Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 82(4): 756-769.e8, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35120588

RESUMO

The superkiller (SKI) complex is the cytoplasmic co-factor and regulator of the RNA-degrading exosome. In human cells, the SKI complex functions mainly in co-translational surveillance-decay pathways, and its malfunction is linked to a severe congenital disorder, the trichohepatoenteric syndrome. To obtain insights into the molecular mechanisms regulating the human SKI (hSKI) complex, we structurally characterized several of its functional states in the context of 80S ribosomes and substrate RNA. In a prehydrolytic ATP form, the hSKI complex exhibits a closed conformation with an inherent gating system that effectively traps the 80S-bound RNA into the hSKI2 helicase subunit. When active, hSKI switches to an open conformation in which the gating is released and the RNA 3' end exits the helicase. The emerging picture is that the gatekeeping mechanism and architectural remodeling of hSKI underpin a regulated RNA channeling system that is mechanistically conserved among the cytoplasmic and nuclear helicase-exosome complexes.


Assuntos
Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA/metabolismo , Subunidades Ribossômicas/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Exorribonucleases/genética , Exorribonucleases/ultraestrutura , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA/genética , RNA/ultraestrutura , RNA Helicases/genética , RNA Helicases/ultraestrutura , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/ultraestrutura , Relação Estrutura-Atividade
2.
Mol Cell ; 81(20): 4300-4318.e13, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437836

RESUMO

The human genome encodes tens of thousands circular RNAs (circRNAs) with mostly unknown functions. Circular RNAs require internal ribosome entry sites (IRES) if they are to undergo translation without a 5' cap. Here, we develop a high-throughput screen to systematically discover RNA sequences that can direct circRNA translation in human cells. We identify more than 17,000 endogenous and synthetic sequences as candidate circRNA IRES. 18S rRNA complementarity and a structured RNA element positioned on the IRES are important for driving circRNA translation. Ribosome profiling and peptidomic analyses show extensive IRES-ribosome association, hundreds of circRNA-encoded proteins with tissue-specific distribution, and antigen presentation. We find that circFGFR1p, a protein encoded by circFGFR1 that is downregulated in cancer, functions as a negative regulator of FGFR1 oncoprotein to suppress cell growth during stress. Systematic identification of circRNA IRES elements may provide important links among circRNA regulation, biological function, and disease.


Assuntos
Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Circular/metabolismo , Subunidades Ribossômicas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Conformação de Ácido Nucleico , RNA Circular/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Subunidades Ribossômicas/genética , Relação Estrutura-Atividade
3.
Cell Rep ; 34(13): 108903, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789112

RESUMO

Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Linhagem Celular Tumoral , Linhagem da Célula , Nucléolo Celular/metabolismo , Proliferação de Células , Autorrenovação Celular , Sobrevivência Celular , Córtex Cerebral/citologia , RNA Helicases DEAD-box/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulação Neoplásica da Expressão Gênica , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Planárias/citologia , Planárias/metabolismo , Interferência de RNA , Subunidades Ribossômicas/metabolismo , Resultado do Tratamento , Regulação para Cima/genética
4.
Structure ; 28(10): 1087-1100.e3, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32857965

RESUMO

Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii.


Assuntos
Acinetobacter baumannii/citologia , Amicacina/química , Antibacterianos/química , Ribossomos/química , Tigeciclina/química , Acinetobacter baumannii/química , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Ribossomos/metabolismo
5.
Nat Commun ; 11(1): 776, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034140

RESUMO

Human Ebp1 is a member of the proliferation-associated 2G4 (PA2G4) family and plays an important role in cancer regulation. Ebp1 shares the methionine aminopeptidase (MetAP) fold and binds to mature 80S ribosomes for translational control. Here, we present a cryo-EM single particle analysis reconstruction of Ebp1 bound to non-translating human 80S ribosomes at a resolution range from 3.3 to ~8 Å. Ebp1 blocks the tunnel exit with major interactions to the general uL23/uL29 docking site for nascent chain-associated factors complemented by eukaryote-specific eL19 and rRNA helix H59. H59 is defined as dynamic adaptor undergoing significant remodeling upon Ebp1 binding. Ebp1 recruits rRNA expansion segment ES27L to the tunnel exit via specific interactions with rRNA consensus sequences. The Ebp1-ribosome complex serves as a template for MetAP binding and provides insights into the structural principles for spatial coordination of co-translational events and molecular triage at the ribosomal tunnel exit.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas/química
6.
RNA ; 25(5): 600-606, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733327

RESUMO

The 70S ribosome is a major target for antibacterial drugs. Two of the classical antibiotics, chloramphenicol (CHL) and erythromycin (ERY), competitively bind to adjacent but separate sites on the bacterial ribosome: the catalytic peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), respectively. The previously reported competitive binding of CHL and ERY might be due either to a direct collision of the two drugs on the ribosome or due to a drug-induced allosteric effect. Because of the resolution limitations, the available structures of these antibiotics in complex with bacterial ribosomes do not allow us to discriminate between these two possible mechanisms. In this work, we have obtained two crystal structures of CHL and ERY in complex with the Thermus thermophilus 70S ribosome at a higher resolution (2.65 and 2.89 Å, respectively) allowing unambiguous placement of the drugs in the electron density maps. Our structures provide evidence of the direct collision of CHL and ERY on the ribosome, which rationalizes the observed competition between the two drugs.


Assuntos
Antibacterianos/química , Cloranfenicol/química , Eritromicina/química , Subunidades Ribossômicas/efeitos dos fármacos , Thermus thermophilus/efeitos dos fármacos , Antibacterianos/farmacologia , Sítios de Ligação , Ligação Competitiva , Cloranfenicol/farmacologia , Cristalografia por Raios X , Eritromicina/farmacologia , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
7.
Nat Commun ; 9(1): 5383, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568249

RESUMO

Production of eukaryotic ribosomal subunits is a highly dynamic process; pre-ribosomes undergo numerous structural rearrangements that establish the architecture present in mature complexes and serve as key checkpoints, ensuring the fidelity of ribosome assembly. Using in vivo crosslinking, we here identify the pre-ribosomal binding sites of three RNA helicases. Our data support roles for Has1 in triggering release of the U14 snoRNP, a critical event during early 40S maturation, and in driving assembly of domain I of pre-60S complexes. Binding of Mak5 to domain II of pre-60S complexes promotes recruitment of the ribosomal protein Rpl10, which is necessary for subunit joining and ribosome function. Spb4 binds to a molecular hinge at the base of ES27 facilitating binding of the export factor Arx1, thereby promoting pre-60S export competence. Our data provide important insights into the driving forces behind key structural remodelling events during ribosomal subunit assembly.


Assuntos
RNA Helicases DEAD-box/metabolismo , Subunidades Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae
8.
Nature ; 564(7736): 444-448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518861

RESUMO

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Assuntos
Evolução Molecular Direcionada , Escherichia coli , Biossíntese de Proteínas , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Sequência de Bases , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Escherichia coli/classificação , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas/química , Ribossomos/química , Ribossomos/genética
9.
Mol Biol Cell ; 29(20): 2386-2396, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091672

RESUMO

Mitochondrial gene expression in Saccharomyces cerevisiae is responsible for the production of highly hydrophobic subunits of the oxidative phosphorylation system. Membrane insertion occurs cotranslationally on membrane-bound mitochondrial ribosomes. Here, by employing a systematic mass spectrometry-based approach, we discovered the previously uncharacterized membrane protein Mrx15 that interacts via a soluble C-terminal domain with the large ribosomal subunit. Mrx15 contacts mitochondrial translation products during their synthesis and plays, together with the ribosome receptor Mba1, an overlapping role in cotranslational protein insertion. Taken together, our data reveal how these ribosome receptors organize membrane protein biogenesis in mitochondria.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Epistasia Genética , Deleção de Genes , Espectrometria de Massas , Membranas Mitocondriais/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética
10.
Biochemistry ; 57(29): 4241-4246, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29979035

RESUMO

A complete understanding of the determinants that restrict d-amino acid incorporation by the ribosome, which is of interest to both basic biologists and the protein engineering community, remains elusive. Previously, we demonstrated that d-amino acids are successfully incorporated into the C-terminus of the nascent polypeptide chain. Ribosomes carrying the resulting peptidyl-d-aminoacyl-tRNA (peptidyl-d-aa-tRNA) donor substrate, however, partition into subpopulations that either undergo translation arrest through inactivation of the ribosomal peptidyl-transferase center (PTC) or remain translationally competent. The proportion of each subpopulation is determined by the identity of the d-amino acid side chain. Here, we demonstrate that the identity of the aminoacyl-tRNA (aa-tRNA) acceptor substrate that is delivered to ribosomes carrying a peptidyl-d-aa-tRNA donor further modulates this partitioning. Our discovery demonstrates that it is the pairing of the peptidyl-d-aa-tRNA donor and the aa-tRNA acceptor that determines the activity of the PTC. Moreover, we provide evidence that both the amino acid and tRNA components of the aa-tRNA acceptor contribute synergistically to the extent of arrest. The results of this work deepen our understanding of the mechanism of d-amino acid-mediated translation arrest and how cells avoid this precarious obstacle, reveal similarities to other translation arrest mechanisms involving the PTC, and provide a new route for improving the yields of engineered proteins containing d-amino acids.


Assuntos
Aminoácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Subunidades Ribossômicas/metabolismo
11.
Methods Mol Biol ; 1661: 73-92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28917038

RESUMO

Chemical approaches are very powerful tools for investigating the molecular structure and architecture of large ribonucleoprotein complexes involving ribosomes and other components of the translation system. Application of RNA nucleotide-specific and cross-linking reagents of a broad specificity range allows the researcher to obtain information on the sites of ligand binding to the ribosome and to each other as well as on the RNA rearrangements caused by the binding. Here, we describe specific chemical approaches including chemical probing and site-directed or bifunctional reagent-mediated cross-linking, which have been used for exploring the mechanism of selenocysteine insertion into a polypeptide chain by mammalian ribosomes.


Assuntos
Ribossomos/metabolismo , Selenoproteínas/biossíntese , Selenoproteínas/genética , Animais , Sistema Livre de Células , Humanos , Ligantes , Ligação Proteica , Biossíntese de Proteínas , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Ribossomos/química , Selenocisteína/química , Selenocisteína/genética
12.
Nucleic Acids Res ; 45(2): 513-526, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27923997

RESUMO

The development of Ribosome Profiling (RiboSeq) has revolutionized functional genomics. RiboSeq is based on capturing and sequencing of the mRNA fragments enclosed within the translating ribosome and it thereby provides a 'snapshot' of ribosome positions at the transcriptome wide level. Although the method is predominantly used for analysis of differential gene expression and discovery of novel translated ORFs, the RiboSeq data can also be a rich source of information about molecular mechanisms of polypeptide synthesis and translational control. This review will focus on how recent findings made with RiboSeq have revealed important details of the molecular mechanisms of translation in eukaryotes. These include mRNA translation sensitivity to drugs affecting translation initiation and elongation, the roles of upstream ORFs in response to stress, the dynamics of elongation and termination as well as details of intrinsic ribosome behavior on the mRNA after translation termination. As the RiboSeq method is still at a relatively early stage we will also discuss the implications of RiboSeq artifacts on data interpretation.


Assuntos
Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Códon de Iniciação , Regulação da Expressão Gênica , Humanos , Complexos Multiproteicos , Fases de Leitura Aberta , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidades Ribossômicas/metabolismo
13.
Molecules ; 21(11)2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27879643

RESUMO

Ribosome-inactivating proteins (RIPs) including ricin, Shiga toxin, and trichosanthin, are RNA N-glycosidases that depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. RIPs are grouped into three types according to the number of subunits and the organization of the precursor sequences. RIPs are two-domain proteins, with the active site located in the cleft between the N- and C-terminal domains. It has been found that the basic surface residues of the RIPs promote rapid and specific targeting to the ribosome and a number of RIPs have been shown to interact with the C-terminal regions of the P proteins of the ribosome. At present, the structural basis for the interaction of trichosanthin and ricin-A chain toward P2 peptide is known. This review surveys the structural features of the representative RIPs and discusses how they approach and interact with the ribosome.


Assuntos
Modelos Moleculares , Estrutura Molecular , Proteínas Inativadoras de Ribossomos/química , Ribossomos/química , Domínio Catalítico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Inativadoras de Ribossomos/classificação , Proteínas Inativadoras de Ribossomos/metabolismo , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Nat Struct Mol Biol ; 23(11): 1003-1010, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27669034

RESUMO

Ribosome-associated J protein-Hsp70 chaperones promote nascent-polypeptide folding and normal translational fidelity. The J protein Zuo1 is known to span the ribosomal subunits, but understanding of its function is limited. Here we present new structural and cross-linking data allowing more precise positioning of Saccharomyces cerevisiae Zuo1 near the 60S polypeptide-exit site and suggesting interactions of Zuo1 with the ribosomal protein eL31 and 25S rRNA helix 24. The junction between the 60S-interacting and subunit-spanning helices is a hinge that positions Zuo1 on the 40S yet accommodates subunit rotation. Interaction between the Zuo1 C terminus and 40S occurs via 18S rRNA expansion segment 12 (ES12) of helix 44, which originates at the decoding site. Deletions in either ES12 or the Zuo1 C terminus alter readthrough of stop codons and -1 frameshifting. Our study offers insight into how this cotranslational chaperone system may monitor decoding-site activity and nascent-polypeptide transit, thereby coordinating protein translation and folding.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP70/química , Modelos Moleculares , Chaperonas Moleculares/química , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
15.
Annu Rev Biochem ; 85: 103-32, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27023846

RESUMO

Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/ultraestrutura , Biossíntese de Proteínas , Subunidades Ribossômicas/ultraestrutura , Animais , Antibacterianos/farmacologia , Evolução Biológica , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , DNA Mitocondrial/metabolismo , Mamíferos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Nat Struct Mol Biol ; 21(12): 1042-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362488

RESUMO

Cotranslational chaperones, ubiquitous in all living organisms, protect nascent polypeptides from aggregation and facilitate their de novo folding. Importantly, emerging data have also suggested that ribosome-associated cotranslational chaperones have active regulatory roles in modulating protein translation. By characterizing the structure of a type of eukaryotic cotranslational chaperone, the ribosome-associated complex (RAC) from Saccharomyces cerevisiae, we show that RAC cross-links two ribosomal subunits, through a single long α-helix, to limit the predominant intersubunit rotation required for peptide elongation. We further demonstrate that any changes in the continuity, length or rigidity of this middle α-helix impair RAC function in vivo. Our results suggest a new mechanism in which RAC directly regulates protein translation by mechanically coupling cotranslational folding with the peptide-elongation cycle, and they lay the foundation for further exploration of regulatory roles of RAC in translation control.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP70/química , Modelos Moleculares , Chaperonas Moleculares/química , Dados de Sequência Molecular , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Subunidades Ribossômicas/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
17.
Mol Cell ; 55(6): 880-890, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25132172

RESUMO

Ribosomes stalled on aberrant mRNAs engage quality control mechanisms that degrade the partially translated nascent polypeptide. Ubiquitination of the nascent protein is mediated by the E3 ligase Listerin via a mechanism involving ribosome subunit dissociation. Here, we reconstitute ribosome-associated ubiquitination with purified factors to define the minimal components and essential steps in this process. We find that the primary role of the ribosome splitting factors Hbs1, Pelota, and ABCE1 is to permit Listerin access to the nascent chain. Listerin alone can discriminate 60S- from 80S-nascent chain complexes to selectively ubiquitinate the former. Splitting factors can be bypassed by artificially removing the 40S subunit, suggesting that mere steric hindrance impedes Listerin recruitment. This was illustrated by a cryo-EM reconstruction of the 60S-Listerin complex that identifies a binding interface that clashes with the 40S ribosomal subunit. These results reveal the mechanistic logic of the core steps in a ribosome-associated quality control pathway.


Assuntos
Subunidades Ribossômicas/metabolismo , Ubiquitinação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Fatores de Alongamento de Peptídeos/metabolismo , RNA Ribossômico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
J Exp Med ; 210(11): 2351-69, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24062412

RESUMO

Blood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in HSCs. In contrast, Nle is dispensable for cycling-restricted progenitors and differentiated cells. In yeast, Nle/Rsa4 is essential for ribosome biogenesis, and we show that its role in pre-60S subunit maturation has been conserved in the mouse. Despite its implication in this basal cellular process, Nle deletion affects ribosome biogenesis only in HSCs and immature progenitors. Ribosome biogenesis defects are accompanied by p53 activation, which causes their rapid exhaustion. Collectively, our findings establish an essential role for Nle in HSC and immature progenitor functions and uncover previously unsuspected differences in ribosome biogenesis that distinguish stem cells from restricted progenitor populations.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana/metabolismo , Ribossomos/metabolismo , Animais , Linfócitos B/citologia , Medula Óssea/metabolismo , Morte Celular , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Hematopoese , Camundongos , Modelos Biológicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , RNA Ribossômico/metabolismo , Subunidades Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(47): 19286-91, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129655

RESUMO

The polypeptide subunits of the photosynthetic electron transport complexes in plants and algae are encoded by two genomes. Nuclear genome-encoded subunits are synthesized in the cytoplasm by 80S ribosomes, imported across the chloroplast envelope, and assembled with the subunits that are encoded by the plastid genome. Plastid genome-encoded subunits are synthesized by 70S chloroplast ribosomes directly into membranes that are widely believed to belong to the photosynthetic thylakoid vesicles. However, in situ evidence suggested that subunits of photosystem II are synthesized in specific regions within the chloroplast and cytoplasm of Chlamydomonas. Our results provide biochemical and in situ evidence of biogenic membranes that are localized to these translation zones. A "chloroplast translation membrane" is bound by the translation machinery and appears to be privileged for the synthesis of polypeptides encoded by the plastid genome. Membrane domains of the chloroplast envelope are located adjacent to the cytoplasmic translation zone and enriched in the translocons of the outer and inner chloroplast envelope membranes protein import complexes, suggesting a coordination of protein synthesis and import. Our findings contribute to a current realization that biogenic processes are compartmentalized within organelles and bacteria.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Biossíntese de Proteínas , Immunoblotting , Modelos Biológicos , Eletroforese em Gel de Poliacrilamida Nativa , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/biossíntese , Transporte Proteico , Subunidades Ribossômicas/metabolismo , Ribossomos/metabolismo , Frações Subcelulares/metabolismo , Tilacoides/metabolismo
20.
Blood ; 120(26): 5143-52, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23115272

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal-recessive marrow failure syndrome with a predisposition to leukemia. SDS patients harbor biallelic mutations in the SBDS gene, resulting in low levels of SBDS protein. Data from nonhuman models demonstrate that the SBDS protein facilitates the release of eIF6, a factor that prevents ribosome joining. The complete abrogation of Sbds expression in these models results in severe cellular and lethal physiologic abnormalities that differ from the human disease phenotype. Because human SDS cells are characterized by partial rather than complete loss of SBDS expression, we interrogated SDS patient cells for defects in ribosomal assembly. SDS patient cells exhibit altered ribosomal profiles and impaired association of the 40S and 60S subunits. Introduction of a wild-type SBDS cDNA into SDS patient cells corrected the ribosomal association defect, while patient-derived SBDS point mutants only partially improved subunit association. Knockdown of eIF6 expression improved ribosomal subunit association but did not correct the hematopoietic defect of SBDS-deficient cells. In summary, we demonstrate an SBDS-dependent ribosome maturation defect in SDS patient cells. The role of ribosomal subunit joining in marrow failure warrants further investigation.


Assuntos
Doenças da Medula Óssea/metabolismo , Insuficiência Pancreática Exócrina/metabolismo , Lipomatose/metabolismo , Subunidades Ribossômicas/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/patologia , Células Cultivadas , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/fisiologia , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/patologia , Técnicas de Silenciamento de Genes , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Recém-Nascido , Lipomatose/genética , Lipomatose/patologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Proteínas/genética , Proteínas/metabolismo , Proteínas/fisiologia , RNA Interferente Pequeno/farmacologia , Síndrome de Shwachman-Diamond , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA