RESUMO
Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression.
Assuntos
Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação para Baixo , Camundongos , Camundongos Knockout , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismoAssuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Proteínas de Ligação a DNA/genética , Leucemia Mieloide/patologia , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas/genética , Proteína 1 Parceira de Translocação de RUNX1/fisiologia , Fatores de Transcrição/genética , Fatores Etários , Animais , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Camundongos , Camundongos Knockout , Translocação GenéticaRESUMO
Myogenesis is an important and complicated biological process, especially during the process of embryonic development. The homeoprotein Msx1 is a crucial transcriptional repressor of myogenesis and maintains myogenic precursor cells in an undifferentiated, proliferative state. However, the molecular mechanism through which Msx1 coordinates myogenesis remains to be elucidated. Here, we determine the interacting partner proteins of Msx1 in myoblast cells by a proteomic screening method. Msx1 is found to interact with 55 proteins, among which our data demonstrate that the cooperation of Runt-related transcription factor 1 (Runx1) with Msx1 is required for myoblast cell differentiation. Our findings provide important insights into the mechanistic roles of Msx1 in myoblast cell differentiation, and lays foundation for the myogenic differentiation process.
Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core , Fator de Transcrição MSX1 , Mioblastos , Animais , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Técnicas de Inativação de Genes , Fator de Transcrição MSX1/química , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Fator de Transcrição MSX1/fisiologia , Camundongos , Mioblastos/citologia , Mioblastos/metabolismoRESUMO
The extremely high proliferation rate of tumor cells contributes to pancreatic cancer (PC) progression. Runt-related transcription factor 1(RUNX1), a key factor in hematopoiesis that was correlated with tumor progression. However, the role of RUNX1 in PC proliferation was still unclear. We found that RUNX1 was significantly upregulated in PC tissues and its expression was negatively associated with prognosis of PC patients in a multicenter analysis according to immunohistochemical (IHC). RUNX1 downregulation in PC resulted in a significantly reduced cell proliferation rate, which was consistent with in vivo subcutaneous tumor formation assay results. RNA-seq and ChIP-seq results revealed that a portion of target genes, including HAP1, GPRC5B, PTPN21, VHL and EN2, were regulated by RUNX1, a finding successfully validated by ChIP-qPCR, qRT-PCR and Western blot. Subsequently, IHC and proliferation assays showed these target genes to be dysregulated in PC, affecting tumor growth. Our data suggest that RUNX1 plays an oncogenic role in tumor proliferation and is a potential prognostic biomarker and therapeutic target for PC.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sequenciamento de Cromatina por Imunoprecipitação , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , RNA-Seq , TranscriptomaRESUMO
The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration-resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.
The prostate is part of the reproductive organs in male mammals. Many of the cells lining the inside of the prostate known as 'luminal cells' need hormones to survive. Certain treatments for prostate cancer, including surgical and chemical castration, lead to fewer hormones reaching the prostate, which shrinks as luminal cells die. But some of these luminal cells are able to survive the damaging effects of castration, rebuilding the prostate upon treatment with hormones, which can lead to the cancer reappearing. It is unclear which type of luminal cells survive during periods without hormones and are responsible for regenerating the prostate. RUNX1 is a protein responsible for switching genes on and off, and is usually found in blood cells, which it helps to mature and perform their roles, but has also been detected in tissues that depend on hormones. Since the luminal cells of the prostate rely on hormones, could RUNX1 also be present in these cells? To answer this question, Mével et al. used mice to determine where and when RUNX1 is found in prostate cells. Mével et al. detected high levels of RUNX1 in a patch of luminal cells at the base of the prostate. Samples of these cells were taken for further testing from developing mouse embryos, healthy adult mice and mice in which the prostate was regenerating after surgical castration. Mével et al. found that these cells were a distinct subtype of luminal cells that were able to resist the effects of castration they survived without hormones. Though these cells were present during the early stages of prostate embryonic development and in healthy adult prostate tissue, they were not responsible for rebuilding the prostate after castration. Mével et al.'s results indicate that, in mice, RUNX1 may act as a marker for a subset of luminal cells that can survive after castration. Further probing the roles of these castration-resistant luminal cells in normal and cancerous prostate tissue may improve the outcome of patients with prostate cancer treated with hormone deprivation therapy.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Próstata/crescimento & desenvolvimento , Animais , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Epitélio/metabolismo , Masculino , Camundongos , Orquiectomia , Próstata/citologia , Próstata/metabolismoRESUMO
Inversion of chromosome 16 is a consistent finding in patients with acute myeloid leukemia subtype M4 with eosinophilia, which generates a CBFB-MYH11 fusion gene. It is generally considered that CBFß-SMMHC, the fusion protein encoded by CBFB-MYH11, is a dominant negative repressor of RUNX1. However, recent findings challenge the RUNX1-repression model for CBFß-SMMHC-mediated leukemogenesis. To definitively address the role of Runx1 in CBFB-MYH11-induced leukemia, we crossed conditional Runx1 knockout mice (Runx1f/f) with conditional Cbfb-MYH11 knockin mice (Cbfb+/56M). On Mx1-Cre activation in hematopoietic cells induced by poly (I:C) injection, all Mx1-CreCbfb+/56M mice developed leukemia in 5 months, whereas no leukemia developed in Runx1f/fMx1-CreCbfb+/56M mice, and this effect was cell autonomous. Importantly, the abnormal myeloid progenitors (AMPs), a leukemia-initiating cell population induced by Cbfb-MYH11 in the bone marrow, decreased and disappeared in Runx1f/fMx1-CreCbfb+/56M mice. RNA-seq analysis of AMP cells showed that genes associated with proliferation, differentiation blockage, and leukemia initiation were differentially expressed between Mx1-CreCbfb+/56M and Runx1f/fMx1-CreCbfb+/56M mice. In addition, with the chromatin immunocleavage sequencing assay, we observed a significant enrichment of RUNX1/CBFß-SMMHC target genes in Runx1f/fMx1-CreCbfb+/56M cells, especially among downregulated genes, suggesting that RUNX1 and CBFß-SMMHC mainly function together as activators of gene expression through direct target gene binding. These data indicate that Runx1 is indispensable for Cbfb-MYH11-induced leukemogenesis by working together with CBFß-SMMHC to regulate critical genes associated with the generation of a functional AMP population.
Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação Leucêmica da Expressão Gênica , Leucemia Experimental/genética , Células Mieloides/metabolismo , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Ativação Transcricional , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Humanos , Leucemia Experimental/etiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Células-Tronco Neoplásicas/citologia , Proteínas de Fusão Oncogênica/genética , Poli I-C/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA-Seq , Análise de Célula ÚnicaRESUMO
Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow lin- cells from transgenic C57BL/6-d715 Csf3r mice expressing a CN patient-mimicking truncated CSF3R mutation. We transduced these cells with vectors encoding RUNX1 wild type (WT) or RUNX1 mutant proteins carrying the R139G or R174L mutations. Cells transduced with these RUNX1 mutants showed diminished in vitro myeloid differentiation and elevated replating capacity, compared with those expressing WT RUNX1. mRNA expression analysis showed that cells transduced with the RUNX1 mutants exhibited hyperactivation of inflammatory signaling and innate immunity pathways, including IL-6, TLR, NF-kappaB, IFN, and TREM1 signaling. These data suggest that the expression of mutated RUNX1 in a CSF3R-mutated background may activate the pro-inflammatory cell state and inhibit myeloid differentiation.
Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/patologia , Células Mieloides/patologia , Mielopoese/genética , Neutropenia/congênito , Pré-Leucemia/genética , Receptores de Fator Estimulador de Colônias/genética , Animais , Divisão Celular , Ensaio de Unidades Formadoras de Colônias , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Perfilação da Expressão Gênica , Imunidade Inata , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutropenia/genética , Neutropenia/patologia , Pré-Leucemia/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Fator Estimulador de Colônias/fisiologia , Proteínas Recombinantes/genética , Organismos Livres de Patógenos EspecíficosRESUMO
PURPOSE: Chronic kidney disease (CKD) has become a global public health problem and accompanied by renal fibrosis. MiR-194, a tumor suppressor gene, has been previously reported to be associated with the pathogenesis of tissue fibrosis. However, the role of miR-194 in the pathogenesis of renal fibrosis remains unknown. METHODS: A renal fibrosis model was constructed by unilateral ureteral obstruction (UUO) in male C57BL/6 mice. HE and MASSON stainings were used for histological analysis. The expression level of miR-194 was detected by RT-qPCR. The protein expression was detected by western blotting. The levels of inflammatory cytokines were detected by ELISA. The relationship between miR-194 and Runx1 was further verified by dual luciferase reporter assay. RESULTS: The results showed that miR-194 level was downregulated in kidney tissue of UUO mice, accompanied by significantly pathological damage and renal fibrosis. MiR-194 mimics significantly reduced pathological damage and alleviated renal fibrosis that caused by UOO, and inhibited the expression levels of α-SMA and collagen I. In addition, miR-194 mimics also reduced the expression level of serum inflammatory factors. Moreover, in vitro analysis indicated that Runx1 was a downstream target gene of miR-194. Furthermore, mechanism analysis indicated that miR-194 reduced mouse renal fibrosis by inhibiting the Runx1/AKT pathway in vivo and in vitro. CONCLUSION: The present findings suggested that miR-194 targets Runx1/Akt pathway to reduce renal fibrosis in UOO-induced mice. This study provides a novel strategy for the prevention and treatment of renal fibrosis.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Rim/patologia , MicroRNAs/fisiologia , Proteína Oncogênica v-akt/fisiologia , Obstrução Ureteral/etiologia , Animais , Fibrose/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de SinaisRESUMO
T-cell receptor gene beta (TCRß) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRß sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRß rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRß gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRß gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1+/- mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRß rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Deleção de Genes , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-ets/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Repressoras/genética , Animais , Linfócitos B , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Contagem de Linfócitos , Camundongos Knockout , Linfócitos T , Timo/patologia , Variante 6 da Proteína do Fator de Translocação ETSRESUMO
Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled â¼40 000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.
Assuntos
Diferenciação Celular , Endotélio/embriologia , Hemangioblastos/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Diferenciação Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Embrião de Mamíferos , Endotélio/citologia , Endotélio/metabolismo , Feminino , Dosagem de Genes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/citologia , Hematopoese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , RNA-Seq/métodosRESUMO
E2A, a basic helix-loop-helix transcription factor, plays a crucial role in determining tissue-specific cell fate, including differentiation of B-cell lineages. In 5% of childhood acute lymphoblastic leukemia (ALL), the t(1,19) chromosomal translocation specifically targets the E2A gene and produces an oncogenic E2A-PBX1 fusion protein. Although previous studies have shown the oncogenic functions of E2A-PBX1 in cell and animal models, the E2A-PBX1-enforced cistrome, the E2A-PBX1 interactome, and related mechanisms underlying leukemogenesis remain unclear. Here, by unbiased genomic profiling approaches, we identify the direct target sites of E2A-PBX1 in t(1,19)-positive pre-B ALL cells and show that, compared with normal E2A, E2A-PBX1 preferentially binds to a subset of gene loci cobound by RUNX1 and gene-activating machineries (p300, MED1, and H3K27 acetylation). Using biochemical analyses, we further document a direct interaction of E2A-PBX1, through a region spanning the PBX1 homeodomain, with RUNX1. Our results also show that E2A-PBX1 binding to gene enhancers is dependent on the RUNX1 interaction but not the DNA-binding activity harbored within the PBX1 homeodomain of E2A-PBX1. Transcriptome analyses and cell transformation assays further establish a significant RUNX1 requirement for E2A-PBX1-mediated target gene activation and leukemogenesis. Notably, the RUNX1 locus itself is also directly activated by E2A-PBX1, indicating a multilayered interplay between E2A-PBX1 and RUNX1. Collectively, our study provides the first unbiased profiling of the E2A-PBX1 cistrome in pre-B ALL cells and reveals a previously unappreciated pathway in which E2A-PBX1 acts in concert with RUNX1 to enforce transcriptome alterations for the development of pre-B ALL.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Motivos de Aminoácidos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Código das Histonas , Proteínas de Homeodomínio/química , Humanos , Complexo Mediador/metabolismo , Proteínas de Fusão Oncogênica/química , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Domínios Proteicos , Mapeamento de Interação de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Relação Estrutura-Atividade , Transcriptoma , Fatores de Transcrição de p300-CBP/metabolismoRESUMO
PURPOSE: Long non-coding RNAs (lncRNAs) have participated in progression of colorectal cancer. This study aims to study the role of RUNX1/RNCR3/miR-1301-3p/AKT1 axis in colorectal cancer. METHODS: The cancer tissues were from patients with colorectal cancer. The qRT-PCR was used to determine expression of lncRNA RNCR3, miR-1301-3p, and AKT1. Both dual-luciferase reporter assay and ChIP assay were conducted to investigate the binding sites of RUNX1 on RNCR3 promoter. Western blot was performed to analyze expression of AKT1 protein. Both dual-luciferase reporter assay and RIP assay were performed to detect the interacting sites between RNCR3 and miR-1301-3p. The CCK-8 assay, soft agar assay, transwell assay, and annexin-V-FITC/PI staining were applied to analyze the cell growth, invasion, and apoptosis, respectively. RESULTS: The data demonstrated that RNCR3 was elevated in colorectal cancer, and it was negatively correlated with expression of miR-1301-3p which was decreased in cancers. Then, RNCR3 could interact with and suppress miR-1301-3p expression in HCT116 and SW480. Knockdown of RNCR3 or miR-1301-3p overexpression significantly inhibited cell growth, invasion, and increased apoptosis through suppressing expression of Cyclin A1, PCNA, N-cadherin, Bcl-2, and promoting expression of E-cadherin, Bax in vitro and in vivo. RUNX1 was directly bound to RNCR3 promoter to activate RNCR3 expression. Furthermore, overexpression of RNCR3 blocked tumor inhibitory effects of miR-1301-3p on proliferation, colony formation, invasion, and apoptosis in vitro and in vivo. Additionally, RNCR3 and miR-1301-3p synergistically modulated AKT1 expression. CONCLUSION: RUNX1-activated upregulation of RNCR3 promoted colorectal cancer progression by sponging miR-1301-3p to elevate AKT1 levels in vitro and in vivo.
Assuntos
Apoptose , Neoplasias Colorretais/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , RNA Longo não Codificante/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Regulação para CimaRESUMO
Noxious mechanical information is transmitted through molecularly distinct nociceptors, with pinprick-evoked sharp sensitivity via A-fiber nociceptors marked by developmental expression of the neuropeptide Y receptor 2 (Npy2r) and von Frey filament-evoked punctate pressure information via unmyelinated C fiber nociceptors marked by MrgprD. However, the molecular programs controlling their development are only beginning to be understood. Here we demonstrate that Npy2r-expressing sensory neurons are in fact divided into two groups, based on transient or persistent Npy2r expression. Npy2r-transient neurons are myelinated, likely including A-fiber nociceptors, whereas Npy2r-persistent ones belong to unmyelinated pruriceptors that co-express Nppb. We then showed that the transcription factors NFIA and Runx1 are necessary for the development of Npy2r-transient A-fiber nociceptors and MrgprD+ C-fiber nociceptors, respectively. Behaviorally, mice with conditional knockout of Nfia, but not Runx1 showed a marked attenuation of pinprick-evoked nocifensive responses. Our studies therefore identify a transcription factor controlling the development of myelinated nociceptors.
Assuntos
Fatores de Transcrição NFI , Nociceptores , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Feminino , Gânglios Espinais/fisiologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Nociceptores/fisiologia , Receptores de Neuropeptídeo Y/fisiologia , Células Receptoras Sensoriais/fisiologiaRESUMO
Conditional deletion of the transcription factor Runt-related transcription factor 1 (Runx1) in myeloid osteoclast precursors promotes osteoclastogenesis and subsequent bone loss. This study posits whether Runx1 regulates clastic cell-mediated bone and cartilage resorption in the fracture callus. We first generated mice, in which Runx1 was conditionally abrogated in osteoclast precursors (LysM-Cre;Runx1F/F ; Runx1 cKO). Runx1 cKO and control mice were then subjected to experimental mid-diaphyseal femoral fractures. Our study found differential resorption of bony and calcified cartilage callus matrix by osteoclasts and chondroclasts within Runx1 cKO calluses, with increased early bony callus resorption and delayed calcified cartilage resorption. There was an increased number of osteoclasts and chondroclasts in the chondro-osseous junction of Runx1 cKO calluses starting at day 11 post-fracture, with minimal woven bone occupying the callus at day 18 post-fracture. LysM-Cre;Runx1F/F mutant mice had increased bone compliance at day 28, but their strength and work to failure were comparable with controls. Taken together, these results indicate that Runx1 is a critical transcription factor in controlling osteoclastogenesis that negatively regulates bone and cartilage resorption in the fracture callus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1007-1015, 2020.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Consolidação da Fratura , Osteoclastos/fisiologia , Animais , Calo Ósseo/citologia , Feminino , Fraturas do Fêmur , Masculino , Camundongos TransgênicosRESUMO
Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect normal hematopoiesis. The analysis of human AMLs has mostly been performed using end-point materials, such as cell lines and patient derived AMLs that also carry additional contributing mutations. The molecular effects of a single oncogenic hit, such as expression of the AML associated oncoprotein AML1-ETO on hematopoietic development and transformation into a (pre-) leukemic state still needs further investigation. Here we describe the development and characterization of an induced pluripotent stem cell (iPSC) system that allows in vitro differentiation towards different mature myeloid cell types such as monocytes and granulocytes. During in vitro differentiation we expressed the AML1-ETO fusion protein and examined the effects of the oncoprotein on differentiation and the underlying alterations in the gene program at 8 different time points. Our analysis revealed that AML1-ETO as a single oncogenic hit in a non-mutated background blocks granulocytic differentiation, deregulates the gene program via altering the acetylome of the differentiating granulocytic cells, and induces t(8;21) AML associated leukemic characteristics. Together, these results reveal that inducible oncogene expression during in vitro differentiation of iPS cells provides a valuable platform for analysis of aberrant regulation in disease.
Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Granulócitos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Proteína 1 Parceira de Translocação de RUNX1/fisiologia , Transcriptoma , Proliferação de Células/genética , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Granulócitos/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucopoese/genética , Monócitos/fisiologia , Mielopoese/genética , Proteínas de Fusão Oncogênica/genética , Oncogenes/fisiologia , Proteína 1 Parceira de Translocação de RUNX1/genética , Transcriptoma/genética , TransfecçãoRESUMO
Background Myocardial infarction (MI) generally leads to heart failure and sudden death. The hearts of people with MI undergo remodeling with the features of expanded myocardial infarct size and dilated left ventricle. Many microRNAs (miRs) have been revealed to be involved in the remodeling process; however, the participation of miR-101 remains unknown. Therefore, this study aims to find out the regulatory mechanism of miR-101 in MI-induced cardiac remodeling. Methods and Results Microarray data analysis was conducted to screen differentially expressed genes in MI. The rat model of MI was established by left coronary artery ligation. In addition, the relationship between miR-101 and runt-related transcription factor 1 (RUNX1) was identified using dual luciferase reporter assay. After that, the rats injected with lentiviral vector expressing miR-101 mimic, inhibitor, or small interfering RNA against RUNX1 were used to examine the effects of miR-101 and RUNX1 on transforming growth factor ß signaling pathway, cardiac function, infarct size, myocardial fibrosis, and cardiomyocyte apoptosis. RUNX1 was highly expressed, while miR-101 was poorly expressed in MI. miR-101 was identified to target RUNX1. Following that, it was found that overexpression of miR-101 or silencing of RUNX1 improved the cardiac function and elevated left ventricular end-diastolic and end-systolic diameters. Also, miR-101 elevation or RUNX1 depletion decreased infarct size, myocardial fibrosis, and cardiomyocyte apoptosis. Moreover, miR-101 could negatively regulate RUNX1 to inactivate the transforming growth factor ß1/Smad family member 2 signaling pathway. Conclusions Taken together, miR-101 plays a protective role against cardiac remodeling following MI via inactivation of the RUNX1-dependent transforming growth factor ß1/Smad family member 2 signaling pathway, proposing miR-101 and RUNX1 as potential therapeutic targets for MI.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação para Baixo , MicroRNAs/fisiologia , Infarto do Miocárdio/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Feminino , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Microglia, a type of glia within the brain characterized by a ramified morphology, are essential for removing neuronal debris and restricting the expansion of a lesion site. Upon moderate activation, they undergo a transformation in morphology inducing beneficial responses. However, upon strong stimulation, they mediate neuronal damage via production of pro-inflammatory cytokines. The inhibition of this cascade is considered an effective strategy for neuroinflammation-associated disorder therapy. During this pathological activation microglia also undergo a shortening of process length which contributes to the pathogenesis of such disorders. Thus, microglial plasticity should be considered to have two components: one is the production of inflammatory mediators, and the other is the dynamic changes in their processes. The former role has been well-documented in previous studies, while the latter one remains largely unknown. Recently, we and others have reported that the elongation of microglial process is associated with the transformation of microglia from a pro-inflammatory to an anti-inflammatory state, suggesting that the shortening of process length would make the microglia lose their ability to restrict pathological injury, while the elongation of microglial process would help attenuate neuroinflammation. Compared with the traditional anti-neuroinflammatory strategy, stimulating elongation of microglial process not only reduces the production of pro-inflammatory cytokines, but restores the ability of microglia to scan their surrounding environments, thus rendering their homeostasis regulation more effective. In this review, we provide a discussion of the factors that regulate microglial process elongation in vitro and in vivo, aiming to further drive the understanding of microglial process plasticity.
Assuntos
Microglia/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Astrócitos/fisiologia , Plasticidade Celular , Canais de Cloreto/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Células Epiteliais/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Microglia/efeitos dos fármacos , Canais de Potássio/fisiologiaRESUMO
The transcription factor RUNX1 is required in the embryo for formation of the adult hematopoietic system. Here, we describe the seminal findings that led to the discovery of RUNX1 and of its critical role in blood cell formation in the embryo from hemogenic endothelium (HE). We also present RNA-sequencing data demonstrating that HE cells in different anatomic sites, which produce hematopoietic progenitors with dissimilar differentiation potentials, are molecularly distinct. Hemogenic and non-HE cells in the yolk sac are more closely related to each other than either is to hemogenic or non-HE cells in the major arteries. Therefore, a major driver of the different lineage potentials of the committed erythro-myeloid progenitors that emerge in the yolk sac versus hematopoietic stem cells that originate in the major arteries is likely to be the distinct molecular properties of the HE cells from which they are derived. We used bioinformatics analyses to predict signaling pathways active in arterial HE, which include the functionally validated pathways Notch, Wnt, and Hedgehog. We also used a novel bioinformatics approach to assemble transcriptional regulatory networks and predict transcription factors that may be specifically involved in hematopoietic cell formation from arterial HE, which is the origin of the adult hematopoietic system.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Hemangioblastos/fisiologia , Hematopoese/fisiologia , Animais , Artérias/citologia , Artérias/embriologia , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/deficiência , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/fisiologia , Proteínas de Drosophila/genética , Sangue Fetal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Leucemia Experimental/genética , Leucemia Experimental/virologia , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Knockout , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/fisiologia , Transcrição Gênica , Saco Vitelino/citologiaRESUMO
Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic disorders that are incurable with conventional therapy. Their incidence is increasing with global population aging. Although many genetic, epigenetic, splicing, and metabolic aberrations have been identified in patients with MDS, their clinical features are quite similar. Here, we show that hypoxia-independent activation of hypoxia-inducible factor 1α (HIF1A) signaling is both necessary and sufficient to induce dysplastic and cytopenic MDS phenotypes. The HIF1A transcriptional signature is generally activated in MDS patient bone marrow stem/progenitors. Major MDS-associated mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) activate the HIF1A signature. Although inducible activation of HIF1A signaling in hematopoietic cells is sufficient to induce MDS phenotypes, both genetic and chemical inhibition of HIF1A signaling rescues MDS phenotypes in a mouse model of MDS. These findings reveal HIF1A as a central pathobiologic mediator of MDS and as an effective therapeutic target for a broad spectrum of patients with MDS.Significance: We showed that dysregulation of HIF1A signaling could generate the clinically relevant diversity of MDS phenotypes by functioning as a signaling funnel for MDS driver mutations. This could resolve the disconnection between genotypes and phenotypes and provide a new clue as to how a variety of driver mutations cause common MDS phenotypes. Cancer Discov; 8(11); 1438-57. ©2018 AACR. See related commentary by Chen and Steidl, p. 1355 This article is highlighted in the In This Issue feature, p. 1333.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Síndromes Mielodisplásicas/patologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metaboloma , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismoRESUMO
RUNX1 is a transcription factor that is not expressed in uninjured muscles, but can be detected in denervated muscles, suggesting a role of RUNX1 in muscle's response to injury. However, the role of RUNX1 in muscle's response to ischemia has not been reported. Our study showed that Runx1 is up regulated in skeletal muscle during ischemia reperfusion induced injury. Over-expression of Runx1 in C2C12â¯cells inhibits myogenic differentiation, but promotes proliferation of myoblasts. Consistent with these findings, we found that Runx1 expression was decreased in differentiated satellite cells. Our results indicate that Runx1 regulates muscle regeneration by promoting proliferation of satellite cells.