effects, often related to cranial radiation. We sought to determine differential effects of surgery and chemotherapy on brain structure and neuropsychological outcomes in children who did not receive cranial radiation therapy (CRT). METHODS: Twenty-eight children with a history of posterior fossa tumor (17 treated with surgery, 11 treated with surgery and chemotherapy) underwent neuroimaging and neuropsychological assessment a mean of 4.5 years (surgery group) to 9 years (surgery + chemotherapy group) posttreatment, along with 18 healthy sibling controls. Psychometric measures assessed IQ, language, executive functions, processing speed, memory, and social-emotional functioning. Group differences and correlations between diffusion tensor imaging findings and psychometric scores were examined. RESULTS: The z-score mapping demonstrated fractional anisotropy (FA) values were ≥2 standard deviations lower in white matter tracts, prefrontal cortex gray matter, hippocampus, thalamus, basal ganglia, and pons between patient groups, indicating microstructural damage associated with chemotherapy. Patients scored lower than controls on visuoconstructional reasoning and memory (P ≤ .02). Lower FA in the uncinate fasciculus (R = -0.82 to -0.91) and higher FA in the thalamus (R = 0.73-0.91) associated with higher IQ scores, and higher FA in the thalamus associated with higher scores on spatial working memory (R = 0.82). CONCLUSIONS: Posterior fossa brain tumor treatment with surgery and chemotherapy affects brain microstructure and neuropsychological functioning years into survivorship, with spatial processes the most vulnerable. Biomarkers indicating cellular changes in the thalamus, hippocampus, pons, prefrontal cortex, and white matter tracts associate with lower psychometric scores.


Assuntos
Antineoplásicos/uso terapêutico , Lesões Encefálicas/patologia , Neoplasias Encefálicas/terapia , Neoplasias Infratentoriais/terapia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/psicologia , Adolescente , Anisotropia , Neoplasias Encefálicas/psicologia , Criança , Estudos Transversais , Feminino , Hipocampo/fisiologia , Humanos , Neoplasias Infratentoriais/psicologia , Masculino , Testes Neuropsicológicos , Ponte/fisiologia , Córtex Pré-Frontal/fisiologia , Psicometria , Tálamo/fisiologia , Substância Branca/fisiologia
9.
CNS Neurosci Ther ; 27(1): 113-122, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369165

RESUMO

BACKGROUND: Severe traumatic brain injury (TBI) results in long-term neurological deficits associated with white matter injury (WMI). Ethyl pyruvate (EP) is a simple derivative of the endogenous energy substrate pyruvate with neuroprotective properties, but its role in recovery from WMI has not been explored. AIMS: This study examines the effect of EP treatment on rats following TBI using behavioral tests and white matter histological analysis up to 28 days post-injury. MATERIALS AND METHODS: Anaesthetised adult rats were subjected to TBI by controlled cortical impact. After surgery, EP or Ringers solution (RS) was administrated intraperitoneally at 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Sensorimotor deficits were evaluated up to day 21 after TBI by four independent tests. Immunofluorescence and transmission electron microscopy (TEM) were performed to assess white matter injury. Microglia activation and related inflammatory molecules were examined up to day 14 after TBI by immunohistochemistry or real-time PCR. RESULTS: Here, we demonstrate that EP improves sensorimotor function following TBI as well as improves white matter outcomes up to 28 d after TBI, as shown by reduced myelin loss. Furthermore, EP administration during the acute phase of TBI recovery shifted microglia polarization toward the anti-inflammatoryM2 phenotype, modulating the release of inflammatory-related factors. CONCLUSION: EP treatment may protect TBI-induced WMI via modulating microglia polarization toward M2.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Piruvatos/uso terapêutico , Substância Branca/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Piruvatos/farmacologia , Ratos , Ratos Sprague-Dawley , Substância Branca/fisiologia
10.
Acta Neurochir (Wien) ; 163(4): 919-935, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33161475

RESUMO

BACKGROUND: White matter stimulation in an awake patient is currently the gold standard for identification of functional pathways. Despite the robustness and reproducibility of this method, very little is known about the electrophysiological mechanisms underlying the functional disruption. Axono-cortical evoked potentials (ACEPs) provide a reliable technique to explore these mechanisms. OBJECTIVE: To describe the shape and spatial patterns of ACEPs recorded when stimulating the white matter of the caudal part of the right superior frontal gyrus while recording in the precentral gyrus. METHODS: We report on three patients operated on under awake condition for a right superior frontal diffuse low-grade glioma. Functional sites were identified in the posterior wall of the cavity, whose 2-3-mA stimulation generated an arrest of movement. Once the resection was done, axono-cortical potentials were evoked: recording electrodes were put over the precentral gyrus, while stimulating at 1 Hz the white matter functional sites during 30-60 s. Unitary evoked potentials were averaged off-line. Waveform was visually analyzed, defining peaks and troughs, with quantitative measurements of their amplitudes and latencies. Spatial patterns of ACEPs were compared with patients' own and HCP-derived structural connectomics. RESULTS: Axono-cortical evoked potentials (ACEPs) were obtained and exhibited complex shapes and spatial patterns that correlated only partially with structural connectivity patterns. CONCLUSION: ACEPs is a new IONM methodology that could both contribute to elucidate the propagation of neuronal activity within a distributed network when stimulating white matter and provide a new technique for preserving motor control abilities during brain tumor resections.


Assuntos
Neoplasias Encefálicas/cirurgia , Potencial Evocado Motor , Glioma/cirurgia , Monitorização Neurofisiológica Intraoperatória/métodos , Adulto , Feminino , Lobo Frontal/fisiologia , Lobo Frontal/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/métodos , Vigília , Substância Branca/fisiologia , Substância Branca/cirurgia
11.
Neuroimage ; 226: 117567, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221443

RESUMO

We aimed to link macro- and microstructure measures of brain white matter obtained from diffusion MRI with effective connectivity measures based on a propagation of cortico-cortical evoked potentials induced with intrasurgical direct electrical stimulation. For this, we compared streamline lengths and log-transformed ratios of streamlines computed from presurgical diffusion-weighted images, and the delays and amplitudes of N1 peaks recorded intrasurgically with electrocorticography electrodes in a pilot study of 9 brain tumor patients. Our results showed positive correlation between these two modalities in the vicinity of the stimulation sites (Pearson coefficient 0.54±0.13 for N1 delays, and 0.47±0.23 for N1 amplitudes), which could correspond to the neural propagation via U-fibers. In addition, we reached high sensitivities (0.78±0.07) and very high specificities (0.93±0.03) in a binary variant of our comparison. Finally, we used the structural connectivity measures to predict the effective connectivity using a multiple linear regression model, and showed a significant role of brain microstructure-related indices in this relation.


Assuntos
Neoplasias Encefálicas/cirurgia , Córtex Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Eletrocorticografia , Potenciais Evocados , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Córtex Cerebral/fisiologia , Imagem de Tensor de Difusão , Estimulação Elétrica , Feminino , Glioma/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Procedimentos Neurocirúrgicos , Projetos Piloto , Vigília , Substância Branca/fisiologia , Adulto Jovem
12.
J Anat ; 237(4): 632-642, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32579719

RESUMO

Resting-state functional MRI (RfMRI) analyses have identified two anatomically separable fronto-parietal attention networks in the human brain: a bilateral dorsal attention network and a right-lateralised ventral attention network (VAN). The VAN has been implicated in visuospatial cognition and, thus, potentially in the unilateral spatial neglect associated with right hemisphere lesions. Its parietal, frontal and temporal endpoints are thought to be structurally supported by undefined white matter tracts. We investigated the white matter tract connecting the VAN. We used three approaches to study the structural anatomy of the VAN: (a) independent component analysis on RfMRI (50 subjects), defining the endpoints of the VAN, (b) tractography in the same 50 healthy volunteers, with regions of interest defined by the MNI coordinates of cortical areas involved in the VAN used in a seed-based approach and (c) dissection, by Klingler's method, of 20 right hemispheres, for ex vivo studies of the fibre tracts connecting VAN endpoints. The VAN includes the temporoparietal junction and the ventral frontal cortex. The endpoints of the superior longitudinal fasciculus in its third portion (SLF III) and the arcuate fasciculus (AF) overlap with the VAN endpoints. The SLF III connects the supramarginal gyrus to the ventral portion of the precentral gyrus and the pars opercularis. The AF connects the middle and inferior temporal gyrus and the middle and inferior frontal gyrus. We reconstructed the structural connectivity of the VAN and considered it in the context if the pathophysiology of unilateral neglect and right hemisphere awake brain surgery.


Assuntos
Atenção/fisiologia , Encéfalo/diagnóstico por imagem , Lateralidade Funcional/fisiologia , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Encéfalo/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Substância Branca/fisiologia
13.
Neuroimage Clin ; 25: 102192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32014826

RESUMO

The presence of the superior fronto-occipital fascicle (SFOF) has been reported in the Rhesus monkey; however, it is a subject of controversy in humans. The aim of this study is to identify the SFOF using both in vitro and in vivo anatomo-functional analyses. This study consisted of two approaches. First, one acallosal brain and 12 normal postmortem hemispheres (five left and seven right sides) were dissected under a microscope using Klingler's fiber dissection technique. We focused on the medial subcallosal area superior to the Muratoff bundle, which has been indicated as a principal target area of the SFOF in previous studies. Second, 90 patients underwent awake craniotomy for gliomas with direct electrical stimulations. Functional examinations for visual, ataxic, and cognitive tasks were performed and 453 positive mapping sites were investigated by voxel-based morphometry analysis to establish the functions of the SFOF. The corticostriatal fibers, or the Muratoff bundle, and thalamic peduncle fibers joined in the area of the caudate nucleus, making thalamic peduncle/ corticostriatal bundles, which ran antero-posteriorly in the anterior subcallosal area and radiated from the caudate superior margin in the posterior subcallosal area. However, no SFOF fiber bundle crossed perpendicular to the thalamic peduncle/ corticostriatal bundles in the posterior subcallosal area. In the acallosal hemispheres, Probst bundles were confirmed and the subcallosal areas did not show a specific organization different from the normal brain. Hence, we could not detect a long and continuous association fascicle connecting the frontal lobe and occipital or parietal lobe in the target areas. Furthermore, in the in vivo functional mappings of awake surgery and voxel-based morphometry analysis, eight positive points on the SFOF were selected from the total 453 positive points, but their functions were not related with visual processing and spatial awareness, as has been reported in previous studies. In conclusion, in the present study we attempted to investigate the existence of the SFOF using an anatomical and functional approach. According to our results, the SFOF may not exist in the human brain.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas/cirurgia , Craniotomia , Imagem de Tensor de Difusão , Glioma/cirurgia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adolescente , Adulto , Idoso , Autopsia , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Lobo Frontal/anatomia & histologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Lobo Occipital/anatomia & histologia , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/fisiologia , Vigília/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
14.
Neuropsychologia ; 136: 107182, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568774

RESUMO

From a holistic point of view, semantic processes are subserved by large-scale subcortico-cortical networks. The dynamic routing of information between grey matter structures depends on the integrity of subcortical white matter pathways. Nonetheless, controversy remains on which of these pathways support semantic processing. Therefore, a systematic review of the literature was performed with a focus on anatomo-functional correlations obtained from direct electrostimulation during awake tumor surgery, and conducted between diffusion tensor imaging metrics and behavioral semantic performance in healthy and aphasic individuals. The 43 included studies suggest that the left inferior fronto-occipital fasciculus contributes to the essential connectivity that allows semantic processing. However, it remains uncertain whether its contributive role is limited to the organization of semantic knowledge or extends to the level of semantic control. Moreover, the functionality of the left uncinate fasciculus, inferior longitudinal fasciculus and the posterior segment of the indirect arcuate fasciculus in semantic processing has to be confirmed by future research.


Assuntos
Afasia , Rede Nervosa , Vias Neurais , Semântica , Substância Branca , Afasia/patologia , Afasia/fisiopatologia , Humanos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia
15.
Surg Obes Relat Dis ; 16(1): 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31679986

RESUMO

BACKGROUND: Obesity is associated with decreased brain gray- (GM) and white-matter (WM) volumes in regions. Laparoscopic sleeve gastrectomy (LSG) is an effective bariatric surgery associated with neuroplastic changes in patients with obesity at 1 month postLSG. OBJECTIVE: To investigate whether LSG can induce sustained neuroplastic recovery of brain structural abnormalities, and whether structural changes are accompanied by functional alterations. SETTING: University hospital, longitudinal study. METHODS: Structural magnetic resonance imaging and voxel-based morphometry analysis were employed to assess GM/WM volumes in 30 obese participants at preLSG and 1 and 3 months postLSG. One-way analysis of variance modeled time effects on GM/WM volumes, and then alterations in resting-state functional connectivity (RSFC) were assessed. RESULTS: Significant time effects on GM volumes were in caudate (F = 11.20), insula (INS; F = 10.11), posterior cingulate cortex (PCC; F = 13.32), and inferior frontal gyrus (F = 12.18), and on WM volumes in anterior cingulate cortex (F = 15.70), PCC (F = 15.56), and parahippocampus (F = 17.96, PFDR < .05). Post hoc tests showed significantly increased GM volumes in caudate (mean change ± SEM .018 ± .005 and P = .001, .031 ± .007 and P < .001), INS (.027 ± .008 and P = .003, .043 ± .009 and P < .001), and PCC (.008 ± .004 and P = .042, .026 ± .006 and P < .001), and increased WM volumes in anterior cingulate cortex (.029 ± .006 and P < .001, .041 ± .008 and P < .001), PCC (.017 ± .004 and P < .001, .032 ± .006 and P < .001), and parahippocampus (.031 ± .008 and P =.001, .075 ± .013 and P < .001) at 1 and 3 months postLSG compared with preLSG. Significant increases in GM volumes were in caudate (.013 ± .006 and P = .036), PCC (.019 ± .006 and P = .006), and inferior frontal gyrus (.019 ± .005 and P = .001), and in WM volumes in anterior cingulate cortex (.012 ± .005 and P = .028), PCC (.014 ± .006 and P = .017), and parahippocampus (.044 ± .014 and P = .003) at 3 relative to 1 month postLSG. GM volumes in INS and PCC showed a positive correlation at 1 (r = .57, P = .001) and 3 months postLSG (r = .55, P = .001). GM volume in INS and PCC were positively correlated with RSFC of INS-PCC (r = .40 and P = .03, r = .55 and P = .001) and PCC-INS (r = .37 and P = .046, r = .57 and P < .001) at 1 month postLSG. GM volume in INS was also positively correlated with RSFC of INS-PCC (r = .44, P = .014) and PCC-INS (r = .38, P = .037) at 3 months postLSG. CONCLUSION: LSG induces sustained structural brain changes, which might mediate long-term benefits of bariatric surgery in weight reduction. Associations between regional GM volume and RSFC suggest that LSG-induced structural changes contribute to RSFC changes.


Assuntos
Gastrectomia , Substância Cinzenta , Laparoscopia , Obesidade/cirurgia , Substância Branca , Adolescente , Adulto , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
16.
Neuroimage ; 205: 116237, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31626897

RESUMO

OBJECTIVE: The structural and functional organization of brain networks subserving basic daily activities (i.e. language, visuo-spatial cognition, movement, semantics, etc.) are not completely understood to date. Here, we report the first probabilistic cortical and subcortical atlas of critical structures mediating human brain functions based on direct electrical stimulation (DES), a well-validated tool for the exploration of cerebral processing and for performing safe surgical interventions in eloquent areas. METHODS: We collected 1162 cortical and 659 subcortical DES responses during testing of 16 functional domains in 256 patients undergoing awake surgery. Spatial coordinates for each functional response were calculated, and probability distributions for the entire patient cohort were mapped onto a standardized three-dimensional brain template using a multinomial statistical analysis. In addition, matching analyses were performed against prior established anatomy-based cortical and white matter (WM) atlases. RESULTS: The probabilistic maps for each functional domain were provided. The topographical analysis demonstrated a wide spatial distribution of cortical functional responses, while subcortical responses were more restricted, localizing to known WM pathways. These DES-derived data showed reliable matching with existing cortical and WM atlases as well as recent neuroimaging and neurophysiological data. CONCLUSIONS: We present the first integrated and comprehensive cortical-subcortical atlas of structures essential for humans' neural functions based on highly-specific DES mapping during real-time neuropsychological testing. This novel atlas can serve as a complementary tool for neuroscientists, along with data obtained from other modalities, to improve and refine our understanding of the functional anatomy of critical brain networks.


Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Substância Branca/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Estimulação Elétrica , Humanos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Procedimentos Neurocirúrgicos , Período Pré-Operatório , Substância Branca/diagnóstico por imagem
17.
PLoS One ; 14(10): e0223297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581226

RESUMO

BACKGROUND: Mild cognitive impairment is a common systemic manifestation of chronic obstructive pulmonary disease (COPD). However, its pathophysiological origins are not understood. Since, cognitive function relies on efficient communication between distributed cortical and subcortical regions, we investigated whether people with COPD have disruption in white matter connectivity. METHODS: Structural networks were constructed for 30 COPD patients (aged 54-84 years, 57% male, FEV1 52.5% pred.) and 23 controls (aged 51-81 years, 48% Male). Networks comprised 90 grey matter regions (nodes) interconnected by white mater fibre tracts traced using deterministic tractography (edges). Edges were weighted by the number of streamlines adjusted for a) streamline length and b) end-node volume. White matter connectivity was quantified using global and nodal graph metrics which characterised the networks connection density, connection strength, segregation, integration, nodal influence and small-worldness. Between-group differences in white matter connectivity and within-group associations with cognitive function and disease severity were tested. RESULTS: COPD patients' brain networks had significantly lower global connection strength (p = 0.03) and connection density (p = 0.04). There was a trend towards COPD patients having a reduction in nodal connection density and connection strength across the majority of network nodes but this only reached significance for connection density in the right superior temporal gyrus (p = 0.02) and did not survive correction for end-node volume. There were no other significant global or nodal network differences or within-group associations with disease severity or cognitive function. CONCLUSION: COPD brain networks show evidence of damage compared to controls with a reduced number and strength of connections. This loss of connectivity was not sufficient to disrupt the overall efficiency of network organisation, suggesting that it has redundant capacity that makes it resilient to damage, which may explain why cognitive dysfunction is not severe. This might also explain why no direct relationships could be found with cognitive measures. Smoking and hypertension are known to have deleterious effects on the brain. These confounding effects could not be excluded.


Assuntos
Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Doença Pulmonar Obstrutiva Crônica/complicações , Substância Branca/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cognição , Disfunção Cognitiva/psicologia , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Testes de Função Respiratória , Índice de Gravidade de Doença , Substância Branca/diagnóstico por imagem
18.
Brain Behav ; 9(12): e01413, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568680

RESUMO

INTRODUCTION: Emotional and behavioral control is necessary self-regulatory processes to maintain stable goal-driven behavior. Studies indicate that variance in these executive function (EF) processes is related to morphological features of the brain and white matter (WM) differences. Furthermore, sex hormone level may modulate circuits in the brain important for cognitive function. METHODS: We aimed to investigate the structural neural correlates of EF behavior in gray matter (GM) and WM while taking into account estradiol level, in an adolescent population. The present study obtained neuroimaging behavioral and physiological data from the National Institute of Health's Pediatric Database (NIHPD). We analyzed the relationship between cortical morphometry and structural connectivity (N = 55), using a parent-administered behavioral monitoring instrument (Behavior Rating Inventory of Executive Function-BRIEF), estradiol level, as well as their interaction. RESULTS: Executive function behavior and estradiol level related to bidirectional associations with cortical morphometry in the right posterior dorsolateral prefrontal cortex (pDLPFC) and primary motor cortex (PMC), as well as fractional anisotropy (FA) in the forceps major and minor. Lastly, the interaction of EF behavior and estradiol level related to decreased volume in the right PMC and was linked to altered FA in the right inferior fronto-occipital fasciculus (iFOF). CONCLUSIONS: The study provides evidence that the relationship between EF behavior and estradiol level related to bidirectional GM and WM differences, implying estradiol level has an influence on the putative structural regions underlying EF behavior. The findings represent a crucial link between EF behavior and hormonal influence on brain structure in adolescence.


Assuntos
Estradiol/metabolismo , Função Executiva/fisiologia , Substância Branca/fisiologia , Adolescente , Anisotropia , Criança , Feminino , Substância Cinzenta/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Córtex Motor/fisiologia , Condução Nervosa/fisiologia , Neuroimagem/métodos , Córtex Pré-Frontal/fisiologia
19.
J Neuropathol Exp Neurol ; 78(12): 1147-1159, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633782

RESUMO

Axons from deep heterotopia do not extend through U-fibers, except transmantle dysplasias. Keratan sulfate (KS) in fetal spinal cord/brainstem median septum selectively repels glutamatergic axons while enabling GABAergic commissural axons. Immunocytochemical demonstration of KS in neocortical resections and forebrain at autopsy was studied in 12 fetuses and neonates 9-41 weeks gestational age (GA), 9 infants, children, and adolescents and 5 patients with focal cortical dysplasias (FCD1a). From 9 to 15 weeks GA, no KS is seen in the cortical plate; 19-week GA reactivity is detected in the molecular zone. By 28 weeks GA, patchy granulofilamentous reactivity appears in extracellular matrix and adheres to neuronal somata with increasing intensity in deep cortex and U-fibers at term. Perifascicular KS surrounds axonal bundles of both limbs of the internal capsule and within basal ganglia from 9 weeks GA. Thalamus and globus pallidus exhibit intense astrocytic reactivity from 9 weeks GA. In FCD1a, U-fiber reactivity is normal, discontinuous or radial. Ultrastructural correlates were not demonstrated; KS is not electron-dense. Proteoglycan barrier of the U-fiber layer impedes participation of deep heterotopia in cortical epileptic networks. Perifascicular KS prevents aberrant axonal exit from or entry into long and short tracts. KS adhesion to neuronal somatic membranes may explain inhibitory axosomatic synapses.


Assuntos
Axônios/patologia , Epilepsia/patologia , Epilepsia/fisiopatologia , Sulfato de Queratano/fisiologia , Inibição Neural , Prosencéfalo , Adolescente , Axônios/fisiologia , Criança , Pré-Escolar , Epilepsia/complicações , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Prosencéfalo/embriologia , Prosencéfalo/patologia , Prosencéfalo/fisiopatologia , Sinapses/patologia , Sinapses/fisiologia , Substância Branca/patologia , Substância Branca/fisiologia
20.
Mol Psychiatry ; 24(11): 1641-1654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481758

RESUMO

Although the underlying neurobiology of major mental illness (MMI) remains unknown, emerging evidence implicates a role for oligodendrocyte-myelin abnormalities. Here, we took advantage of a large family carrying a balanced t(1;11) translocation, which substantially increases risk of MMI, to undertake both diffusion tensor imaging and cellular studies to evaluate the consequences of the t(1;11) translocation on white matter structural integrity and oligodendrocyte-myelin biology. This translocation disrupts among others the DISC1 gene which plays a crucial role in brain development. We show that translocation-carrying patients display significant disruption of  white matter integrity compared with familial controls. At a cellular level, we observe dysregulation of key pathways controlling oligodendrocyte development and morphogenesis in induced pluripotent stem cell (iPSC) derived case oligodendrocytes. This is associated with reduced proliferation and a stunted morphology in vitro. Further, myelin internodes in a humanized mouse model that recapitulates the human translocation as well as after transplantation of t(1;11) oligodendrocyte progenitors were significantly reduced when  compared with controls. Thus we provide evidence that the t(1;11) translocation has biological effects at both the systems and cellular level that together suggest oligodendrocyte-myelin dysfunction.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Translocação Genética/genética , Adulto , Animais , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 11/genética , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Transtornos Mentais/genética , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Substância Branca/metabolismo , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA