Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Alzheimers Dement ; 20(8): 5347-5356, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39030746

RESUMO

INTRODUCTION: We examined whether the aging suppressor KLOTHO gene's functionally advantageous KL-VS variant (KL-VS heterozygosity [KL-VSHET]) confers resilience against deleterious effects of aging indexed by cerebrospinal fluid (CSF) biomarkers of neuroinflammation (interleukin-6 [IL-6], S100 calcium-binding protein B [S100B], triggering receptor expressed on myeloid cells [sTREM2], chitinase-3-like protein 1 [YKL-40], glial fibrillary acidic protein [GFAP]), neurodegeneration (total α-synuclein [α-Syn], neurofilament light chain protein), and synaptic dysfunction (neurogranin [Ng]). METHODS: This Alzheimer disease risk-enriched cohort consisted of 454 cognitively unimpaired adults (Mage = 61.5 ± 7.75). Covariate-adjusted multivariate regression examined relationships between age (mean-split[age ≥ 62]) and CSF biomarkers (Roche/NeuroToolKit), and whether they differed between KL-VSHET (N = 122) and non-carriers (KL-VSNC; N = 332). RESULTS: Older age was associated with a poorer biomarker profile across all analytes (Ps ≤ 0.03). In age-stratified analyses, KL-VSNC exhibited this same pattern (Ps ≤ 0.05) which was not significant for IL-6, S100B, Ng, and α-Syn (Ps ≥ 0.13) in KL-VSHET. Although age-related differences in GFAP, sTREM2, and YKL-40 were evident for both groups (Ps ≤ 0.01), the effect magnitude was markedly stronger for KL-VSNC. DISCUSSION: Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults were attenuated in KL-VSHET. HIGHLIGHTS: Older age was associated with poorer profiles across all cerebrospinal fluid biomarkers of neuroinflammation, neurodegeneration, and synaptic dysfunction. KLOTHO KL-VS non-carriers exhibit this same pattern, which is does not significantly differ between younger and older KL-VS heterozygotes for interleukin-6, S100 calcium-binding protein B, neurogranin, and total α-synuclein. Although age-related differences in glial fibrillary acidic protein, triggering receptor expressed on myeloid cells, and chitinase-3-like protein 1 are evident for both KL-VS groups, the magnitude of the effect is markedly stronger for KL-VS non-carriers. Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults are attenuated in KL-VS heterozygotes.


Assuntos
Envelhecimento , Biomarcadores , Proteína 1 Semelhante à Quitinase-3 , Heterozigoto , Proteínas Klotho , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/líquido cefalorraquidiano , Idoso , Envelhecimento/genética , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3/genética , Glucuronidase/genética , Glucuronidase/líquido cefalorraquidiano , Interleucina-6/líquido cefalorraquidiano , Interleucina-6/genética , Receptores Imunológicos/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/líquido cefalorraquidiano , Subunidade beta da Proteína Ligante de Cálcio S100/líquido cefalorraquidiano , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Estudos de Coortes , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/genética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/genética , Neurogranina/líquido cefalorraquidiano , Neurogranina/genética , Glicoproteínas de Membrana
2.
Clin Cancer Res ; 30(16): 3520-3532, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837895

RESUMO

PURPOSE: We aim to improve the prediction of response or resistance to immunotherapies in patients with melanoma. This goal is based on the hypothesis that current gene signatures predicting immunotherapy outcomes show only modest accuracy due to the lack of spatial information about cellular functions and molecular processes within tumors and their microenvironment. EXPERIMENTAL DESIGN: We collected gene expression data spatially from three cellular compartments defined by CD68+ macrophages, CD45+ leukocytes, and S100B+ tumor cells in 55 immunotherapy-treated melanoma specimens using Digital Spatial Profiling-Whole Transcriptome Atlas. We developed a computational pipeline to discover compartment-specific gene signatures and determine if adding spatial information can improve patient stratification. RESULTS: We achieved robust performance of compartment-specific signatures in predicting the outcome of immune checkpoint inhibitors in the discovery cohort. Of the three signatures, the S100B signature showed the best performance in the validation cohort (N = 45). We also compared our compartment-specific signatures with published bulk signatures and found the S100B tumor spatial signature outperformed previous signatures. Within the eight-gene S100B signature, five genes (PSMB8, TAX1BP3, NOTCH3, LCP2, and NQO1) with positive coefficients predict the response, and three genes (KMT2C, OVCA2, and MGRN1) with negative coefficients predict the resistance to treatment. CONCLUSIONS: We conclude that the spatially defined compartment signatures utilize tumor and tumor microenvironment-specific information, leading to more accurate prediction of treatment outcome, and thus merit prospective clinical assessment.


Assuntos
Biomarcadores Tumorais , Imunoterapia , Melanoma , Transcriptoma , Microambiente Tumoral , Humanos , Melanoma/genética , Melanoma/terapia , Melanoma/imunologia , Melanoma/patologia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Regulação Neoplásica da Expressão Gênica , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos CD/genética , Feminino , Masculino , Prognóstico , Macrófagos/imunologia , Macrófagos/metabolismo , Molécula CD68
3.
J Clin Invest ; 134(15)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861336

RESUMO

Reproduction is safeguarded by multiple, often cooperative, regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats, and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular coexpression of Kiss1r with the astrocyte markers GFAP and S100-ß occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells in the G-KiR-KO mouse altered gene expression of key factors in PGE2 synthesis in astrocytes and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiR-KO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity, and LH-secretory profiles. Our data unveil a nonneuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.


Assuntos
Astrócitos , Hormônio Liberador de Gonadotropina , Kisspeptinas , Camundongos Knockout , Receptores de Kisspeptina-1 , Transdução de Sinais , Kisspeptinas/metabolismo , Kisspeptinas/genética , Animais , Astrócitos/metabolismo , Camundongos , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Humanos , Ratos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Masculino , Hipotálamo/metabolismo , Neurônios/metabolismo , Dinoprostona/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Reprodução
4.
Br J Dermatol ; 191(4): 580-591, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38815138

RESUMO

BACKGROUND: Amelanotic acral melanoma (AAM) is a rare type of acral melanoma that has a poor prognosis. OBJECTIVES: To investigate the transcriptomic differences between AAM and pigmented acral melanoma (PAM). METHODS: Differences in the spatially resolved transcriptomic profiles of 9 patients with AAM with 29 regions of interest (ROIs) and 11 patients with PAM with 46 ROIs were investigated using S100b and CD3 morphology markers. RESULTS: In S100b+ tumour cell areas, we detected 11 upregulated differentially expressed genes (DEGs; including chaperone/ubiquitin--associated DEGs) and 82 downregulated DEGs (including human leucocyte antigen) in AAMs vs. PAMs. Protein-protein interaction network and pathway analyses revealed significant enrichment of dysregulated translational and nonsense-mediated decay pathways but significant decreases in antigen processing and presentation, interferon signalling and melanin biosynthesis pathways in S100b+ ROIs of AAMs compared with PAMs. In tumour-associated immune cell areas, the numbers of CD8 T cells (P = 0.04) and M1 macrophages (P = 0.01) were significantly decreased, whereas those of monocytes (P = 0.04) and endothelial cells (P = 0.04) were increased in AAMs compared with PAMs. CONCLUSIONS: These findings could widen our understanding of the biological differences between AAMs and PAMs, which might result in a different clinical course.


Melanoma is one of the most serious types of skin cancer. As melanoma starts in cells that produce melanin (the substance that produces hair, eye and skin colouration), melanoma tumours are usually brown or black. 'Amelanotic melanoma' is a subtype of melanoma that has little or no melanin pigmentation. Less than 2% of melanomas are amelanotic melanomas. 'Acral melanoma' is a type of melanoma that occurs on the hands and feet. In acral melanoma, the lack of pigmentation has been associated with worse outcomes for patients. Why amelanotic acral melanoma (or 'AAM') has a worse prognosis than pigmented acral melanoma (or 'PAM') is unclear. Using a type of technology called 'spatial transcriptomic analysis', we analysed a type of nucleic acid called RNA in 9 people with AAM and 11 with PAM. Seventy-five 'regions of interest' were selected. These regions of interest are known to be associated with tumour cells or immune cells around tumours. We found that pathways involved in making proteins (translation) and in a process that removes faulty proteins called 'messenger RNA' were more active in AAM. However, pathways involved in processing and presenting antigens (substances that can trigger an immune response), the signalling of other proteins called 'interferons' and melanin production were less active in AAM. The number of specific types of white blood cells that recognize and attack tumours were decreased, whereas other cell types such as cells that line blood vessels were increased in AAM. Our findings could increase our understanding of the differences between AAMs and PAMs. This may lead to an improvement in prognosis.


Assuntos
Perfilação da Expressão Gênica , Melanoma Amelanótico , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Melanoma Amelanótico/genética , Melanoma Amelanótico/patologia , Melanoma Amelanótico/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Transcriptoma , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Adulto , Mapas de Interação de Proteínas/genética , Melanoma/genética , Melanoma/patologia , Melanoma/imunologia , Regulação Neoplásica da Expressão Gênica
5.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685023

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Assuntos
Ferroptose , Hipocampo , Peroxidação de Lipídeos , Proteína de Ligação a Fosfatidiletanolamina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Encefalopatia Associada a Sepse , Ferroptose/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Masculino , Feminino , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Modelos Animais de Doenças , Pré-Escolar , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Criança , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Malondialdeído/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lactente
6.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982288

RESUMO

S100B is an astrocytic cytokine that has been shown to be involved in several neurodegenerative diseases. We used an astrocytoma cell line (U373 MG) silenced for S100B, and stimulated it with amyloid beta-peptide (Aß) as a known paradigm factor for astrocyte activation, and showed that the ability of the cell (including the gene machinery) to express S100B is a prerequisite for inducing reactive astrocytic features, such as ROS generation, NOS activation and cytotoxicity. Our results showed that control astrocytoma cell line exhibited overexpression of S100B after Aß treatment, and subsequently cytotoxicity, increased ROS generation and NOS activation. In contrast, cells silenced with S100B were essentially protected, consistently reducing cell death, significantly decreasing oxygen radical generation and nitric oxide synthase activity. The conclusive aim of the present study was to show a causative linkage between the cell expression of S100B and induction of astrocyte activation processes, such as cytotoxicity, ROS and NOS activation.


Assuntos
Peptídeos beta-Amiloides , Astrocitoma , Humanos , Peptídeos beta-Amiloides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Crescimento Neural/metabolismo , Linhagem Celular , Óxido Nítrico Sintase/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Astrócitos/metabolismo , Óxido Nítrico/metabolismo
7.
BMC Neurosci ; 23(1): 59, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243678

RESUMO

BACKGROUND: The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS: In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS: HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS: sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.


Assuntos
Fármacos Neuroprotetores , Focas Verdadeiras , Animais , Encéfalo/metabolismo , Clusterina/genética , Furões/genética , Furões/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipóxia , Camundongos , Neurônios/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Transcriptoma
8.
PeerJ ; 10: e13201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368338

RESUMO

S100B has been found to be dysregulated in many cancers including hepatocellular carcinoma (HCC). However, the functions of S100B and its underlying mechanisms in HCC remain poorly understood, especially in the tumor microenvironment. In this study, functions enrichment analysis indicated that S100B expression was correlated with hypoxia and immune responses. We found that hypoxia could induce S100B expression in an HIF-1α-dependent manner in HepG2 cells. Luciferase reporter and ChIP-qRCR assays demonstrated that HIF-1α regulates S100B transcription by directly binding to hypoxia-response elements (HREs) of the S100B promoter. Functionally, knockdown of S100B reduces hypoxia-induced HepG2 cell invasion and migration. Furthermore, GSVA enrichment results displayed that S100B and its co-expressed genes were positively correlated with EMT pathway in HCC. Additionally, GO/KEGG cluster analysis results indicated that co-expressed genes of S100B were involved in biological processes of immune response and multiple tumor immune-related signaling pathways in HCC. S100B expression was positively correlated with multiple immune cells tumor infiltration and associated with chemokines/chemokine receptors and immune checkpoint genes. Moreover, S100B is predominantly expressed in immune cells, especially NK (Natural Killer) cell. In addition, the hub genes of S100B co-expression and hypoxia response in HepG2 cell were also associated with immune cells infiltration in HCC. Taken together, these findings provide a new insight into the complex networks between hypoxia response and immune cells infiltration in tumor microenvironment of liver cancer. S100B maybe serve as a novel target for future HCC therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Hipóxia/genética , Microambiente Tumoral/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética
9.
Biomolecules ; 11(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34680103

RESUMO

S100P protein is a potent inducer of metastasis in a model system, and its presence in cancer cells of patients is strongly associated with their reduced survival times. A well-established Furth Wistar rat metastasis model system, methods for measuring cell migration, and specific inhibitors were used to study pathways of motility-driven metastasis. Cells expressing C-terminal mutant S100P proteins display markedly-reduced S100P-driven metastasis in vivo and cell migration in vitro. These cells fail to display the low focal adhesion numbers observed in cells expressing wild-type S100P, and the mutant S100P proteins exhibit reduced biochemical interaction with non-muscle myosin heavy chain isoform IIA in vitro. Extracellular inhibitors of the S100P-dependent plasminogen activation pathway reduce, but only in part, wild-type S100P-dependent cell migration; they are without effect on S100P-negative cells or cells expressing C-terminal mutant S100P proteins and have no effect on the numbers of focal adhesions. Recombinant wild-type S100P protein, added extracellularly to S100P-negative cells, stimulates cell migration, which is abolished by these inhibitors. The results identify at least two S100P-dependent pathways of migration, one cell surface and the other intracellularly-linked, and identify its C-terminal lysine as a target for inhibiting multiple migration-promoting activities of S100P protein and S100P-driven metastasis.


Assuntos
Neoplasias da Mama/genética , Neoplasias Mamárias Animais/genética , Miosina não Muscular Tipo IIA/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Animais , Neoplasias da Mama/patologia , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Mamárias Animais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Ratos , Ratos Wistar
10.
PLoS One ; 16(8): e0256238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411141

RESUMO

S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.


Assuntos
Interleucina-6/genética , Melanoma/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Fator de Transcrição STAT3/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citoplasma/genética , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Transdução de Sinais/efeitos dos fármacos
11.
Aging (Albany NY) ; 13(10): 13954-13967, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982673

RESUMO

To examine the role of S100B in genetic susceptibility to Alzheimer's disease (AD), we conducted a case-control study to analyze four polymorphism loci (rs2839364, rs1051169, rs2300403, and rs9722) of the S100B gene and AD risk. We found an independent increased risk of AD in ApoE ε4(-) subjects carrying the rs9722 AA-genotype (OR = 2.622, 95% CI = 1.399-4.915, P = 0.003). Further investigation revealed the serum S100B levels to be lower in rs9722 GG carriers than in rs9722 AA carriers (P = 0.003). We identified three miRNAs (miR-340-3p, miR-593-3p, miR-6827-3p) in which the seed match region covered locus rs9722. Luciferase assays indicated that the rs9722 G allele has a higher binding affinity to miR-6827-3p than the rs9722 A allele, leading to a significantly decreased fluorescence intensity. Subsequent western blot analysis showed that the S100B protein level of SH-SY5Y cells, which carry the rs9722 G allele, decreased significantly following miR-6827-3p stimulation (P = 0.009). The present study suggests that the rs9722 polymorphism may upregulate the expression of S100B by altering the miRNA binding capacity and may thus increase the AD risk. This finding would be of great help for the early diagnosis of AD.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Predisposição Genética para Doença , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Idoso , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Tumoral , Ensaios Enzimáticos , Feminino , Frequência do Gene/genética , Haplótipos/genética , Humanos , Luciferases/metabolismo , Masculino , MicroRNAs/genética , Ligação Proteica/genética
12.
J Korean Med Sci ; 36(14): e90, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33847081

RESUMO

BACKGROUND: Liver fibrosis is defined as the accumulation of the extracellular matrix and scar formation. The receptor for advanced glycation end products (RAGE) has been demonstrated to participate in fibrogenesis. S100B is a ligand of RAGE and exerts extracellular functions by inducing a series of signal transduction cascades. However, the involvement of S100B and RAGE in cholestasis-induced liver fibrosis remains unclear. In this study, we investigated S100B and RAGE expression during liver fibrosis in mice that underwent common bile duct ligation (BDL). METHODS: BDL was performed in 10-week-old male C57BL/6J mice with sham control (n = 26) and BDL (n = 26) groups. Expression levels of S100B, RAGE and fibrotic markers in the livers from both groups at week 1 and 3 after BDL were examined by western blot and quantitative real-time reverse transcription polymerase chain reaction analysis. Liver fibrotic changes were examined by histological and ultrastructural analysis. RESULTS: Histological staining with Sirius Red and the evaluation of the messenger RNA expression of fibrotic markers showed noticeable periportal fibrosis and bile duct proliferation. S100B was mainly present in bile duct epithelial cells, and its expression was upregulated in proportion to the ductular reaction during fibrogenesis by BDL. RAGE expression was also increased, and interestingly, triple immunofluorescence staining and transmission electron microscopy showed that both S100B and RAGE were expressed in proliferating bile duct epithelial cells and activated hepatic stellate cells (HSCs) of the BDL livers. In addition, in rat HSCs (HSC-T6), treatment with recombinant S100B protein significantly increased fibrotic markers in a dose-dependent manner, and RAGE small interfering RNA (siRNA) suppressed S100B-stimulated upregulation of fibrotic markers compared with cells treated with scramble siRNA and S100B. CONCLUSION: These findings suggest that the increased expression of S100B and RAGE and the interaction between S100B and RAGE may play an important role in ductular reaction and liver fibrosis induced by BDL.


Assuntos
Cirrose Hepática/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Animais , Ductos Biliares/citologia , Ductos Biliares/cirurgia , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia , Regulação para Cima/efeitos dos fármacos
13.
Neurosci Lett ; 751: 135776, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727126

RESUMO

Astrocytes respond to injury by modifying the expression profile of several proteins, including the S100 calcium-binding protein B (S100B), assumed to be a marker as well as a mediator of brain injury. AA is an inhibitor of S100B synthesis and plays a protective role in different models of brain injury, as decreases in S100B expression cause decreases in extracellular S100B. However, S100B mRNA expression, S100B protein content and S100B secretion do not always occur in association; as such, we herein investigated the effect of AA on S100B secretion, using different approaches with three stimulating conditions for S100B secretion, namely, low potassium medium, TNF-α (in hippocampal slices) and LPS exposure (in astrocyte cultures). Our data indicate that AA directly affects S100B secretion, indicating that the extracellular levels of this astroglial protein may be mediating the action of this compound. More importantly, AA had no effect on basal S100B secretion, but inhibited stimulated S100B secretion (stimulated either by the proinflammatory molecules, LPS or TNF-α, or by low potassium medium). Data from hippocampal slices that were directly exposed to AA, or from animals that received the acid by intracerebroventricular infusion, contribute to understanding its neuroprotective effect.


Assuntos
Anti-Inflamatórios/farmacologia , Caprilatos/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Molecules ; 26(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573254

RESUMO

S100B(ßß) proteins are a family of multifunctional proteins that are present in several tissues and regulate a wide variety of cellular processes. Their altered expression levels have been associated with several human diseases, such as cancer, inflammatory disorders and neurodegenerative conditions, and hence are of interest as a therapeutic target and a biomarker. Small molecule inhibitors of S100B(ßß) have achieved limited success. Guided by the wealth of available experimental structures of S100B(ßß) in complex with diverse peptides from various protein interacting partners, we combine comparative structural analysis and molecular dynamics simulations to design a series of peptides and their analogues (stapled) as S100B(ßß) binders. The stapled peptides were subject to in silico mutagenesis experiments, resulting in optimized analogues that are predicted to bind to S100B(ßß) with high affinity, and were also modified with imaging agents to serve as diagnostic tools. These stapled peptides can serve as theranostics, which can be used to not only diagnose the levels of S100B(ßß) but also to disrupt the interactions of S100B(ßß) with partner proteins which drive disease progression, thus serving as novel therapeutics.


Assuntos
Inflamação/genética , Fragmentos de Peptídeos/genética , Mapas de Interação de Proteínas/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Simulação por Computador , Humanos , Inflamação/terapia , Modelos Moleculares , Simulação de Dinâmica Molecular , Neoplasias/genética , Neoplasias/terapia , Fragmentos de Peptídeos/química , Medicina de Precisão , Ligação Proteica/genética , Subunidade beta da Proteína Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/ultraestrutura
15.
Molecules ; 26(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467751

RESUMO

S100 proteins assume a diversity of oligomeric states including large order self-assemblies, with an impact on protein structure and function. Previous work has uncovered that S100 proteins, including S100B, are prone to undergo ß-aggregation under destabilizing conditions. This propensity is encoded in aggregation-prone regions (APR) mainly located in segments at the homodimer interface, and which are therefore mostly shielded from the solvent and from deleterious interactions, under native conditions. As in other systems, this characteristic may be used to develop peptides with pharmacological potential that selectively induce the aggregation of S100B through homotypic interactions with its APRs, resulting in functional inhibition through a loss of function. Here we report initial studies towards this goal. We applied the TANGO algorithm to identify specific APR segments in S100B helix IV and used this information to design and synthesize S100B-derived APR peptides. We then combined fluorescence spectroscopy, transmission electron microscopy, biolayer interferometry, and aggregation kinetics and determined that the synthetic peptides have strong aggregation propensity, interact with S100B, and may promote co-aggregation reactions. In this framework, we discuss the considerable potential of such APR-derived peptides to act pharmacologically over S100B in numerous physiological and pathological conditions, for instance as modifiers of the S100B interactome or as promoters of S100B inactivation by selective aggregation.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Peptídeos/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos/química , Peptídeos/genética , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica , Dobramento de Proteína , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
16.
Breast Cancer ; 28(2): 434-447, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33146847

RESUMO

PURPOSE: To find immune-related genes with prognostic value in breast cancer, and construct a prognostic risk assessment model to make a more accurate assessment. Moreover, looking for potential immune markers for breast cancer immunotherapy. METHODS: The breast cancer (BC) data were retrieved from The Cancer Genome Atlas (TCGA) database as a training set. Through the Weighted gene co-expression network analysis (WGCNA), Kaplan-Meier (KM) analysis, lasso regression analysis and stepwise backward Cox regression analysis, screening for prognosis-related immune genes, a prognostic index was built, and external validation with two data sets of Gene Expression Omnibus (GEO) database was performed. Transcription factor (TF) regulatory network was constructed to identify key transcription factors that regulate prognostic immune genes. Gene set enrichment analysis (GSEA) was used to explore the signal pathways differences between high and low-risk groups, estimate package and TIMER database were used to evaluate the relationship between risk score and tumor immune microenvironment. RESULTS: We obtained 10 prognosis-related immune genes, and the index showed accurate prognostic value. We also identified 7 prognostic transcription factors. Multiple signaling pathways that inhibit tumor progression were enriched in the low-risk group, and risk score was significantly negatively related to the degree of immune infiltration and the expression level of immune checkpoint genes. CONCLUSION: We successfully constructed an independent prognostic index, which not only has a stronger predictive ability than the tumor pathological stage, but also can reflect the immune infiltration of breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Quimiocina CCL5/genética , Antígenos HLA-D/genética , Proteínas de Choque Térmico HSP70/genética , Receptores X do Fígado/genética , Glicoproteínas de Membrana/genética , Receptores CCR7/genética , Receptores de Estrogênio/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Semaforinas/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/mortalidade , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Receptor ERRalfa Relacionado ao Estrogênio
17.
PLoS Genet ; 16(11): e1009163, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33227023

RESUMO

Circulating inflammatory markers are essential to human health and disease, and they are often dysregulated or malfunctioning in cancers as well as in cardiovascular, metabolic, immunologic and neuropsychiatric disorders. However, the genetic contribution to the physiological variation of levels of circulating inflammatory markers is largely unknown. Here we report the results of a genome-wide genetic study of blood concentration of ten cytokines, including the hitherto unexplored calcium-binding protein (S100B). The study leverages a unique sample of neonatal blood spots from 9,459 Danish subjects from the iPSYCH initiative. We estimate the SNP-heritability of marker levels as ranging from essentially zero for Erythropoietin (EPO) up to 73% for S100B. We identify and replicate 16 associated genomic regions (p < 5 x 10-9), of which four are novel. We show that the associated variants map to enhancer elements, suggesting a possible transcriptional effect of genomic variants on the cytokine levels. The identification of the genetic architecture underlying the basic levels of cytokines is likely to prompt studies investigating the relationship between cytokines and complex disease. Our results also suggest that the genetic architecture of cytokines is stable from neonatal to adult life.


Assuntos
Citocinas/genética , Inflamação/diagnóstico , Locos de Características Quantitativas , Biomarcadores/sangue , Estudos de Coortes , Citocinas/sangue , Citocinas/imunologia , Dinamarca , Elementos Facilitadores Genéticos/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Inflamação/sangue , Inflamação/imunologia , Masculino , Polimorfismo de Nucleotídeo Único , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/imunologia
18.
Biochem Biophys Res Commun ; 533(3): 332-337, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958253

RESUMO

The Ca2+-mediated S100 family protein S100A6 has a crucial task in various intracellular and extracellular activities thereby demonstrating a possible involvement in the advancement and development of malignant tumors. S100A6 has been found to associate with receptor for advanced glycation end products, RAGE, through its extracellular extension. This extension is famously identified as a prominent receptor for many S100 family associates. Additionally, S100A6 binds to S100B protein and forms a heterodimer. Thus, we consider the S100B protein to be a prospective drug molecule to obstruct the interacting regions amongst S100A6 and RAGE V domain. We applied the NMR spectroscopy method to locate the binding area amid the S100A6m (mutant S100A6, cysteine at 3rd position of S100A6 is replaced with serine, C3S) and S100B proteins. The 1H-15N HSQC NMR titrations revealed the probable requisite dynamics of S100A6m and S100B interfaces. Utilizing data from the NMR titrations as input parameters, we ran the HADDOCK program and created a S100A6m-S100B heterodimer complex. The obtained complex was then superimposed with the reported complex of S100A6m-RAGE V domain. This superimposition displayed the possibility of S100B to be a potential antagonist that can block the interface area of the S100A6m and the RAGE V domain. Moreover, an in vitro cancer model using SW480 cells in water-soluble tetrazolium-1 assay (WST-1) showed a noticeable change in the cell proliferation as an effect of these proteins. Our study indicates the possibility to develop a S100B-like competitor that could play a key role in the treatment of S100- and RAGE-mediated human diseases.


Assuntos
Proteínas de Ciclo Celular/química , Regulação Neoplásica da Expressão Gênica , Receptor para Produtos Finais de Glicação Avançada/química , Proteína A6 Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/química , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
19.
Am J Physiol Cell Physiol ; 319(6): C955-C966, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491925

RESUMO

Cerebral palsy (CP) is frequently caused by brain injury during pregnancy, delivery, or the immediate postnatal period. The differentiation potential of neural stem cell (NSC) makes them effective in restoring injured tissues and organs with minimal risks of side effects. In this study, we identified a novel microRNA-135b (miR-135b) in CP and investigated its functional role in mediating NSC differentiation. CP models were established in Wistar rats and validated with the Y-maze test. Gain- and loss-of-function experimentation was performed on CP rats. Then NSCs were isolated and the expression patterns of miR-135b and S100B were altered in NSCs. S100B exhibited high expression in the hippocampus tissues of CP models, which was targeted by miR-135b. miR-135b elevation or S100B silencing resulted in promoted NSC differentiation, alleviated brain injury, and inhibited NSC apoptosis in hippocampus tissues of CP rats. S100B downregulation targeted by miR-135b overexpression contributed to the inactivation of the signal transducer and activator of transcription-3 (STAT3) pathway, which promoted NSC differentiation and proliferation but inhibited NSC apoptosis. Our results highlight the suppressor role played by miR-135b in CP by inducing NSC differentiation via inactivation of S100B-dependent STAT3 pathway.


Assuntos
Diferenciação Celular/genética , Paralisia Cerebral/genética , Regulação para Baixo/genética , Hipóxia/genética , MicroRNAs/genética , Células-Tronco Neurais/patologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Paralisia Cerebral/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Hipóxia/patologia , Isquemia/genética , Isquemia/patologia , Masculino , Ratos , Ratos Wistar , Fator de Transcrição STAT3 , Transdução de Sinais/genética
20.
J Cell Mol Med ; 24(5): 3053-3063, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32022398

RESUMO

S100B protein bridges chronic mucosal inflammation and colorectal cancer given its ability to activate NF-kappaB transcription via RAGE signalling and sequestrate pro-apoptotic wtp53. Being an S100B inhibitor, pentamidine antagonizes S100B-wtp53 interaction, restoring wtp53-mediated pro-apoptotic control in cancer cells in several types of tumours. The expression of S100B, pro-inflammatory molecules and wtp53 protein was evaluated in human biopsies deriving from controls, ulcerative colitis and colon cancer patients at baseline (a) and (b) following S100B targeting with niosomal PENtamidine VEhiculation (PENVE), to maximize drug permeabilization in the tissue. Cultured biopsies underwent immunoblot, EMSA, ELISA and biochemical assays for S100B and related pro-inflammatory/pro-apoptotic proteins. Exogenous S100B (0.005-5 µmol/L) alone, or in the presence of PENVE (0.005-5 µmol/L), was tested in control biopsies while PENVE (5 µmol/L) was evaluated on control, peritumoral, ulcerative colitis and colon cancer biopsies. Our data show that S100B level progressively increases in control, peritumoral, ulcerative colitis and colon cancer enabling a pro-inflammatory/angiogenic and antiapoptotic environment, featured by iNOS, VEGF and IL-6 up-regulation and wtp53 and Bax inhibition. PENVE inhibited S100B activity, reducing its capability to activate RAGE/phosphor-p38 MAPK/NF-kappaB and favouring its disengagement with wtp53. PENVE blocks S100B activity and rescues wtp53 expression determining pro-apoptotic control in colon cancer, suggesting pentamidine as a potential anticancer drug.


Assuntos
Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Pentamidina/administração & dosagem , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Proteína Supressora de Tumor p53/genética , Antígenos de Neoplasias/genética , Biópsia , Carcinoma/genética , Carcinoma/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Lipossomos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/genética , Mucosa/efeitos dos fármacos , NF-kappa B/genética , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA