Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273238

RESUMO

Amidst increasing awareness of diet-health relationships, plant-derived bioactive peptides are recognized for their dual nutritional and health benefits. This study investigates bioactive peptides released after Alcalase hydrolysis of protein from chachafruto (Erythrina edulis), a nutrient-rich South American leguminous plant, focusing on their behavior during simulated gastrointestinal digestion. Evaluating their ability to scavenge radicals, mitigate oxidative stress, and influence immune response biomarkers, this study underscores the importance of understanding peptide interactions in digestion. The greatest contribution to the antioxidant activity was exerted by the low molecular weight peptides with ORAC values for the <3 kDa fraction of HES, GD-HES, and GID-HES of 0.74 ± 0.03, 0.72 ± 0.004, and 0.56 ± 0.01 (µmol TE/mg protein, respectively). GD-HES and GID-HES exhibited immunomodulatory effects, promoting the release of NO up to 18.52 and 8.58 µM, respectively. The findings of this study highlighted the potential of chachafruto bioactive peptides in functional foods and nutraceuticals, supporting human health through dietary interventions.


Assuntos
Antioxidantes , Digestão , Erythrina , Peptídeos , Proteínas de Plantas , Hidrólise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Peptídeos/química , Peptídeos/metabolismo , Erythrina/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Subtilisinas/metabolismo , Subtilisinas/química , Estresse Oxidativo , Trato Gastrointestinal/metabolismo
2.
Molecules ; 29(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39339401

RESUMO

The byproduct from wheat starch production contains approximately 70% gluten (WG) and is an inexpensive but demanding protein raw material for the food industry. This study attempted to determine the optimal hydrolysis conditions for such raw material to obtain peptides combining beneficial functional characteristics with health-promoting activity. The proteases Bromelain, Alcalase, Flavourzyme, and a protease from A. saitoi were used for hydrolysis. It was shown that the tested proteases differ both in terms of the effective hydrolysis conditions of gluten and the profile of the released hydrolysates. Bromelain was particularly effective in converting gluten into peptides, combining beneficial health and functional properties. It achieved maximum activity (189 U/g) against WG at pH 6 and 60 °C, and the best-balanced peptides in terms of desired properties were released at a dose of 2.5 U/g. These peptides were free from most allergenic epitopes, effectively inhibited ACE, and, at 0.34 g, were equivalent to the approved dose of BHT. Their emulsifying activity was higher than that of gluten, and the foaming formation and stabilization potential exceeded that of ovalbumin by 10% and 19%, respectively. It seems that Bromelain-released WG hydrolysates are a promising candidate for a safe fat stabilizer and egg white substitute.


Assuntos
Bromelaínas , Glutens , Triticum , Glutens/química , Hidrólise , Triticum/química , Bromelaínas/química , Hidrolisados de Proteína/química , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Subtilisinas/metabolismo , Subtilisinas/química , Peptídeos/química , Endopeptidases
3.
Int J Biol Macromol ; 278(Pt 1): 134647, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128744

RESUMO

The main objective of this work was to investigate the impact of ultrasonication assisted enzymatic treatment on the physicochemical and bioactive properties of broad bean (BBP), lentil bean (LBP), and mung bean (MBP) protein isolates. The protein was extracted using alkaline acid precipitation method, ultrasonicated at a frequency of 20 kHz, temperature 20-30 °C and then hydrolysed using alcalase enzyme (1 % w/w, pH 8.5, 30 min, 55 οC). The generated hydrolysates were characterized by degree of hydrolysis (DH), SDS, FTIR, surface hydrophobicity, amino acid composition, antioxidant and antihypertensive properties. Results showed that the degree of hydrolysis was found to increase in ultrasonicated protein hydrolysate (18.9 to 40.71 %) in comparison to non- ultrasonicated protein hydrolysate (11 to 16.3 %). SDS-PAGE results showed significant changes in protein molecular weight profiles (100-11kDa) in comparison to their natives. However, no substantial change was found in ultrasonicated and non-ultrasonicated protein hydrolysates. The FTIR spectrum showed structural alterations in ultrasonicated and non-ultrasonicated protein hydrolysates, suggesting modifications in secondary structure such as amide A, amide I and amide II regions. The essential amino acid content varied in the range of 60.09 mg/g to 73.77 mg/g and 28.73 to 50.26 mg/g in case of ultrasonicated and non-ultrasonicated protein hydrolysates, and non-essential content varied in the range of 49.42 to 65.93 mg/g and 43.12 to 47.12 mg/g. Both antioxidant and antihypertensive activities were found to increase significantly in ultrasonicated and non-ultrasonicated protein hydrolysates in comparison to their native counterparts, highlighting their potential as functional ingredients for management of hypertension. It was concluded that ultrasonication assisted enzymatic hydrolysis is an efficient approach for production of bioactive pulse protein hydrolysates with enhanced nutracutical properties, thus offering promising avenues for their utilization in the food industry and beyond.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Hidrolisados de Proteína , Hidrolisados de Proteína/química , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Hidrólise , Sonicação , Subtilisinas/metabolismo , Subtilisinas/química , Interações Hidrofóbicas e Hidrofílicas , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Peso Molecular
4.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928451

RESUMO

Phytaspases differ from other members of the plant subtilisin-like protease family by having rare aspartate cleavage specificity and unusual localization dynamics. Phytaspases are secreted from healthy plant cells but are re-internalized upon perception of death-inducing stresses. Although proteolytic activity is required for the secretion of plant subtilases, its requirement for the retrograde transportation of phytaspases is currently unknown. To address this issue, we employed an approach to complement in trans the externalization of a prodomain-less form of Nicotiana tabacum phytaspase (NtPhyt) with the free prodomain in Nicotiana benthamiana leaf cells. Using this approach, the generation of the proteolytically active NtPhyt and its transport to the extracellular space at a level comparable to that of the native NtPhyt (synthesized as a canonical prodomain-containing precursor protein) were achieved. The application of this methodology to NtPhyt with a mutated catalytic Ser537 residue resulted in the secretion of the inactive, although processed (prodomain-free), protein as well. Notably, the externalized NtPhyt Ser537Ala mutant was still capable of retrograde transportation into plant cells upon the induction of oxidative stress. Our data thus indicate that the proteolytic activity of NtPhyt is dispensable for stress-induced retrograde transport of the enzyme.


Assuntos
Nicotiana , Proteínas de Plantas , Proteólise , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Oxidativo , Estresse Fisiológico , Subtilisinas/metabolismo , Subtilisinas/genética , Folhas de Planta/metabolismo , Transporte Proteico
5.
Food Res Int ; 188: 114499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823844

RESUMO

The aim of this study was to evaluate the effect of the enzymatic hydrolysis, performed using Alcalase and Protamex enzymes, on the technological functionalities and the antioxidant capacity of whey protein hydrolysates (WPHs) to identify the conditions allowing to obtain target functionality/ies. Samples were characterized for hydrolysis degree (DH), molecular weight distribution, structural properties, and food-related functionalities. Free sulfhydryl groups and surface hydrophobicity significantly decreased with the increase in DH, regardless of the used enzyme. The foaming and antioxidant properties of Alcalase WPHs were higher as compared to those of WPI, reaching the maximum value at DH = 18-20 %, while higher DH resulted in impaired functionality. Gelling properties were guaranteed when WPI was hydrolysed by Protamex at DH < 15 % while foaming and antioxidant abilities were fostered at 15 < DH < 21 %. These results were well correlated with MW distribution and were rationalized into a road map which represents a useful tool in the selection of proper hydrolysis conditions (time, DH, enzyme type) to obtain WPHs with tailored functionalities. Research outcomes highlighted the possibility to drive protein hydrolysis to optimize the desired functionality/ies.


Assuntos
Antioxidantes , Interações Hidrofóbicas e Hidrofílicas , Hidrolisados de Proteína , Proteínas do Soro do Leite , Antioxidantes/química , Proteínas do Soro do Leite/química , Hidrólise , Hidrolisados de Proteína/química , Subtilisinas/metabolismo , Subtilisinas/química , Peso Molecular , Subtilisina/metabolismo , Subtilisina/química
6.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558367

RESUMO

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Assuntos
Sacos Aéreos , Peixes , Animais , Sacos Aéreos/química , Sacos Aéreos/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Cyprinidae/metabolismo , Proteínas de Peixes/metabolismo , Gelatina/química , Hidrólise , Osteogênese/efeitos dos fármacos , Picratos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Subtilisinas/metabolismo , Peixes/metabolismo
7.
Food Chem ; 447: 138947, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492294

RESUMO

Walnut dreg (WD) active peptides are an important source of dietary antioxidants; however, the products of conventional hydrolysis have limited industrial output owing to poor flavour and low bioactivity. To this end, in this study, we aimed to employ bvLAP, an aminopeptidase previously identified in our research, as well as commercially available Alcalase for bi-enzyme digestion. The flavour, antioxidant activity, and structures of products resulting from various digestion methods were compared. The results showed that the bi-enzyme digestion products had enhanced antioxidant activity, increased ß-sheet content, and reduced bitterness intensity from 9.65 to 6.93. Moreover, bi-enzyme hydrolysates showed a more diverse amino acid composition containing 1640 peptides with distinct sequences. These results demonstrate that bi-enzyme hydrolysis could be a potential process for converting WD into functional food ingredients. Additionally, our results provide new concepts that can be applied in waste processing and high-value utilisation of WD.


Assuntos
Antioxidantes , Juglans , Hidrólise , Antioxidantes/química , Juglans/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Subtilisinas/metabolismo
8.
Plant Physiol ; 195(2): 1681-1693, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38478507

RESUMO

Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.


Assuntos
Arabidopsis , Morte Celular , Fusarium , Nicotiana , Doenças das Plantas , Fusarium/patogenicidade , Virulência , Arabidopsis/microbiologia , Arabidopsis/genética , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Nicotiana/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Subtilisinas/metabolismo , Subtilisinas/genética , Gossypium/microbiologia , Folhas de Planta/microbiologia , Células Vegetais/microbiologia
9.
J Sci Food Agric ; 104(5): 2980-2989, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38087783

RESUMO

BACKGROUND: The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C. RESULTS: Radical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid-reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration. CONCLUSION: This study highlights the potential applications of animal by-products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Animais , Bovinos , Antioxidantes/química , Hidrolisados de Proteína/química , Oxirredução , Hidrólise , Lipídeos/química , Fígado/metabolismo , Subtilisinas/metabolismo
10.
Cancer Rep (Hoboken) ; 7(1): e1920, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38018319

RESUMO

BACKGROUND: Endometrial adenocarcinoma (EAC) is a malignant tumor of the endometrium. EAC is the most common female malignancy following the menopause period. About 40% of patients with EAC are linked with obesity and interrelated with hypertension, diabetes mellitus, and high circulating estrogen levels. Proprotein convertase (PC) furin was involved in the progression of EAC. RECENT FINDINGS: Furin is a protease enzyme belonging to the subtilisin PC family called PC subtilisin/kexin type 3 that converts precursor proteins to biologically active forms and products. Aberrant activation of furin promotes abnormal cell proliferation and the development of cancer. Furin promotes angiogenesis, malignant cell proliferation, and tissue invasion by malignant cells through its pro-metastatic and oncogenic activities. Furin activity is correlated with the malignant proliferation of EAC. Higher expression of furin may increase the development of EAC through overexpression of pro-renin receptors and disintegrin and metalloprotease 17 (ADAM17). As well, inflammatory signaling in EAC promotes the expression of furin with further propagation of malignant transformation. CONCLUSION: Furin is associated with the development and progression of EAC through the induction of proliferation, invasion, and metastasis of malignant cells of EAC. Furin induces ontogenesis in EAC through activation expression of ADAM17, pro-renin receptor, CD109, and TGF-ß. As well, EAC-mediated inflammation promotes the expression of furin with further propagation of neoplastic growth and invasion.


Assuntos
Adenocarcinoma , Furina , Humanos , Feminino , Furina/genética , Furina/metabolismo , Pró-Proteína Convertases/metabolismo , Subtilisinas/metabolismo , Transdução de Sinais
11.
Molecules ; 28(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138458

RESUMO

The purpose of this study was to evaluate the physicochemical properties of whey protein hydrolysate and determine changes in absorption rate due to enzymatic hydrolysis. The molecular weight distribution analysis of whey protein concentrate (WPC) and low-molecule whey protein hydrolysate (LMWPH) using the Superdex G-75 column revealed that LMWPH is composed of peptides smaller than those in WPC. Fourier-transform infrared spectroscopy indicated differences in peak positions between WPC and LMWPH, suggesting hydrolysis-mediated changes in secondary structures. Moreover, LMWPH exhibited higher thermal stability and faster intestinal permeation than WPC. Additionally, oral LMWPH administration increased serum protein content at 20 min, whereas WPC gradually increased serum protein content after 40 min. Although the total amount of WPC and LMWPH absorption was similar, LMWPH absorption rate was higher. Collectively, LMWPH, a hydrolysate of WPC, has distinct physicochemical properties and enhanced absorptive characteristics. Taken together, LMWPH is composed of low-molecular-weight peptides with low antigenicity and has improved absorption compared to WPC. Therefore, LMWPH can be used as a protein source with high bioavailability in the development of functional materials.


Assuntos
Hidrolisados de Proteína , Subtilisinas , Hidrolisados de Proteína/química , Subtilisinas/metabolismo , Soro do Leite/metabolismo , Proteínas do Soro do Leite , Peptídeos/química , Proteínas Sanguíneas
12.
Biochemistry ; 62(20): 2952-2969, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796763

RESUMO

Subtilases play a significant role in microbial pathogen infections by degrading the host proteins. Subtilisin inhibitors are crucial in fighting against these harmful microorganisms. LL-TIL, from skin secretions of Lepidobatrachus laevis, is a cysteine-rich peptide belonging to the I8 family of inhibitors. Protease inhibitory assays demonstrated that LL-TIL acts as a slow-tight binding inhibitor of subtilisin Carlsberg and proteinase K with inhibition constants of 91 pM and 2.4 nM, respectively. The solution structures of LL-TIL and a mutant peptide reveal that they adopt a typical TIL-type fold with a canonical conformation of a reactive site loop (RSL). The structure of the LL-TIL-subtilisin complex and molecular dynamics (MD) simulations provided an in-depth view of the structural basis of inhibition. NMR relaxation data and molecular dynamics simulations indicated a rigid conformation of RSL, which does not alter significantly upon subtilisin binding. The energy calculation for subtilisin inhibition predicted Ile31 as the highest contributor to the binding energy, which was confirmed experimentally by site-directed mutagenesis. A chimeric mutant of LL-TIL broadened the inhibitory profile and attenuated subtilisin inhibition by 2 orders of magnitude. These results provide a template to engineer more specific and potent TIL-type subtilisin inhibitors.


Assuntos
Subtilisina , Subtilisinas , Animais , Subtilisina/genética , Subtilisina/metabolismo , Sequência de Aminoácidos , Subtilisinas/genética , Subtilisinas/metabolismo , Anuros/metabolismo , Peptídeos , Simulação de Dinâmica Molecular , Domínio Catalítico
13.
Plant Foods Hum Nutr ; 78(4): 790-795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656398

RESUMO

Millet bran as a by-product of millet grain processing remains a reservoir of active substances. In this study, functional millet bran peptides (MBPE) were obtained from bran proteins after alcalase hydrolysis and ultrafiltration. The activity of MBPE was assessed in vitro and in the model organism Caenorhabditis elegans (C. elegans). In vitro, compared to unhydrolyzed proteins, MBPE significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and hydroxyl radicals scavenging activity, and the scavenging rate of MBPE with 15,000 U/g alcalase reached 42.79 ± 0.31%, 61.38 ± 0.41 and 45.69 ± 0.84%, respectively. In C. elegans, MBPE at 12.5 µg/mL significantly prolonged the lifespan by reducing lipid oxidation, oxidative stress, and lipofuscin levels. Furthermore, MBPE increased the activities of the antioxidant enzymes. Genetic analyses showed that MBPE-mediated longevity was due to a significant increase in the expression of daf-16 and skn-1, which are also involved in xenobiotic and oxidative stress responses. In conclusion, this study found that MBPE had antioxidant and life-prolonging effects, which are important for the development and utilization of millet bran proteins as resources of active ingredients.


Assuntos
Antioxidantes , Proteínas de Caenorhabditis elegans , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Milhetes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo , Subtilisinas/metabolismo
14.
Int J Biol Macromol ; 249: 125960, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517759

RESUMO

This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 µg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 µM and 12 µM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.


Assuntos
Bacillus subtilis , Subtilisina , Subtilisina/genética , Subtilisina/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular , Sequência de Aminoácidos , Subtilisinas/metabolismo , Expressão Gênica
15.
Food Funct ; 14(15): 6802-6812, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37435793

RESUMO

Enzymatic hydrolysis can not only increase the digestibility of casein, but also cause bitterness. This study aimed to investigate the effect of hydrolysis on the digestibility and bitterness of casein hydrolysates and provided a novel strategy for the preparation of high-digestibility and low-bitterness casein hydrolysates based on the release pattern of bitter peptides. Results showed that with the increase of the degree of hydrolysis (DH), the digestibility and bitterness of hydrolysates increased. However, the bitterness of casein trypsin hydrolysates rapidly increased in the low DH range (3%-8%), while the bitterness of casein alcalase hydrolysates rapidly increased in a higher DH range (10.5%-13%), indicating the discrepancy in the release pattern of bitter peptides. Peptidomics and random forests revealed that peptides containing >6 residues with hydrophobic amino acids (HAAs) at the N-terminal and basic amino acids (BAAs) at the C-terminal (HAA-BAA type) obtained from trypsin contributed more to the bitterness of casein hydrolysates than those containing 2-6 residues. On the other hand, peptides containing 2-6 residues with HAAs at both N- and C-terminals (HAA-HAA type) released by alcalase contributed more to the bitterness of casein hydrolysates than those containing >6 residues. Furthermore, a casein hydrolysate with a significantly lower bitter value containing short-chain HAA-BAA type peptides and long-chain HAA-HAA type peptides from the combination of trypsin and alcalase was obtained. The digestibility of the resultant hydrolysate was 79.19% (52.09% higher than casein). This work is of great significance for the preparation of high-digestibility and low-bitterness casein hydrolysates.


Assuntos
Caseínas , Algoritmo Florestas Aleatórias , Caseínas/química , Tripsina/química , Peptídeos/química , Hidrólise , Aminoácidos , Subtilisinas/metabolismo , Hidrolisados de Proteína
16.
Bioprocess Biosyst Eng ; 46(8): 1147-1162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269356

RESUMO

In this study, inorganic-based carrier perlite (PER) and cyclodextrin-modified perlite (PER-CD) were used for Subtilisin Carlsberg (SC) immobilization. For enzyme immobilization, the supports aminated with 3-aminotriethoxysilane were first activated with glutaraldehyde (GA) and genipin (GE), and then, the immobilized enzymes (PER-SC and PER-CD-SC) were obtained. The reaction medium for SC immobilization consisted of 500 mg carrier and 5 ml (1 mg/ml) enzyme solution. The immobilization conditions were pH 8.0, 25 °C, and 2 h incubation time. Free and immobilized SC were used for transesterification of N-acetyl-L-phenylalanine ethyl ester (APEE) with 1-propanol in tetrahydrofuran (THF). The transesterification activity of the enzyme and the yield of the transesterification reaction were determined by gas chromatography (GC). 50 mg of immobilized or 2.5 mg of free SC was added to the reaction medium, which was prepared as 1 mmol APEE and 10 mmol alcohol in 10 mL of THF. The conditions for the transesterification reaction were 60 °C and 24 h of incubation. The structure and surface morphology of the prepared carriers were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Casein substrate was used in the optimization study. The optimum temperature and pH for SC activity were found to be 50 °C and pH 8.0, respectively, for free and immobilized SC. The thermal stability of immobilized SC was found to be greater than that of free SC. At the end of 4 h of exposure to high temperature, the immobilized enzyme maintained its activity at approximately 50%, while the free enzyme was maintained at approximately 20%. However, modification with cyclodextrin did not alter the thermal stability. The transesterification yield was found to be approximately 55% for the free enzyme, while it was found to be approximately 68% and 77% for PER-SC and PER-CD-SC, respectively. The effect of metal ions and salts on transesterification yield was examined. The results showed that the addition of metal ions decreased the percentage of transesterification by approximately 10% compared to the control group, whereas the addition of salt significantly decreased the percentage of transesterification by 60-80% compared to the control group.


Assuntos
Ciclodextrinas , Subtilisinas , Subtilisinas/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Íons , Concentração de Íons de Hidrogênio , Temperatura
17.
J Food Sci ; 88(6): 2655-2664, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37089029

RESUMO

Milk protein concentrate (MPC) is considered an ideal substitute of cow milk because of its similar protein and nutrition. In this study, MPC was hydrolyzed to peptides by alcalase and neutrase, and the properties of hydrolysate were evaluated. When MPC was hydrolyzed at the ratio of alcalase and neutrase of 1:1 and enzyme to substrate ratio of 6000 U/g MPC at 50°C, pH 8.5 for 3 h, the proportion of peptides with molecular weights <1 kDa was 85.31%, and the antigenicity reduction rates of casein and ß-lactoglobulin were 33.76% and 22.38%, respectively. Moreover, LC-MS/MS peptide identification revealed that the alcalase and neutrase disrupted a total of 65 epitopes of casein and 21 epitopes of whey protein, which further elucidated the mechanism of complex enzyme hydrolysis to reduce milk protein allergenicity.


Assuntos
Caseínas , Proteínas do Leite , Animais , Bovinos , Feminino , Proteínas do Leite/análise , Hidrólise , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas do Soro do Leite/análise , Alérgenos , Peptídeos/química , Epitopos , Subtilisinas/metabolismo
18.
Mar Drugs ; 21(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37103394

RESUMO

Arthrospira platensis biomass is a sustainable source of bioactive products for the food, cosmetic, and medicine industries. As well as primary metabolites, different secondary metabolites can be obtained via distinct enzymatic degradation of biomass. In this work, different hydrophilic extracts were obtained after treating the biomass with: (i) a serine endo-peptidase (Alcalase®), (ii) a mixture of amino-, dipeptidyl-, and endo-peptidases (Flavourzyme®), (iii) a mixture of endo-1,3(4)-ß-glucanase and an endo-1,4-xylanase, and ß-glucanase (Ultraflo®), and (iv) an exo-1,3-glucanase (Vinoflow®) (all the enzymes from Novozymes A/S (bagsvaerd, Denmark)); with subsequent extraction of the biocomponents with an isopropanol/hexane mixture. The composition of each aqueous phase extract (in terms of amino acids, peptides, oligo-elements, carbohydrates, and phenols) and their in vitro functional properties were compared. The conditions described in this work using the enzyme Alcalase® permits the extraction of eight distinctive peptides. This extract is 7.3 times more anti-hypertensive, 106 times more anti-hypertriglyceridemic, 26 times more hypocholesterolemic, has 4.4 times more antioxidant activities, and has 2.3 times more phenols, than the extract obtained without any prior enzyme biomass digestion. Alcalase® extract is an advantageous product with potential application in functional food, pharmaceutics, and cosmetics.


Assuntos
Antioxidantes , Spirulina , Antioxidantes/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/metabolismo , Proteólise , Biomassa , Proteínas/metabolismo , Peptídeos/química , Spirulina/química , Subtilisinas/metabolismo , Fenóis/metabolismo
19.
J Allergy Clin Immunol ; 151(5): 1379-1390.e11, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36623776

RESUMO

BACKGROUND: Oncostatin M (OSM) may promote type 2 inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP) by inducing thymic stromal lymphopoietin (TSLP). OBJECTIVE: We sought to study the impact of OSM on TSLP synthesis and release from nasal epithelial cells (NECs). METHODS: OSM receptors, IL-4 receptors (IL-4R), and TSLP were evaluated in mucosal tissue and primary NECs from patients with CRSwNP by quantitative PCR and immunofluorescence. Air-liquid interface-cultured NECs were stimulated with cytokines, including OSM, and quantitative PCR, ELISA, Western blot, and flow cytometry were used to assess the expression of OSM receptors, IL-4R, and TSLP. RESULTS: Increased levels of OSM receptor ß chain (OSMRß), IL-4Rα, and TSLP were observed in nasal polyp tissues and primary epithelial cells from nasal polyps of patients with CRSwNP compared with control tissues or cells from control subjects. The level of expression of OSMRß in tissue was correlated with levels of both IL-4Rα and TSLP. OSM stimulation of NECs increased the expression of OSMRß and IL-4Rα. Stimulation with IL-4 plus OSM augmented the production of TSLP; the response was suppressed by a signal transducer and activator of transcription 6 inhibitor. Stimulation of NECs with IL-4 plus OSM increased the expression of proprotein convertase subtilisin/kexin 3, an enzyme that truncates and activates TSLP. CONCLUSIONS: OSM increases the expression of IL-4Rα and synergizes with IL-4 to induce the synthesis and release of TSLP in NECs. Because the combination of IL-4 and OSM also augmented the expression of proprotein convertase subtilisin/kexin 3, these results suggest that OSM can induce both synthesis and posttranslational processing/activation of TSLP, promoting type 2 inflammation.


Assuntos
Interleucina-4 , Pólipos Nasais , Oncostatina M , Rinite , Sinusite , Humanos , Doença Crônica , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-4/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/metabolismo , Oncostatina M/metabolismo , Pró-Proteína Convertases/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Subtilisinas/metabolismo , Linfopoietina do Estroma do Timo
20.
Food Chem ; 411: 135544, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36701919

RESUMO

Milk protein concentrate (MPC) is one of the major allergens in food. This study aimed to analyze the peptide profiles and potential allergenicity of the extensive hydrolysates of MPC (EMPHs) using the peptidomics approach. Results demonstrated that when the hydrolysis time was 4 h, the degree of hydrolysis of the four EMPHs (AX, Alcalase-Protamex), (AD, Alcalase-Protease A 2SD), (AE, Alcalase-Flavourzyme) and (AH, Alcalase-ProteAXH) were 12.45 %, 18.48 %, 18.87 % and 16.77 %, respectively. The results of size exclusion chromatography showed no significant difference, when the hydrolysis time exceeded 3 h. A total of 16 allergic peptides were identified in the EMPHs by LC-MS/MS. The peptide profiles and the coverage of master protein of the four EMPHs were different. The results of the enzyme-linked immunoassay and KU812 cell model showed that the allergenicity of the EMPHs samples was significantly reduced. This study provided strong support for the application of EMPHs in hypoallergenic formula foods.


Assuntos
Hipersensibilidade , Proteínas do Leite , Humanos , Proteínas do Leite/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/química , Hidrólise , Alérgenos , Subtilisinas/metabolismo , Hidrolisados de Proteína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA