Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Neurotherapeutics ; 20(3): 881-895, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36976494

RESUMO

Accumulating data shows that altered metabolic activity contributes to glioma development. Recently, modulation of SSADH (succinic semialdehyde dehydrogenase) expression, implicated in the catabolism of GABA neurotransmitter, was shown to impact glioma cell properties, such as proliferation, self-renewal and tumorigenicity. The purpose of this study was to investigate the clinical significance of SSADH expression in human gliomas. Using public single-cell RNA-sequencing data from glioma surgical resections, we initially grouped cancer cells according to ALDH5A1 (Aldehyde dehydrogenase 5 family member A1) expression, which encodes SSADH. Gene ontology enrichment analysis of genes differentially expressed between cancer cells expressing high or low levels of ALDH5A1, highlighted enrichment in genes implicated in cell morphogenesis and motility. In glioblastoma cell lines, ALDH5A1 knockdown inhibited cell proliferation, induced apoptosis and reduced their migratory potential. This was accompanied by a reduction in the mRNA levels of the adherens junction molecule ADAM-15 and deregulation in the expression of EMT biomarkers, with increased CDH1 and decreased vimentin mRNA levels. Evaluation of SSADH expression in a cohort of 95 gliomas using immunohistochemistry showed that SSADH expression was significantly elevated in cancer tissues compared to normal brain tissues, without any significant correlation with clinicopathological characteristics. In summary, our data show that SSADH is upregulated in glioma tissues irrespective of the histological grade and its expression sustains glioma cell motility.


Assuntos
Glioblastoma , Glioma , Succinato-Semialdeído Desidrogenase , Humanos , Biomarcadores , Glioma/genética , Glioma/patologia , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
2.
FEBS J ; 290(9): 2449-2462, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36177488

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) catalyses the conversion of succinic semialdehyde into succinic acid and two electrons are transferred to NAD(P)+ to yield NAD(P)H. Our previous work has already reported the catalytic role of Cys289 of two-cysteine SSADH from Acinetobacter baumannii (AbSSADH). However, the mechanistic role of the neighbouring conserved Cys291 and Glu255 remains unexplored. In this study, the functional roles of Cys291 and Glu255 in AbSSADH catalysis have been characterized. Results demonstrated that the E255A activity was almost completely lost, ~ 7000-fold lower than the wild-type (WT), indicating that Glu255 is very crucial and directly involved in AbSSADH catalysis. However, the C291A and C291S variants activity and catalytic turnover (kcat ) decreased ~ 2-fold and 9-fold respectively. To further characterize the functional roles of Cys291, we employed two pH-dependent methods; pre-steady-state burst amplitude and NADP-enzyme adduct formation. The results showed that the pKa values of catalytic Cys289 measured for the WT and C291A reactions were 7.8 and 8.7-8.8, respectively, suggesting that Cys291 can lower the pKa of Cys289 and consequently trigger the deprotonation of a Cys289 thiol. In addition, the Cys291 also plays a role in disulfide/sulfhydryl redox regulation for AbSSADH activity. Hence, we demonstrated for the first time the dual functions of Cys291 in enhancing the nucleophilicity of the catalytic Cys289 and regulating a disulfide/sulfhydryl redox switch for AbSSADH catalysis. The mechanistic insights into the nucleophilicity enhancement of the catalytic cysteine of AbSSADH might be applicable to understanding how the microenvironment increases cysteine reactivity in other enzymes in the aldehyde dehydrogenase superfamily.


Assuntos
Cisteína , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/metabolismo , Cisteína/química , NAD/metabolismo , Catálise , Aldeído Desidrogenase/metabolismo , Compostos de Sulfidrila , Cinética
3.
Epilepsia ; 62(1): e29-e34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319393

RESUMO

Increasing evidence indicates the pathogenetic relevance of regulatory genomic motifs for variability in the manifestation of brain disorders. In this context, cis-regulatory effects of single nucleotide polymorphisms (SNPs) on gene expression can contribute to changing transcript levels of excitability-relevant molecules and episodic seizure manifestation in epilepsy. Biopsy specimens of patients undergoing epilepsy surgery for seizure relief provide unique insights into the impact of promoter SNPs on corresponding mRNA expression. Here, we have scrutinized whether two linked regulatory SNPs (rs2744575; 4779C > G and rs4646830; 4854C > G) located in the aldehyde dehydrogenase 5a1 (succinic semialdehyde dehydrogenase; ALDH5A1) gene promoter are associated with expression of corresponding mRNAs in epileptic hippocampi (n = 43). The minor ALDH5A1-GG haplotype associates with significantly lower ALDH5A1 transcript abundance. Complementary in vitro analyses in neural cell cultures confirm this difference and further reveal a significantly constricted range for the minor ALDH5A1 haplotype of promoter activity regulation through the key epileptogenesis transcription factor Egr1 (early growth response 1). The present data suggest systematic analyses in human hippocampal tissue as a useful approach to unravel the impact of epilepsy candidate SNPs on associated gene expression. Aberrant ALDH5A1 promoter regulation in functional terms can contribute to impaired γ-aminobutyric acid homeostasis and thereby network excitability and seizure propensity.


Assuntos
Epilepsia do Lobo Temporal/genética , Hipocampo/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Succinato-Semialdeído Desidrogenase/genética , Animais , Linhagem Celular , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Perfilação da Expressão Gênica , Haplótipos , Hipocampo/patologia , Humanos , Técnicas In Vitro , Camundongos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Ratos , Esclerose
4.
Cell Biochem Funct ; 39(2): 317-325, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32881051

RESUMO

Thyroid cancer is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for 80%-90% of thyroid cancers. Accumulating studies reported that mitochondria plays an important role in the regulation of cell proliferation. ALDH5A1, may function as an oncogene or tumour suppressor in various human cancers, and the role of ALDH5A1 in PTC is still unclear. The aim of this study was to investigate the clinical significance of ALDH5A1 expression and its functions in PTC. In this present study, we studied ALDH5A1 expression on primary papillary thyroid carcinoma (PTC) in The Cancer Genome Atlas (TCGA) database. Results showed that the levels of ALDH5A1 were found positively correlated with tumour stage, metastasis, lymph node stage, and higher levels of ALDH5A1 demonstrated poor disease-free survival (DFS). Immunohistochemistry (IHC) revealed that significantly higher expression of ALDH5A1 was found in PTC tissues. On the other hand, knockdown of ALDH5A1 significantly inhibited PTC cell proliferation, migration and invasion detection found the migration and invasion of cells also were hindered when ALDH5A1 level was reduced. The knockdown of ALDH5A1 inhibited the expression of Vimentin and promoted the expression of E-cadherin. In brief, knockdown of ALDH5A1may act as a novel molecular target for the prevention and treatment of PTC. SIGNIFICANCE OF THE STUDY: The present study focused on the role and the potential mechanism of ALDH5A1 in papillary thyroid carcinoma. We demonstrated that reduced expression of ALDH5A1 might inhibit the progression of TC by inhibiting cell proliferation, migration and invasion and reversing epithelial-mesenchymal transition (EMT). The findings ensured the interaction relation between ALDH5A1 and EMT in PTC, providing a novel biological marker for PTC and enriching the potential strategies for TC treatment.


Assuntos
Succinato-Semialdeído Desidrogenase/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Estadiamento de Neoplasias , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Succinato-Semialdeído Desidrogenase/antagonistas & inibidores , Succinato-Semialdeído Desidrogenase/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/mortalidade , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/mortalidade , Vimentina/metabolismo
5.
Mol Pharmacol ; 98(2): 120-129, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499331

RESUMO

Alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs) are vital enzymes involved in the metabolism of a variety of alcohols. Differences in the expression and enzymatic activity of human ADHs and ALDHs correlate with individual variability in metabolizing alcohols and drugs and in the susceptibility to alcoholic liver disease. MicroRNAs (miRNAs) function as epigenetic modulators to regulate the expression of drug-metabolizing enzymes. To characterize miRNAs that target ADHs and ALDHs in human liver cells, we carried out a systematic bioinformatics analysis to analyze free energies of the interaction between miRNAs and their cognate sequences in ADH and ALDH transcripts and then calculated expression correlations between miRNAs and their targeting ADH and ALDH genes using a public data base. Candidate miRNAs were selected to evaluate bioinformatic predictions using a series of biochemical assays. Our results showed that 11 miRNAs have the potential to modulate the expression of two ADH and seven ALDH genes in the human liver. We found that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and blocked their induction by ethanol. In summary, our results revealed that hsa-miR-1301-3p plays an important role in ethanol metabolism by regulating ADH and ALDH gene expression. SIGNIFICANCE STATEMENT: Systematic bioinformatics analysis showed that 11 microRNAs might play regulatory roles in the expression of two alcohol dehydrogenase (ADH) and seven aldehyde dehydrogenase (ALDH) genes in the human liver. Experimental evidences proved that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and decreased their inducibility by ethanol.


Assuntos
Álcool Desidrogenase/genética , Aldeído Desidrogenase/genética , Fígado/metabolismo , MicroRNAs/genética , Succinato-Semialdeído Desidrogenase/genética , Acetaldeído/metabolismo , Acetatos/metabolismo , Linhagem Celular , Etanol/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Redes e Vias Metabólicas
6.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575506

RESUMO

Succinate semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme, encoded by ALDH5A1, mainly involved in γ-aminobutyric acid (GABA) catabolism and energy supply of neuronal cells, possibly contributing to antioxidant defense. This study aimed to further investigate the antioxidant role of SSADH, and to verify if common SNPs of ALDH5A1 may affect SSADH activity, stability, and mitochondrial function. In this study, we used U87 glioblastoma cells as they represent a glial cell line. These cells were transiently transfected with a cDNA construct simultaneously harboring three SNPs encoding for a triple mutant (TM) SSADH protein (p.G36R/p.H180Y/p.P182L) or with wild type (WT) cDNA. SSADH activity and protein level were measured. Cell viability, lipid peroxidation, mitochondrial morphology, membrane potential (ΔΨ), and protein markers of mitochondrial stress were evaluated upon Paraquat treatment, in TM and WT transfected cells. TM transfected cells show lower SSADH protein content and activity, fragmented mitochondria, higher levels of peroxidized lipids, and altered ΔΨ than WT transfected cells. Upon Paraquat treatment, TM cells show higher cell death, lipid peroxidation, 4-HNE protein adducts, and lower ΔΨ, than WT transfected cells. These results reinforce the hypothesis that SSADH contributes to cellular antioxidant defense; furthermore, common SNPs may produce unstable, less active SSADH, which could per se negatively affect mitochondrial function and, under oxidative stress conditions, fail to protect mitochondria.


Assuntos
Mitocôndrias/metabolismo , Polimorfismo de Nucleotídeo Único , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Paraquat/efeitos adversos , Sinais Direcionadores de Proteínas , Proteólise , Succinato-Semialdeído Desidrogenase/química
7.
Mol Genet Metab ; 130(3): 172-178, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402538

RESUMO

Deficiency of succinate semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1 (ALDH5A1), OMIM 271980, 610045), the second enzyme of GABA degradation, represents a rare autosomal-recessively inherited disorder which manifests metabolically as gamma-hydroxybutyric aciduria. The neurological phenotype includes intellectual disability, autism spectrum, epilepsy and sleep and behavior disturbances. Approximately 70 variants have been reported in the ALDH5A1 gene, half of them being missense variants. In this study, 34 missense variants, of which 22 novel, were evaluated by in silico analyses using PolyPhen2 and SIFT prediction tools. Subsequently, the effect of these variants on SSADH activity was studied by transient overexpression in HEK293 cells. These studies showed severe enzymatic activity impairment for 27 out of 34 alleles, normal activity for one allele and a broad range of residual activities (25 to 74%) for six alleles. To better evaluate the alleles that showed residual activity above 25%, we generated an SSADH-deficient HEK293-Flp-In cell line using CRISPR-Cas9, in which these alleles were stably expressed. This model proved essential in the classification as deficient for one out of the seven studied alleles. For 8 out of 34 addressed alleles, there were discrepant results among the used prediction tools, and/or in correlating the results of the prediction tools with the functional data. In case of diagnostic urgency of missense alleles, we propose the use of the transient transfection model for confirmation of their effect on the SSADH catalytic function, since this model resulted in fast and robust functional characterization for the majority of the tested variants. In selected cases, stable transfections can be considered and may prove valuable.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/patologia , Mutação de Sentido Incorreto , Succinato-Semialdeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Simulação por Computador , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Células HEK293 , Humanos , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
8.
FASEB J ; 33(1): 557-571, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30001166

RESUMO

Diffuse gliomas often carry point mutations in isocitrate dehydrogenase ( IDH1mut), resulting in metabolic stress. Although IDHmut gliomas are difficult to culture in vitro, they thrive in the brain via diffuse infiltration, suggesting brain-specific tumor-stroma interactions that can compensate for IDH-1 deficits. To elucidate the metabolic adjustments in clinical IDHmut gliomas that contribute to their malignancy, we applied a recently developed method of targeted quantitative RNA next-generation sequencing to 66 clinical gliomas and relevant orthotopic glioma xenografts, with and without the endogenous IDH-1R132H mutation. Datasets were analyzed in R using Manhattan plots to calculate distance between expression profiles, Ward's method to perform unsupervised agglomerative clustering, and the Mann Whitney U test and Fisher's exact tests for supervised group analyses. The significance of transcriptome data was investigated by protein analysis, in situ enzymatic activity mapping, and in vivo magnetic resonance spectroscopy of orthotopic IDH1mut- and IDHwt-glioma xenografts. Gene set enrichment analyses of clinical IDH1mut gliomas strongly suggest a role for catabolism of lactate and the neurotransmitter glutamate, whereas, in IDHwt gliomas, processing of glucose and glutamine are the predominant metabolic pathways. Further evidence of the differential metabolic activity in these cancers comes from in situ enzymatic mapping studies and preclinical in vivo magnetic resonance spectroscopy imaging. Our data support an evolutionary model in which IDHmut glioma cells exist in symbiosis with supportive neuronal cells and astrocytes as suppliers of glutamate and lactate, possibly explaining the diffuse nature of these cancers. The dependency on glutamate and lactate opens the way for novel approaches in the treatment of IDHmut gliomas.-Lenting, K., Khurshed, M., Peeters, T. H., van den Heuvel, C. N. A. M., van Lith, S. A. M., de Bitter, T., Hendriks, W., Span, P. N., Molenaar, R. J., Botman, D., Verrijp, K., Heerschap, A., ter Laan, M., Kusters, B., van Ewijk, A., Huynen, M. A., van Noorden, C. J. F., Leenders, W. P. J. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Ácido Glutâmico/metabolismo , Isocitrato Desidrogenase/genética , Ácido Láctico/metabolismo , Mutação , Estresse Fisiológico , 4-Aminobutirato Transaminase/genética , 4-Aminobutirato Transaminase/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Commun ; 9(1): 5071, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498244

RESUMO

Lysine degradation has remained elusive in many organisms including Escherichia coli. Here we report catabolism of lysine to succinate in E. coli involving glutarate and L-2-hydroxyglutarate as intermediates. We show that CsiD acts as an α-ketoglutarate-dependent dioxygenase catalysing hydroxylation of glutarate to L-2-hydroxyglutarate. CsiD is found widespread in bacteria. We present crystal structures of CsiD in complex with glutarate, succinate, and the inhibitor N-oxalyl-glycine, demonstrating strong discrimination between the structurally related ligands. We show that L-2-hydroxyglutarate is converted to α-ketoglutarate by LhgO acting as a membrane-bound, ubiquinone-linked dehydrogenase. Lysine enters the pathway via 5-aminovalerate by the promiscuous enzymes GabT and GabD. We demonstrate that repression of the pathway by CsiR is relieved upon glutarate binding. In conclusion, lysine degradation provides an important link in central metabolism. Our results imply the gut microbiome as a potential source of glutarate and L-2-hydroxyglutarate associated with human diseases such as cancer and organic acidurias.


Assuntos
Glutaratos/metabolismo , Lisina/metabolismo , Aminoácidos Neutros/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Succinato-Semialdeído Desidrogenase/metabolismo
10.
J Exp Clin Cancer Res ; 37(1): 271, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404651

RESUMO

BACKGROUND: Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions. METHODS: Metabolic characteristics of human glioma cell models - including mitochondrial function, glycolytic pathway and energy substrate oxidation - in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry. RESULTS: U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation). CONCLUSIONS: Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas.


Assuntos
Glioma/genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Succinato-Semialdeído Desidrogenase/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proliferação de Células , Glioma/patologia , Humanos
11.
FEBS J ; 285(13): 2504-2519, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29734522

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) from Acinetobacter baumannii (Ab) catalyzes the oxidation of succinic semialdehyde (SSA). This enzyme has two conserved cysteines (Cys289 and Cys291) and preferentially uses NADP+ over NAD+ as a hydride acceptor. Steady-state kinetic analysis showed that AbSSADH has the highest catalytic turnover (137 s-1 ) and can tolerate SSA inhibition the most (< 500 µm) among all SSADHs reported. Alanine substitutions of the two conserved cysteines indicated that Cys291Ala has ~ 65% activity compared with the wild-type enzyme while Cys289Ala is inactive, suggesting that Cys289 is the active residue participating in catalysis. Pre-steady-state kinetics showed for the first time burst kinetics for NADPH formation in SSADH, indicating that the rate-limiting step is associated with steps that occur after the hydride transfer. As the magnitude of burst kinetics represents the amount of NADPH formed during the first turnover, it is directly dependent on the amount of the deprotonated form of cysteine. The pKa of Cys289 was calculated from a plot of the burst magnitude vs pH as 7.4 ± 0.2. The Cys289 pKa was also measured based on the ability of AbSSADH to form an NADP-cysteine adduct, which can be detected by the increase of absorbance at ~ 330 nm as 7.9 ± 0.2. The lowering of the catalytic cysteine pKa by 0.6-1 unit renders the catalytic thiol more nucleophilic, which facilitates AbSSADH catalysis under physiological conditions. The methods established herein can specifically measure the active site cysteine pKa without interference from other cysteines. These techniques may be useful for studying ionization state of other cysteine-containing aldehyde dehydrogenases. ENZYME: Succinic semialdehyde dehydrogenase, EC1.2.1.24.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Succinato-Semialdeído Desidrogenase/metabolismo , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Concentração de Íons de Hidrogênio , Cinética , NADP/química , NADP/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Succinato-Semialdeído Desidrogenase/química , Succinato-Semialdeído Desidrogenase/genética , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo
12.
Toxicol In Vitro ; 46: 203-212, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29031482

RESUMO

We report the in vitro assessment of pharmacotoxicity for the high-affinity GHB receptor ligand, NCS-382, using neuronal stem cells derived from mice with a targeted deletion of the aldehyde dehydrogenase 5a1 gene (succinic semialdehyde dehydrogenase(SSADH)-deficient mice). These animals represent a phenocopy of the human disorder of GABA metabolism, SSADH deficiency, that metabolically features accumulation of both GABA and the GABA-analog γ-hydroxybutyric acid in conjunction with a nonspecific neurological phenotype. We demonstrate for the first time using MDCK cells that NCS-382 is actively transported and capable of inhibiting GHB transport. Following these in vitro assays with in vivo studies in aldh5a1-/- mice, we found the ratio of brain/liver GHB to be unaffected by chronic NCS-382 administration (300mg/kg; 7 consecutive days). Employing a variety of cellular parameters (reactive oxygen and superoxide species, ATP production and decay, mitochondrial and lysosomal number, cellular viability and necrosis), we demonstrate that up to 1mM NCS-382 shows minimal evidence of pharmacotoxicity. As well, studies at the molecular level indicate that the effects of NCS-382 at 0.5mM are minimally toxic as evaluated using gene expression assay. The cumulative data provides increasing confidence that NCS-382 could eventually be considered in the therapeutic armament for heritable SSADH deficiency.


Assuntos
Benzocicloeptenos/metabolismo , Benzocicloeptenos/toxicidade , Erros Inatos do Metabolismo dos Aminoácidos , Animais , Anticonvulsivantes/metabolismo , Anticonvulsivantes/toxicidade , Biomarcadores , Sobrevivência Celular , Deficiências do Desenvolvimento , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular , Succinato-Semialdeído Desidrogenase/deficiência , Superóxidos/metabolismo
13.
PLoS One ; 12(10): e0186919, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29053743

RESUMO

We explored the utility of neural stem cells (NSCs) as an in vitro model for evaluating preclinical therapeutics in succinic semialdehyde dehydrogenase-deficient (SSADHD) mice. NSCs were obtained from aldh5a1+/+ and aldh5a1-/- mice (aldh5a1 = aldehyde dehydrogenase 5a1 = SSADH). Multiple parameters were evaluated including: (1) production of GHB (γ-hydroxybutyrate), the biochemical hallmark of SSADHD; (2) rescue from cell death with the dual mTOR (mechanistic target of rapamycin) inhibitor, XL-765, an agent previously shown to rescue aldh5a1-/- mice from premature lethality; (3) mitochondrial number, total reactive oxygen species, and mitochondrial superoxide production, all previously documented as abnormal in aldh5a1-/- mice; (4) total ATP levels and ATP consumption; and (5) selected gene expression profiles associated with epilepsy, a prominent feature in both experimental and human SSADHD. Patterns of dysfunction were observed in all of these parameters and mirrored earlier findings in aldh5a1-/- mice. Patterns of dysregulated gene expression between hypothalamus and NSCs centered on ion channels, GABAergic receptors, and inflammation, suggesting novel pathomechanisms as well as a developmental ontogeny for gene expression potentially associated with the murine epileptic phenotype. The NSC model of SSADHD will be valuable in providing a first-tier screen for centrally-acting therapeutics and prioritizing therapeutic concepts of preclinical animal studies applicable to SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Encéfalo/patologia , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Células-Tronco Neurais/patologia , Succinato-Semialdeído Desidrogenase/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Meios de Cultura , Epilepsia/genética , Técnicas In Vitro , Camundongos , Estresse Oxidativo , Succinato-Semialdeído Desidrogenase/genética
14.
Cancer Biol Ther ; 18(4): 245-251, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28346042

RESUMO

Aldehyde dehydrogenase 5 family, member A1 (ALDH5A1) belongs to the superfamily of aldehyde dehydrogenases (ALDHs). However, the prognostic value of ALDH5A1 in ovarian cancer remains unclear. The aim of this study was to explore the relationship between ALDH5A1 and the prognosis of patients with ovarian cancer (OC). We compared the expression of ALDH5A1 in OC to that innormal controls, using GSE40595 profiling data. Tissue microarray analysis was conducted for192 OC patients, 14 adjacent normal ovary tissues, and 2 normal ovary tissues. Using the "Kaplan-Meier plotter" (KM plotter) database, updated gene expression data and survival information of a total of 1583 OC patients were used to evaluate the prognostic value of ALDH5A1 in OC patients. We found that ALDH5A1 mRNA expression was downregulated in OC patients compared with that innormal tissues. In survival analyses, we found that ALDH5A1 was positively linked to prognosis in patients with OC, particularly in those with serous ovarian cancer (SOC). In addition, high Ctranscription activity of ALDH5A1 was correlated with better overall survival in SOC patients expressing mutatedTP53, but not in those expressing wild-type TP53. In pathological grades II/III, a high mRNA level of ALDH5A1 was associated with improved overall survival. The positive association between ALDH5A1 and prognosis was found not only in early stages(I and II), but also in advanced stages (III and IV) of SOC patients. results indicate that ALDH5A1 is an excellent predictive factor of OC and may play crucial roles in OC progression.


Assuntos
Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Succinato-Semialdeído Desidrogenase/metabolismo , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Regulação para Baixo , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Ovário/patologia , Prognóstico , RNA Mensageiro/metabolismo , Análise Serial de Tecidos , Proteína Supressora de Tumor p53/genética
15.
Clin Biochem ; 50(3): 121-126, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27784639

RESUMO

OBJECTIVE: The present study highlights the feasibility of gas chromatography/mass spectrometry (GC/MS)-based analysis for simultaneous detection of >200 marker metabolites in urine found in characteristic pattern in inborn errors of metabolism (IEM) in India. DESIGN AND METHODS: During this retrospective study conducted from July 2013 to January 2016, we collected urine specimens on filter papers from Indian children across the country along with relevant demographic and clinical data. The laboratory technique involved urease pretreatment followed by deproteinization, derivatization, and subsequent computer-aided analysis of organic acids, amino acids, fatty acids, and sugars by GC/MS, which enable chemical diagnosis of IEM. RESULTS: Totally 23,140 patients were investigated for IEM with an estimated frequency of about 1.40%, that is, 323 positive cases. Most frequent disorders observed were of primary lactic acidemia (27.2%) and organic acidemia (methylmalonic aciduria, glutaric acidemia type I, propionic aciduria, etc.) followed by aminoacidopathies (maple syrup urine disease, phenylketonuria, tyrosinemia, etc.). Furthermore, alkaptonuria, canavan disease, and 4-hydroxybutyric aciduria were also diagnosed. Prompt treatment following diagnosis led to a better outcome in a considerable number of patients. CONCLUSIONS: GC/MS with one-step metabolomics enables quick detection, accurate identification, and precise quantification of a wide range of urinary markers that may not be discovered using existing newborn screening programs. The technique is effective as a second-tier test to other established screening technologies, as well as one-step primary screening tool for a wide spectrum of IEM.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Erros Inatos do Metabolismo/metabolismo , Algoritmos , Aminoácidos/análise , Criança , Feminino , Humanos , Índia , Lactente , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/enzimologia , Estudos Retrospectivos , Succinato-Semialdeído Desidrogenase/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 33-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760377

RESUMO

Aldehyde dehydrogenase 5a1-deficient (aldh5a1-/-) mice, the murine orthologue of human succinic semialdehyde dehydrogenase deficiency (SSADHD), manifest increased GABA (4-aminobutyric acid) that disrupts autophagy, increases mitochondria number, and induces oxidative stress, all mitigated with the mTOR (mechanistic target of rapamycin) inhibitor rapamycin [1]. Because GABA regulates mTOR, we tested the hypothesis that aldh5a1-/- mice would show altered levels of mRNA for genes associated with mTOR signaling and oxidative stress that could be mitigated by inhibiting mTOR. We observed that multiple metabolites associated with GABA metabolism (γ-hydroxybutyrate, succinic semialdehyde, D-2-hydroxyglutarate, 4,5-dihydrohexanoate) and oxidative stress were significantly increased in multiple tissues derived from aldh5a1-/- mice. These metabolic perturbations were associated with decreased levels of reduced glutathione (GSH) in brain and liver of aldh5a1-/- mice, as well as increased levels of adducts of the lipid peroxidation by-product, 4-hydroxy-2-nonenal (4-HNE). Decreased liver mRNA levels for multiple genes associated with mTOR signaling and oxidative stress parameters were detected in aldh5a1-/- mice, and several were significantly improved with the administration of mTOR inhibitors (Torin 1/Torin 2). Western blot analysis of selected proteins corresponding to oxidative stress transcripts (glutathione transferase, superoxide dismutase, peroxiredoxin 1) confirmed gene expression findings. Our data provide additional preclinical evidence for the potential therapeutic efficacy of mTOR inhibitors in SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Deficiências do Desenvolvimento/tratamento farmacológico , Deficiências do Desenvolvimento/metabolismo , Deleção de Genes , Succinato-Semialdeído Desidrogenase/deficiência , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Ácido gama-Aminobutírico/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Feminino , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo , Transcriptoma/efeitos dos fármacos
17.
Acta Neuropathol ; 133(4): 645-660, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28032215

RESUMO

Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Glioma/metabolismo , Hidroxibutiratos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Idoso , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Carcinogênese/patologia , Morte Celular/fisiologia , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Feminino , Glioma/patologia , Glioma/cirurgia , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Succinato-Semialdeído Desidrogenase/metabolismo
18.
Biochem Pharmacol ; 98(4): 671-80, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428001

RESUMO

Observed variations in drug responses among patients may result from differences in heritable genetic traits or from alterations in the epigenetic regulation of drug metabolizing enzymes and transporters (DMETs). MicroRNAs (miRNAs), a group of small non-coding RNAs, provide an epigenetic mechanism for fine-tuning the expression of targeted DMET genes by regulating the efficiency of protein translation and by decreasing mRNA stability via enhanced degradation. In the current study we systematically screened 374 important genes encoding DMETs for potential response elements to hsa-miR-29a-3p, a highly abundant miRNA in human liver. RNA electrophoresis mobility shift assays displayed direct interactions between hsa-miR-29a-3p and its cognate targets within the mRNA transcripts for the ABCC6, SLC22A7 and ALDH5A1 genes. The expression of luciferase reporter genes containing the 3'-UTRs of SLC22A7 or ALDH5A1 and the expression of endogenous SLC22A7 and ALDH5A1 were each suppressed by transfection with hsa-miR-29a-3p mimics. Importantly, chemically-induced up-regulation of hsa-miR-29a-3p correlated inversely with the expression of SLC22A7 and ALDH5A1. However, our studies failed to detect suppressive effects of hsa-miR-29a-3p on ABCC6 expression, which might be explained by the notion that the interaction of hsa-miR-29a-3p and ABCC6 mRNA was unable to recruit ribonucleoproteins to form a RNA-induced silencing complex.


Assuntos
Hepatócitos/metabolismo , MicroRNAs/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Succinato-Semialdeído Desidrogenase/antagonistas & inibidores , Succinato-Semialdeído Desidrogenase/fisiologia , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/farmacologia
19.
Indian J Exp Biol ; 53(2): 67-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25757236

RESUMO

The catabolism of fungal 4-aminobutyrate (GABA) occurs via succinic semialdehyde (SSA). Succinic semialdehyde dehydrogenase (SSADH) from the acidogenic fungus Aspergillus niger was purified from GABA grown mycelia to the highest specific activity of 277 nmol min(-1) mg(-1), using phenyl Sepharose and DEAE Sephacel chromatography. The purified enzyme was specific for its substrates SSA and NAD+. The substrate inhibition observed with SSA was uncompetitive with respect to NAD+. While product inhibition by succinate was not observed, NADH inhibited the enzyme competitively with respect to NAD+ and noncompetitively with respect to SSA. Dead-end inhibition by AMP and p-hydroxybenzaldehyde (pHB) was analyzed. The pHB inhibition was competitive with SSA and uncompetitive with NAD+; AMP competed with NAD+. Consistent with the kinetic data, a sequential, ordered Bi Bi mechanism is proposed for this enzyme.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/metabolismo , Succinato-Semialdeído Desidrogenase/metabolismo , Ácido gama-Aminobutírico/análogos & derivados , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Aspergillus niger/metabolismo , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Ligação Competitiva , Biocatálise/efeitos dos fármacos , Proteínas Fúngicas/isolamento & purificação , Cinética , Micélio/enzimologia , Micélio/metabolismo , NAD/metabolismo , NAD/farmacologia , Ligação Proteica , Especificidade por Substrato , Succinato-Semialdeído Desidrogenase/isolamento & purificação , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
20.
Cell Biochem Biophys ; 72(1): 61-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25417060

RESUMO

The objective of this study is to explore the incidence of inherited metabolic disorders (IMD) in infants with infantile spasms (IS), with an attempt to improve the early diagnosis and etiological and symptomatic treatment. Urine and blood samples were collected from 60 IS patients and analyzed for the quantification of amino acids, organic acids, and fatty acids by gas chromatography-mass spectrometry and tandem mass spectrum. Routine urine tests, hepatic function tests, blood biochemistry, brain imaging, as well as examinations of the brain stem auditory/visual evoked potentials were also examined. In addition to antiepileptic therapy, etiological and symptomatic treatments were also conducted in infants with confirmed IMD and the follow-up lasted for 6 months in these pediatric patients. Metabolic disorders were found in 28 (46.67 %) of 60 IS infants, among them 13 (21.67 %) were confirmed to be with IMD. Twelve of these 13 IS patients with definite IMD diagnoses (92.31 %) experienced varying degrees of delayed development of intelligence and motor function, 8 patients (61.54 %) had abnormal cranial CT or MRI findings, 11 patients (84.61 %) had abnormal brain stem evoked potentials, 4 patients (30.77 %) had abnormal hepatic functions, 3 patients (23.07 %) had abnormal blood biochemistry, 2 patients (15.38 %) had positive (+ to ++) results for routine urine ketones, and 2 patients (15.38 %) had skin lesions. After treatment in children who were diagnosed IMD, the well controlled epileptic seizures and the satisfactory developments in mental and motor were found in 4 cases of methylmalonic acidemia, 2 cases of classical phenylketonuria, and one case of biotin deficiency disease, glutaric acidemia type I, and 4-hydroxybutyric aciduria in each. IMD is a key biological cause in IS. Early screening for IMD is warranted in IS infants to facilitate the improvement for the prognosis and an early etiological treatment.


Assuntos
Programas de Rastreamento , Doenças Metabólicas/diagnóstico , Espasmos Infantis/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Anticonvulsivantes/química , Biotina/deficiência , Encéfalo/patologia , Encefalopatias Metabólicas/complicações , Encefalopatias Metabólicas/diagnóstico , Cromatografia Gasosa , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/diagnóstico , Epilepsia/complicações , Epilepsia/diagnóstico , Feminino , Glutaril-CoA Desidrogenase/deficiência , Humanos , Lactente , Fígado/patologia , Testes de Função Hepática , Imageamento por Ressonância Magnética , Masculino , Espectrometria de Massas , Doenças Metabólicas/complicações , Doenças Metabólicas/urina , Fenilcetonúrias/complicações , Fenilcetonúrias/diagnóstico , Espasmos Infantis/complicações , Espasmos Infantis/urina , Succinato-Semialdeído Desidrogenase/deficiência , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA