Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629076

RESUMO

Genome-wide association studies (GWAS) are one of the most common approaches to identify genetic loci that are associated with bone mineral density (BMD). Such novel genetic loci represent new potential targets for the prevention and treatment of fragility fractures. GWAS have identified hundreds of associations with BMD; however, only a few have been functionally evaluated. A locus significantly associated with femoral neck BMD at the genome-wide level is intronic SNP rs17040773 located in the intronic region of the anaphase-promoting complex subunit 1 (ANAPC1) gene (p = 1.5 × 10-9). Here, we functionally evaluate the role of ANAPC1 in bone remodelling by examining the expression of ANAPC1 in human bone and muscle tissues and during the osteogenic differentiation of human primary mesenchymal stem cells (MSCs). The expression of ANAPC1 was significantly decreased 2.3-fold in bone tissues and 6.2-fold in muscle tissue from osteoporotic patients as compared to the osteoarthritic and control tissues. Next, we show that the expression of ANAPC1 changes during the osteogenic differentiation process of human MSCs. Moreover, the silencing of ANAPC1 in human osteosarcoma (HOS) cells reduced RUNX2 expression, suggesting that ANAPC1 affects osteogenic differentiation through RUNX2. Altogether, our results indicate that ANAPC1 plays a role in bone physiology and in the development of osteoporosis.


Assuntos
Neoplasias Ósseas , Osteoporose , Humanos , Densidade Óssea/genética , Subunidade alfa 1 de Fator de Ligação ao Core , Anáfase , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Estudo de Associação Genômica Ampla , Osteogênese/genética , Osteoporose/genética
2.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956818

RESUMO

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Assuntos
Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular , Mitose , Processamento de Proteína Pós-Traducional , Ubiquitina , Anticorpos/genética , Anticorpos/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Mitose/genética , Mitose/fisiologia , Fosforilação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Quinase 1 Polo-Like
3.
J Leukoc Biol ; 112(4): 919-929, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35363385

RESUMO

T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma (TCL), are characterized by inferior treatment effects, high heterogeneity, poor prognosis, and a lack of specific therapeutic targets and drugs to improve outcome. Disulfiram (DSF) is a drug used to clinically control alcoholism that has recently been shown to be cytotoxic for multiple cancers. However, the underlying effects and mechanisms of DFS treatment in patients with T-cell malignancies are not well characterized. In this study, we report that DSF promotes apoptosis and inhibits the proliferation of malignant T-cell cell lines and primary T-ALL cells. We provide evidence that DSF exerts anticancer activity in T-cell malignancies by targeting the NPL4-mediated ubiquitin-proteasome pathway. Notably, high expression of NPL4 and 2 ubiquitin-proteasome pathway genes, anaphase-promoting complex subunit 1 (ANAPC1) and proteasome 26S subunit ubiquitin receptor, non-ATPase 2 (PSMD2), was significantly associated with unfavorable overall survival (OS) for patients with TCL and T-ALL (p < 0.05). More importantly, the weighted combination of NPL4, ANAPC1, and PSMD2 could visually display the 1-, 3-, and 5-year OS rates for patients with T-cell malignancies in a nomogram model and facilitate risk stratification. Specifically, risk stratification was an independent predictor of OS for patients with T-cell malignancies. In conclusion, DSF might induce apoptosis and inhibit the proliferation of malignant T-cells via the NPL4-mediated ubiquitin-proteasome pathway and offer a potential therapeutic option for T-cell malignancies.


Assuntos
Dissulfiram , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Linfócitos T , Ubiquitinas
4.
EMBO J ; 40(18): e107516, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34291488

RESUMO

The anaphase-promoting complex/cyclosome (APC/C), a multi-subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin-dependent kinase 1 (Cdk1) promotes Cdc20 co-activator loading in mitosis to form active APC/C-Cdc20. However, detailed phospho-regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo-like kinase (Plx1) and PP2A-B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1-loop500 ) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1-loop500 in a phosphorylation-dependent manner and promotes the formation of APC/C-Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A-B56 is recruited to the Apc1-loop500 and differentially promotes dissociation of Plx1 and PP2A-B56 through dephosphorylation of Plx1-binding sites. Stable Plx1 binding, which prevents PP2A-B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1-loop500 is controlled by distant Apc3-loop phosphorylation. Our study suggests that phosphorylation-dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Humanos , Fosforilação , Ligação Proteica , Quinase 1 Polo-Like
5.
J Virol ; 95(15): e0097120, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011540

RESUMO

HIV-1 encodes several accessory proteins-Nef, Vif, Vpr, and Vpu-whose functions are to modulate the cellular environment to favor immune evasion and viral replication. While Vpr was shown to mediate a G2/M cell cycle arrest and provide a replicative advantage during infection of myeloid cells, the mechanisms underlying these functions remain unclear. In this study, we defined HIV-1 Vpr proximity interaction network using the BioID proximity labeling approach and identified 352 potential Vpr partners/targets, including several complexes, such as the cell cycle-regulatory anaphase-promoting complex/cyclosome (APC/C). Herein, we demonstrate that both the wild type and cell cycle-defective mutants of Vpr induce the degradation of APC1, an essential APC/C scaffolding protein, and show that this activity relies on the recruitment of DCAF1 by Vpr and the presence of a functional proteasome. Vpr forms a complex with APC1, and the APC/C coactivators Cdh1 and Cdc20 are associated with these complexes. Interestingly, we found that Vpr encoded by the prototypic HIV-1 NL4.3 does not interact efficiently with APC1 and is unable to mediate its degradation as a result of a N28S-G41N amino acid substitution. In contrast, we show that APC1 degradation is a conserved feature of several primary Vpr variants from transmitted/founder virus. Functionally, Vpr-mediated APC1 degradation did not impact the ability of the protein to induce a G2 cell cycle arrest during infection of CD4+ T cells or enhance HIV-1 replication in macrophages, suggesting that this conserved activity may be important for other aspects of HIV-1 pathogenesis. IMPORTANCE The function of the Vpr accessory protein during HIV-1 infection remains poorly defined. Several cellular targets of Vpr were previously identified, but their individual degradation does not fully explain the ability of Vpr to impair the cell cycle or promote HIV-1 replication in macrophages. Here, we used the unbiased proximity labeling approach, called BioID, to further define the Vpr proximity interaction network and identified several potentially new Vpr partners/targets. We validated our approach by focusing on a cell cycle master regulator, the APC/C complex, and demonstrated that Vpr mediated the degradation of a critical scaffolding component of APC/C called APC1. Furthermore, we showed that targeting of APC/C by Vpr did not impact the known activity of Vpr. Since degradation of APC1 is a conserved feature of several primary variants of Vpr, it is likely that the interplay between Vpr and APC/C governs other aspects of HIV-1 pathogenesis.


Assuntos
Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Infecções por HIV/patologia , HIV-1/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Células HEK293 , HIV-1/metabolismo , Células HeLa , Humanos , Macrófagos/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Espectrometria de Massas em Tandem , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
6.
Mol Biol Cell ; 31(8): 725-740, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995441

RESUMO

E2F8 is a transcriptional repressor that antagonizes E2F1 at the crossroads of the cell cycle, apoptosis, and cancer. Previously, we discovered that E2F8 is a direct target of the APC/C ubiquitin ligase. Nevertheless, it remains unknown how E2F8 is dynamically controlled throughout the entirety of the cell cycle. Here, using newly developed human cell-free systems that recapitulate distinct inter-mitotic and G1 phases and a continuous transition from prometaphase to G1, we reveal an interlocking dephosphorylation switch coordinating E2F8 degradation with mitotic exit and the activation of APC/CCdh1. Further, we uncover differential proteolysis rates for E2F8 at different points within G1 phase, accounting for its accumulation in late G1 while APC/CCdh1 is still active. Finally, we demonstrate that the F-box protein Cyclin F regulates E2F8 in G2-phase. Altogether, our data define E2F8 regulation throughout the cell cycle, illuminating an extensive coordination between phosphorylation, ubiquitination and transcription in mammalian cell cycle.


Assuntos
Ciclo Celular/fisiologia , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Sistema Livre de Células , Ciclinas/metabolismo , Fator de Transcrição E2F1/metabolismo , Fase G1/fisiologia , Fase G2/fisiologia , Células HeLa , Humanos , Mitose/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteólise , Proteínas Recombinantes/metabolismo , Ubiquitinação
7.
Am J Hum Genet ; 105(3): 625-630, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31303264

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Mutação , Síndrome de Rothmund-Thomson/genética , Humanos
8.
PLoS Genet ; 14(4): e1007339, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29641560

RESUMO

Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Complexo de Sinalização da Axina/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Animais , Animais Geneticamente Modificados , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Proteína Axina/química , Proteína Axina/genética , Proteína Axina/metabolismo , Complexo de Sinalização da Axina/química , Complexo de Sinalização da Axina/genética , Linhagem Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
9.
Cancer Res ; 78(3): 617-630, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212857

RESUMO

APC biallelic loss-of-function mutations are the most prevalent genetic changes in colorectal tumors, but it is unknown whether these mutations phenocopy gain-of-function mutations in the CTNNB1 gene encoding ß-catenin that also activate canonical WNT signaling. Here we demonstrate that these two mutational mechanisms are not equivalent. Furthermore, we show how differences in gene expression produced by these different mechanisms can stratify outcomes in more advanced human colorectal cancers. Gene expression profiling in Apc-mutant and Ctnnb1-mutant mouse colon adenomas identified candidate genes for subsequent evaluation of human TCGA (The Cancer Genome Atlas) data for colorectal cancer outcomes. Transcriptional patterns exhibited evidence of activated canonical Wnt signaling in both types of adenomas, with Apc-mutant adenomas also exhibiting unique changes in pathways related to proliferation, cytoskeletal organization, and apoptosis. Apc-mutant adenomas were characterized by increased expression of the glial nexin Serpine2, the human ortholog, which was increased in advanced human colorectal tumors. Our results support the hypothesis that APC-mutant colorectal tumors are transcriptionally distinct from APC-wild-type colorectal tumors with canonical WNT signaling activated by other mechanisms, with possible implications for stratification and prognosis.Significance: These findings suggest that colon adenomas driven by APC mutations are distinct from those driven by WNT gain-of-function mutations, with implications for identifying at-risk patients with advanced disease based on gene expression patterns. Cancer Res; 78(3); 617-30. ©2017 AACR.


Assuntos
Adenoma/mortalidade , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/mortalidade , Mutação , Proteínas Wnt/metabolismo , beta Catenina/fisiologia , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Taxa de Sobrevida , Proteínas Wnt/genética
10.
J Biol Chem ; 293(4): 1178-1191, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29183995

RESUMO

The Hippo pathway plays important roles in controlling organ size and in suppressing tumorigenesis through large tumor suppressor kinase 1/2 (LATS1/2)-mediated phosphorylation of YAP/TAZ transcription co-activators. The kinase activity of LATS1/2 is regulated by phosphorylation in response to extracellular signals. Moreover, LATS2 protein levels are repressed by the ubiquitin-proteasome system in conditions such as hypoxia. However, the mechanism that removes the ubiquitin modification from LATS2 and thereby stabilizes the protein is not well understood. Here, using tandem affinity purification (TAP), we found that anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase complex, and USP9X, a deubiquitylase, specifically interact with LATS2. We also found that although APC1 co-localizes with LATS2 to intracellular vesicle structures, it does not regulate LATS2 protein levels and activity. In contrast, USP9X ablation drastically diminished LATS2 protein levels. We further demonstrated that USP9X deubiquitinates LATS2 and thus prevents LATS2 degradation by the proteasome. Furthermore, in pancreatic cancer cells, USP9X loss activated YAP and enhanced the oncogenic potential of the cells. In addition, the tumorigenesis induced by the USP9X ablation depended not only on LATS2 repression, but also on YAP/TAZ activity. We conclude that USP9X is a deubiquitylase of the Hippo pathway kinase LATS2 and that the Hippo pathway functions as a downstream signaling cascade that mediates USP9X's tumor-suppressive activity.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Estabilidade Enzimática , Células HEK293 , Células HeLa , Via de Sinalização Hippo , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
11.
J Appl Physiol (1985) ; 120(1): 29-37, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26494443

RESUMO

Cancer cachexia is characterized by the progressive loss of skeletal muscle mass. While mouse skeletal muscle's response to an acute bout of stimulated low-frequency concentric muscle contractions is disrupted by cachexia, gaps remain in our understanding of cachexia's effects on eccentric contraction-induced muscle growth. The purpose of this study was to determine whether repeated bouts of stimulated high-frequency eccentric muscle contractions [high-frequency electrical muscle stimulation (HFES)] could stimulate myofiber growth during cancer cachexia progression, and whether this training disrupted muscle signaling associated with wasting. Male Apc(Min/+) mice initiating cachexia (N = 9) performed seven bouts of HFES-induced eccentric contractions of the left tibialis anterior muscle over 2 wk. The right tibialis anterior served as the control, and mice were killed 48 h after the last stimulation. Age-matched C57BL/6 mice (N = 9) served as wild-type controls. Apc(Min/+) mice lost body weight, muscle mass, and type IIA, IIX, and IIB myofiber cross-sectional area. HFES increased myofiber cross-sectional area of all fiber types, regardless of cachexia. Cachexia increased muscle noncontractile tissue, which was attenuated by HFES. Cachexia decreased the percentage of high succinate dehydrogenase activity myofibers, which was increased by HFES, regardless of cachexia. While cachexia activated AMP kinase, STAT3, and ERK1/2 signaling, HFES decreased AMP kinase phosphorylation, independent of the suppression of STAT3. These results demonstrate that cachectic skeletal muscle can initiate a growth response to repeated eccentric muscle contractions, despite the presence of a systemic cachectic environment.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Neoplasias Experimentais/fisiopatologia , Anatomia Transversal , Animais , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Peso Corporal , Caquexia/patologia , Caquexia/fisiopatologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Estimulação Elétrica , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Tamanho do Órgão , Condicionamento Físico Animal , Transdução de Sinais , Succinato Desidrogenase/metabolismo
12.
Sci Signal ; 8(392): ra87, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26329581

RESUMO

The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.


Assuntos
Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proliferação de Células , Melanócitos/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteólise , Animais , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Linhagem Celular Tumoral , Humanos , Melanócitos/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética
13.
Dev Cell ; 31(6): 677-89, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25535916

RESUMO

Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. The two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial versus tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT-severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex.


Assuntos
Adenosina Trifosfatases/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/metabolismo , Microtúbulos/metabolismo , Neurônios/fisiologia , Alelos , Animais , Diferenciação Celular , Movimento Celular , Córtex Cerebral/metabolismo , Citoesqueleto/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Katanina , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios/metabolismo , Fatores de Tempo
14.
PLoS Genet ; 8(11): e1003049, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209426

RESUMO

The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokinesis, unlike non-neuronal cells in the roughex mutant that perform complete cell divisions. After mitosis, the binucleated R8 neurons usually transport one daughter nucleus away from the cell body into the developing axon towards the brain in a kinesin-dependent manner resembling anterograde axonal trafficking. Similar cell cycle and photoreceptor neuron defects occurred in mutants for components of the Anaphase Promoting Complex/Cyclosome. These findings indicate a neuron-specific defect in cytokinesis and demonstrate a critical role for mitotic cyclin downregulation both to maintain cell cycle exit during neuronal differentiation and to prevent axonal defects following failed cytokinesis.


Assuntos
Proteínas de Drosophila , Proteínas do Olho , Olho , Neurônios , Células Fotorreceptoras de Invertebrados , Animais , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular/genética , Diferenciação Celular , Divisão Celular , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Fase G1/genética , Regulação da Expressão Gênica no Desenvolvimento , Cinesinas/metabolismo , Mitose/genética , Mutação , Neurônios/citologia , Neurônios/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo
15.
Development ; 139(24): 4524-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172913

RESUMO

Inactivating mutations within adenomatous polyposis coli (APC), a negative regulator of Wnt signaling, are responsible for most sporadic and hereditary forms of colorectal cancer (CRC). Here, we use the adult Drosophila midgut as a model system to investigate the molecular events that mediate intestinal hyperplasia following loss of Apc in the intestine. Our results indicate that the conserved Wnt target Myc and its binding partner Max are required for the initiation and maintenance of intestinal stem cell (ISC) hyperproliferation following Apc1 loss. Importantly, we find that loss of Apc1 leads to the production of the interleukin-like ligands Upd2/3 and the EGF-like Spitz in a Myc-dependent manner. Loss of Apc1 or high Wg in ISCs results in non-cell-autonomous upregulation of upd3 in enterocytes and subsequent activation of Jak/Stat signaling in ISCs. Crucially, knocking down Jak/Stat or Spitz/Egfr signaling suppresses Apc1-dependent ISC hyperproliferation. In summary, our results uncover a novel non-cell-autonomous interplay between Wnt/Myc, Egfr and Jak/Stat signaling in the regulation of intestinal hyperproliferation. Furthermore, we present evidence suggesting potential conservation in mouse models and human CRC. Therefore, the Drosophila adult midgut proves to be a powerful genetic system to identify novel mediators of APC phenotypes in the intestine.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila , Receptores ErbB/fisiologia , Intestinos/patologia , Janus Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Fatores de Transcrição STAT/fisiologia , Fatores de Transcrição/fisiologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Células-Tronco Adultas/fisiologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Replicação do DNA/genética , Replicação do DNA/fisiologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Enterócitos/fisiologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Hiperplasia/genética , Mucosa Intestinal/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Receptor Cross-Talk/fisiologia , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Drug Alcohol Depend ; 124(3): 325-32, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22377092

RESUMO

Twin and family studies have shown that there is substantial evidence for a genetic component in the vulnerability to nicotine dependence (ND). The purpose of this study was to perform a meta-analysis on two genome-wide association (GWA) data involving 1079 cases of ND and 1341 controls in Caucasian populations. Through meta-analysis we identified 50 SNPs associated with ND with p<10(-4). The best associated SNP rs7163369 (p=3.27×10(-6)) was located at 15q26 within SLCO3A1 gene while the second best SNP was rs9308631 (p=9.06×10(-6)) at 2q12.1 near ANAPC1. The third interesting locus rs688011 (p=1.08×10(-5)) was at 11q23.2 intergenic between NCAM1 and TCC12. Through meta-analysis, we found two additional ND associated genes ZCCHC14 (the top SNP was rs13334632, p=1.28×10(-5)) and KANK1 (the top SNP was rs13286166, p=1.49×10(-5)). The first top SNP rs7163369 within SLCO3A1 in the meta-analysis was replicated in the Australian twin-family study of 778 families (p=6.11×10(-5)) while SNP rs9653414 within ANAPC1 (p=4.61×10(-5)) in the meta-analysis was replicated in the family sample (p=9.31×10(-4)). Furthermore, rs2241617 in ZCCHC14 and rs4742225 in KANK1 showed strong associations with ND (p=1.06×10(-7) and 4.81×10(-7), respectively) in the replication sample. In addition, several SNPs of these loci (ANAPC1, KANK1, NACM1, TCC12, SLCO3A1 and ZCCHC14) were associated with alcohol dependence. In conclusion, we identified several loci associated with ND through meta-analysis of two GWA studies. These findings offer the potential for new insights into the pathogenesis of ND.


Assuntos
Predisposição Genética para Doença , Transportadores de Ânions Orgânicos/genética , Tabagismo/genética , Complexos Ubiquitina-Proteína Ligase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Austrália , Loci Gênicos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
17.
Mol Biol Cell ; 22(21): 4038-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21880894

RESUMO

The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based transport to deliver essential cargo into dendrites. To test different models of differential motor protein regulation and to understand how different compartments in neurons are supplied with necessary functional proteins, we studied mechanisms of dendritic transport, using Drosophila as a model system. Our data suggest that dendritic targeting systems in Drosophila and mammals are evolutionarily conserved, since mammalian cargoes are moved into appropriate domains in Drosophila. In a genetic screen for mutants that mislocalize the dendritic marker human transferrin receptor (hTfR), we found that kinesin heavy chain (KHC) may function as a dendritic motor. Our analysis of dendritic and axonal phenotypes of KHC loss-of-function clones revealed a role for KHC in maintaining polarity of neurons, as well as ensuring proper axonal outgrowth. In addition we identified adenomatous polyposis coli 1 (APC1) as an interaction partner of KHC in controlling directed transport and modulating kinesin function in neurons.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Cinesinas/metabolismo , Larva/citologia , Transporte Proteico , Vesículas Transportadoras/metabolismo , Animais , Animais Geneticamente Modificados , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Axônios/metabolismo , Polaridade Celular , Forma Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinesinas/genética , Larva/genética , Larva/metabolismo , Mutação , Neurônios/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
18.
EMBO J ; 30(8): 1444-58, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21399610

RESUMO

Wnt/Wingless signal transduction directs fundamental developmental processes, and upon hyperactivation triggers colorectal adenoma/carcinoma formation. Responses to Wnt stimulation are cell specific and diverse; yet, how cell context modulates Wnt signalling outcome remains obscure. In a Drosophila genetic screen for components that promote Wingless signalling, we identified Earthbound 1 (Ebd1), a novel member in a protein family containing Centromere Binding Protein B (CENPB)-type DNA binding domains. Ebd1 is expressed in only a subset of Wingless responsive cell types, and is required for only a limited number of Wingless-dependent processes. In addition, Ebd1 shares sequence similarity and can be functionally replaced with the human CENPB domain protein Jerky, previously implicated in juvenile myoclonic epilepsy development. Both Jerky and Ebd1 interact directly with the Wnt/Wingless pathway transcriptional co-activators ß-catenin/Armadillo and T-cell factor (TCF). In colon carcinoma cells, Jerky facilitates Wnt signalling by promoting association of ß-catenin with TCF and recruitment of ß-catenin to chromatin. These findings indicate that tissue-restricted transcriptional co-activators facilitate cell-specific Wnt/Wingless signalling responses by modulating ß-catenin-TCF activity.


Assuntos
Proteína B de Centrômero/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição TCF/metabolismo , Transativadores/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Western Blotting , Células Cultivadas , Proteína B de Centrômero/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Rim/citologia , Rim/metabolismo , Luciferases/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição TCF/genética , Transativadores/genética , Proteínas Wnt/genética , Proteína Wnt1/genética , beta Catenina/genética
19.
Braz J Med Biol Res ; 41(6): 539-43, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18622497

RESUMO

Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80 degrees C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.


Assuntos
Adenocarcinoma/genética , Metilação de DNA/genética , Genes p16 , Genes p53 , Neoplasias Gástricas/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
20.
Development ; 135(5): 963-71, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18234723

RESUMO

The mechanisms by which the Wingless (Wg) morphogen modulates the activity of the transcriptional activator Armadillo (Arm) to elicit precise, concentration-dependent cellular responses remain uncertain. Arm is targeted for proteolysis by the Axin/Adenomatous polyposis coli (Apc1 and Apc2)/Zeste-white 3 destruction complex, and Wg-dependent inactivation of destruction complex activity is crucial to trigger Arm signaling. In the prevailing model for Wg transduction, only Axin levels limit destruction complex activity, whereas Apc is present in vast excess. To test this model, we reduced Apc activity to different degrees, and analyzed the effects on three concentration-dependent responses to Arm signaling that specify distinct retinal photoreceptor fates. We find that both Apc1 and Apc2 negatively regulate Arm activity in photoreceptors, but that the relative contribution of Apc1 is much greater than that of Apc2. Unexpectedly, a less than twofold reduction in total Apc activity, achieved by loss of Apc2, decreases the effective threshold at which Wg elicits a cellular response, thereby resulting in ectopic responses that are spatially restricted to regions with low Wg concentration. We conclude that Apc activity is not present in vast excess, but instead is near the minimal level required for accurate graded responses to the Wg morphogen.


Assuntos
Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Animais , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Cruzamentos Genéticos , Drosophila/genética , Proteínas de Drosophila/deficiência , Feminino , Masculino , Retina/fisiologia , Proteínas Supressoras de Tumor/deficiência , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA