Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.054
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chemosphere ; 361: 142592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866331

RESUMO

The phyto-Fenton process, which generates hydroxyl radicals through Fenton and Fenton-like reactions using plant-derived hydrogen peroxide (H2O2) and ferrous iron (Fe (II)) can degrade organic pollutants. Duckweed, an aquatic plant, is promising for a co-beneficial phytoremediation process that combines wastewater treatment and biomass production for biofuel feedstock. However, the phyto-Fenton process using duckweed has not been extensively studied. Because sulfamethoxazole (SMX), a major antibiotic, is distributed widely and is an emerging contaminant, its effective removal from contaminated water is necessary. The present study investigated the possibility of the simultaneous efficient removal of SMX from polluted water and biomass production for fuel feedstock by the phyto-Fenton process using duckweed. This is the first attempt to demonstrate the co-benefits of SMX removal and biomass production using duckweed. Intracellular H2O2 was produced using four duckweeds, Lemna aequinoctialis, L. minor, Landolina punctata, and Spirodela polyrhiza, in the range of 16.7-24.6 µ mol g-1 fresh weight, and extracellular H2O2 was released into the water phase. Consequently, duckweed could be used as an H2O2 supply source for the phyto-Fenton process. Specifically, 0.5 g fresh duckweed almost completely eliminated 1 mg L-1 SMX after 5 d in 50 mL sterile modified Hoagland solution containing 10 mM Fe (II). Fe (II)-dependent elimination of SMX indicated the occurrence of phyto-Fenton reaction. The phyto-Fenton process using duckweed effectively removed SMX. S. polyrhiza duckweed similarly removed 1 mg L-1 SMX even in sewage effluent containing other organic contaminants. During this treatment, duckweed biomass was generated at 7.95 g dry weight m-2 d-1, which was converted into methane at 353 normal liters CH4 kg-1 volatile solids by anaerobic digestion. For the first time, this study clearly demonstrates the potential for simultaneous SMX removal and biomass production from SMX-contaminated wastewater using duckweed.


Assuntos
Araceae , Biodegradação Ambiental , Biomassa , Peróxido de Hidrogênio , Ferro , Sulfametoxazol , Águas Residuárias , Poluentes Químicos da Água , Sulfametoxazol/metabolismo , Águas Residuárias/química , Peróxido de Hidrogênio/metabolismo , Araceae/metabolismo , Ferro/química , Ferro/metabolismo , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis
2.
Sci Total Environ ; 935: 173303, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38761948

RESUMO

Cadmium (Cd) and sulfamethoxazole (SMX) frequently coexist in farmlands, yet their synergistic toxicological impacts on terrestrial invertebrates remain unexplored. In this study, earthworms were exposed to artificial soils percolated with Cd (5 mg/kg), SMX (5 mg/kg) or combination of them for 7 days, followed by a 12-day elimination phase in uncontaminated soil. The uptake of Cd and SMX by the earthworms, along with their subcellular distribution, was meticulously analyzed. Additionally, a suite of biomarkers-including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and weight loss-were evaluated to assess the health status of the earthworms and the toxicological effects of the Cd and SMX mixture. Notably, the cotreatment with Cd and SMX resulted in a significantly higher weight loss in Eisenia fetida (41.25 %) compared to exposure to Cd alone (26.84 %). Moreover, the cotreatment group exhibited substantially higher concentrations of Cd in the total internal body, fraction C (cytosol), and fraction E (tissue fragments and cell membranes) in Eisenia fetida compared to Cd alone counterparts. The combined exposure also significantly elevated the SMX levels in the total body and fraction C compared with the SMX-only treated earthworms. Additionally, Eisenia fetida subjected to the combined treatment showed markedly increased activities of SOD, CAT, and MDA compared to those treated with Cd alone. The effect addition indices (EAIs), ranging from 1.00 to 2.23, unequivocally demonstrated a synergistic effect of the combined treatments. Interestingly, relocating the earthworms to clean soil did not mitigate the observed adverse effects. These findings underscore the increased risk posed by the Cd-SMX complex to terrestrial invertebrates in agricultural areas.


Assuntos
Biomarcadores , Cádmio , Oligoquetos , Poluentes do Solo , Sulfametoxazol , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Animais , Sulfametoxazol/toxicidade , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Biomarcadores/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo
3.
Water Res ; 256: 121558, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604065

RESUMO

The biodegradation of antibiotics in aquatic environment is consistently impeded by the widespread presence of heavy metals, necessitating urgent measures to mitigate or eliminate this environmental stress. This work investigated the degradation of sulfamethoxazole (SMX) by the white-rot fungus Phanerochaete chrysosporium (WRF) under heavy metal cadmium ion (Cd2+) stress, with a focus on the protective effects of reduced graphene oxide (RGO). The pseudo-first-order rate constant and removal efficiency of 5 mg/L SMX in 48 h by WRF decrease from 0.208 h-1 and 55.6% to 0.08 h-1 and 28.6% at 16 mg/L of Cd2+, while these values recover to 0.297 h-1 and 72.8% by supplementing RGO. The results demonstrate that RGO, possessing excellent biocompatibility, effectively safeguard the mycelial structure of WRF against Cd2+ stress and provide protection against oxidative damage to WRF. Simultaneously, the production of manganese peroxidase (MnP) by WRF decreases to 38.285 U/L in the presence of 24 mg/L Cd2+, whereas it recovers to 328.51 U/L upon the supplement of RGO. RGO can induce oxidative stress in WRF, thereby stimulating the secretion of laccase (Lac) and MnP to enhance the SMX degradation. The mechanism discovered in this study provides a new strategy to mitigate heavy metal stress encountered by WRF during antibiotic degradation.


Assuntos
Biodegradação Ambiental , Cádmio , Grafite , Phanerochaete , Sulfametoxazol , Phanerochaete/metabolismo , Sulfametoxazol/metabolismo , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Chemosphere ; 354: 141675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484989

RESUMO

This study aimed to investigate adsorption effects of electron scavengers (H2O2 and S2O82-) on oxidation performance for mineralization of sulfamethoxazole (SMX) in radiation treatment using catalysts (Al2O3, TiO2). Hydrogen peroxide (H2O2, 1 mM) as an electron scavenger showed weak adsorption onto catalysts (0.012 mmol g-1-Al2O3 and 0.004 mmol g-1-TiO2, respectively), leading to an increase in TOC removal efficiency of SMX within the absorbed dose of 30 kGy by 12.3% with Al2O3 and by 8.0% with TiO2. The weak adsorption of H2O2 onto the catalyst allowed it to act as an electron scavenger, promoting indirect decomposition reactions. However, high adsorption of S2O82- (1 mM) onto Al2O3 (0.266 mmol g-1-Al2O3) showed a decrease in TOC removal efficiency of SMX from 76.2% to 30.2% within the absorbed dose of 30 kGy. The high adsorption of S2O82- onto the catalyst inhibited direct decomposition reaction by reducing adsorption of SMX on catalysts. TOC removal efficiency for Al2O3 without electron scavengers in an acidic condition was higher than that in a neutral or alkaline condition. However, TOC removal efficiency for Al2O3 with S2O82- was higher in a neutral condition than in other pH conditions. This indicates that the pH of a solution plays a critical role in the catalytic oxidation performance by determining surface charges of catalysts and yield of reactive radicals produced from water radiolysis. In the radiocatalytic system, H2O2 enhances the oxidation performance of catalysts (Al2O3 and TiO2) over a wide pH range (3-11). Meanwhile, S2O82- is not suitable with Al2O3 in acidic conditions because of its strong adsorption onto Al2O3 in this study.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Peróxido de Hidrogênio/química , Adsorção , Elétrons , Poluentes Químicos da Água/análise , Oxirredução , Catálise
5.
Environ Res ; 248: 118271, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262515

RESUMO

Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.


Assuntos
Antibacterianos , Carvão Vegetal , Microbiota , Humanos , Antibacterianos/farmacologia , Sulfametoxazol , Ferro , Genes Bacterianos , Tetraciclina/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias
6.
Environ Res ; 244: 117908, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092238

RESUMO

Although the electro-Fenton (EF) process is effective for wastewater treatment, recycling spent catalysts remain a major challenge. Therefore, we introduce a reuse strategy for spent catalysts where an iron hydroxyphosphate [Fe5(PO4)4(OH)3·2H2O] catalyst is utilized. Fe5(PO4)4(OH)3·2H2O obtained •OH and •O2- by activating in-situ produced H2O2, and the degradation rate of sulfamethoxazole reached 94.5% after 120 min and showed excellent stability (maintained above 90%) for 10 cycles. Finally, the used catalyst was converted into slow-release ammonium ferrous phosphate (NH4FePO4·H2O) fertiliser at a conversion rate of 85.6%. NH4FePO4·H2O significantly promoted plant and seed growth within 6 days, highlighting the contribution of the resource recycling of the spent catalyst. This study serves as a valuable reference for the efficient utilization of spent catalysts. This study successfully applied EF catalysts and explored the recycling of spent catalysts.


Assuntos
Compostos Ferrosos , Ferro , Fosfatos , Poluentes Químicos da Água , Fertilizantes , Sulfametoxazol , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Catálise , Oxirredução
7.
Water Res ; 249: 120951, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070342

RESUMO

In this work, urchin-like structured hydroxyapatite-incorporated nickel magnetite (NiFe3O4/UHdA) microspheres were developed for the efficient removal of micropollutants (MPs) via peroxydisulfate (PDS) activation. The prepared NiFe3O4/UHdA degraded 99.0 % of sulfamethoxazole (SMX) after 15 min in 2 mM PDS, having a first-order kinetic rate constant of 0.210 min-1. In addition, NiFe3O4/UHdA outperformed its counterparts, i.e., Fe3O4/UHdA and Ni/UHdA, by giving rise to corresponding 3.6-fold and 8.6-fold enhancements in the SMX removal rate. The outstanding catalytic performance can be ascribed to (1) the urchin-like mesoporous structure with a large specific surface area and (2) the remarkable synergistic effect caused by the redox cycle of Ni3+/Ni2+ and Fe2+/Fe3+ that enhances multipath electron transfers on the surface of NiFe3O4/UHdA to produce more reactive oxygen species. Moreover, the effects of several reaction parameters, in this case the initial solution pH, PDS dosage, SMX concentration, catalyst loading, co-existing MPs and humic acid level on the catalytic performance of the NiFe3O4/UHdA + PDS system were systematically investigated and discussed in detail. The plausible catalytic mechanisms in the NiFe3O4/UHdA + PDS system were revealed via scavenging experiments and electron paramagnetic resonance analysis, which indicated a radical (•OH and SO4•-) as the major pathway and a nonradical (1O2) as the minor pathway for SMX degradation. Furthermore, NiFe3O4/UHdA exhibited fantastic magnetically separation and retained good catalytic activity with a low leached ion concentration during the performance of four cycles. Overall, the prepared NiFe3O4/UHdA with outstanding PDS activation could be a promising choice for the degradation of persistent organic pollutants from wastewater.


Assuntos
Óxido Ferroso-Férrico , Níquel , Sulfametoxazol/química , Oxirredução , Hidroxiapatitas
8.
J Hazard Mater ; 465: 133303, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141297

RESUMO

Recently, peracetic acid (PAA) based Fenton (-like) processes have received much attention in water treatment. However, these processes are limited by the sluggish Fe(III)/Fe(II) redox circulation efficiency. In this study, L-cysteine (L-Cys), an environmentally friendly electron donor, was applied to enhance the Fe3O4/PAA process for the sulfamethoxazole (SMX) abatement. Surprisingly, the L-Cys incorporation was found not only to enhance the SMX degradation rate constant by 3.2 times but also to switch the Fe(IV) dominated nonradical pathway into the •OH dominated radical pathway. Experiment and theoretical calculation result elucidated -NH2, -SH, and -COOH of L-Cys can increase Fe solubilization by binding to the Fe sites of Fe3O4, while -SH of L-Cys can promote the reduction of bounded/dissolved Fe(III). Similar SMX conversion pathways driven by the Fe3O4/PAA process with or without L-Cys were revealed. Excessive L-Cys or PAA, high pH and the coexisting HCO3-/H2PO4- exhibit inhibitory effects on SMX degradation, while Cl- and humic acid barely affect the SMX removal. This work advances the knowledge of the enhanced mechanism insights of L-Cys toward heterogeneous Fenton (-like) processes and provides experimental data for the efficient treatment of sulfonamide antibiotics in the water treatment.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Cisteína , Compostos Férricos , Poluentes Químicos da Água/análise , Antibacterianos , Sulfametoxazol/análise , Oxirredução , Peróxido de Hidrogênio
9.
J Hazard Mater ; 463: 132802, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37922584

RESUMO

Improvements in plant activity and functional microbial communities are important to ensure the stability and efficiency of pollutant removal measures in cold regions. Although electrochemistry is known to accelerate pollutant degradation, cold stress acclimation of plants and the stability and activity of plant-microbial synergism remain poorly understood. The sulfamethoxazole (SMX) removal, iron plaque morphology, plant activity, microbial community, and function responses were investigated in an electrolysis-integrated ecological floating bed (EFB) at 6 ± 2 â„ƒ. Electrochemistry significantly improved SMX removal and plant activity. Dense and uniform iron plaque was found on root surfaces in L-E-Fe which improved the plant adaptability at low temperatures and provided more adsorption sites for bacteria. The microbial community structure was optimized and the key functional bacteria for SMX degradation (e.g., Actinobacteriota, Pseudomonas) were enriched. Electrochemistry improves the relative abundance of enzymes related to energy metabolism, thereby increasing energy responses to SMX and low temperatures. Notably, electrochemistry improved the expression of target genes (sadB and sadC, especially sadC) involved in SMX degradation. Electrochemistry enhances hydrogen bonding and electrostatic interactions between SMX and sadC, thereby enhancing SMX degradation and transformation. This study provides a deeper understanding of the electrochemical stability of antibiotic degradation at low temperatures.


Assuntos
Poluentes Ambientais , Sulfametoxazol , Ferro , Temperatura , Bactérias/genética , Plantas , Eletrólise , Antibacterianos/farmacologia
10.
Eur Arch Otorhinolaryngol ; 281(3): 1515-1523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145982

RESUMO

PURPOSE: This study aimed to analyze the clinical characteristics, pathogen distribution, drug sensitivity, and antibiotic treatment strategies of patients with neck abscesses with or without diabetes. METHODS: A retrospective analysis was conducted on 2194 patients who underwent neck abscess surgery at our hospital over the past 13 years. Patients were grouped as NAwithDM (neck abscess with diabetes mellitus) or NAwithoutDM (neck abscess without diabetes mellitus). Clinical features, pathogen distribution, and antibiotic sensitivity were compared between the groups. Venn diagrams were used to illustrate the antibiotics effective against all three predominant pathogens. RESULTS: A total of 2194 patients with neck abscesses were included in this study, with 579 patients (26.43%) in the NAwithDM group and 1612 patients (73.51%) in the NAwithoutDM group. There were no significant differences in sex or age distribution between the two groups (all P > 0.05). However, there were significant differences in BMI, length of hospital stays, occurrence of laryngeal obstruction, hypertension, and hypoalbuminemia between the two groups (all P < 0.05). In the NAwithoutDM group, the top three pathogens were Streptococcus constellatus, Klebsiella pneumoniae, and Staphylococcus aureus. The antibiotics that were simultaneously effective against all three pathogens were ceftriaxone, moxifloxacin, and ampicillin/sulbactam. In the NAwithDM group, the top three pathogens were Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus constellatus. The antibiotics that were simultaneously effective against all three pathogens were compound sulfamethoxazole, cefuroxime, levofloxacin, ciprofloxacin, vancomycin, and imipenem. CONCLUSION: Neck abscess patients with diabetes have distinct clinical features. Therefore, it is crucial to pay attention to these clinical features and manage them accordingly during the treatment process. Empirical antibiotic treatment should be tailored to individual patient groups. Sulfamethoxazole-methoxazole is recommended for neck abscess patients with diabetes, while ceftriaxone or moxifloxacin is recommended for those without diabetes.


Assuntos
Antibacterianos , Diabetes Mellitus , Humanos , Antibacterianos/uso terapêutico , Abscesso/tratamento farmacológico , Abscesso/microbiologia , Ceftriaxona/uso terapêutico , Moxifloxacina/uso terapêutico , Estudos Retrospectivos , Sulfametoxazol/uso terapêutico
11.
J Med Case Rep ; 17(1): 502, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053106

RESUMO

BACKGROUND: Salmonella enterica serotype Choleraesuis infections usually cause self-limited gastrointestinal diseases. Extra-abdominal infections are often secondary to bacteremia in immunocompromised individuals and are relatively rare in immunocompetent hosts. CASE PRESENTATION: A 65-year-old Caucasian female initially presented to the thoracic surgery clinic due to a poorly healing wound on her chest. Her condition started after a mechanical fall hitting her chest with interval development of a tender lump that later spontaneously drained. A chest computed tomography scan with intravenous contrast demonstrated an abnormal infiltration with small foci of fluid and air consistent with a small abscess anterior to the left seventh costal cartilage. Aspirate culture of the abscess grew S. enterica serotype Choleraesuis susceptible to ampicillin and trimethoprim/sulfamethoxazole. The patient had no prior history of signs or symptoms of gastrointestinal infection. Blood cultures were negative. With a background of penicillin allergy, she was treated with trimethoprim/sulfamethoxazole, and later with ceftriaxone due to persistent drainage of the wound. Follow-up chest computed tomography scan with intravenous (IV) contrast showed continued abnormal findings previously seen in the computed tomography scan with the appearance of a sinus tract. The patient subsequently underwent surgical debridement and partial resection of the left seventh costochondral cartilage and excision of the fistula. She had an uneventful recovery and complete resolution of her condition. CONCLUSION: We report a rare case of chest wall abscess with associated costochondritis due to S. enterica serotype Choleraesuis in a patient with no evidence of immunodeficiency nor history of bacteremia. Extraintestinal infections due to Salmonella without documented bacteremia have been previously reported in the literature. History of local trauma to the affected area might contribute to the seeding of infection. Diagnosis is often accomplished by clinical evaluation and culture of the affected area. Treatment often involves targeted antibiotic therapy but may require surgical intervention to achieve source control and cure.


Assuntos
Bacteriemia , Gastroenteropatias , Infecções por Salmonella , Salmonella enterica , Parede Torácica , Humanos , Feminino , Idoso , Abscesso/terapia , Abscesso/complicações , Infecções por Salmonella/diagnóstico , Infecções por Salmonella/tratamento farmacológico , Parede Torácica/diagnóstico por imagem , Sorogrupo , Salmonella , Sulfametoxazol/uso terapêutico , Trimetoprima/uso terapêutico
12.
BMC Infect Dis ; 23(1): 644, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784023

RESUMO

BACKGROUND: Carbapenem-resistant Enterobacterales (CREs) are a significant source of healthcare-associated infections. These bacteria are difficult to treat and have a high mortality rate due to high rates of antibiotic resistance. These pathogens are also linked to major outbreaks in healthcare institutions especially those with limited resources in infection prevention and control (IPC). Therefore, our study aimed to describe the epidemiology and clinical characteristics of patients with carbapenem-resistant Enterobacteriaceae in a referral hospital in a developing country. METHODS: This was a retrospective cross-sectional study that included 218 patients admitted to An-Najah National University Hospital between January 1, 2021, and May 31, 2022. The target population was all patients with CRE infection or colonization in the hospital setting. RESULTS: Of the 218 patients, 135 had CR-Klebsiella pneumoniae (61.9%), and 83 had CR-Escherichia coli (38.1%). Of these, 135 were male (61.9%) and 83 were female (38.1%), with a median age of 51 years (interquartile range 24-64). Malignancy was a common comorbidity in 36.7% of the patients. Approximately 18.3% of CRE patients were obtained from patients upon admission to the emergency department, the largest percentage among departments. Most CRE pathogens were isolated from rectal swabs, accounting for 61.3%. Among the 218 patients, colistin was the most widely used antimicrobial agent (13.3%). CR- E. coli showed resistance to amikacin in 23.8% of the pathogens tested and 85.7% for trimethoprim/sulfamethoxazole compared to CR- K. pneumonia, for which the resistance to trimethoprim/sulfamethoxazole was 74.1%, while for amikacin it was 64.2%. Regarding meropenem minimum inhibitory concentration, 85.7% of CR- E. coli were greater than 16 µg/mL compared to 84% of CR- K. pneumonia isolates. CONCLUSION: This study found that CRE is frequently reported in this tertiary care setting, implying the presence of selective pressure and transmission associated with healthcare setting. The antibiotics tested showed a variety of resistance rates, with CR-K. pneumoniae being more prevalent than CR-E. coli, and exhibiting an extremely high resistance pattern to the available therapeutic options.


Assuntos
Carbapenêmicos , Pneumonia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Escherichia coli , Amicacina , Centros de Atenção Terciária , Estudos Retrospectivos , Estudos Transversais , Países em Desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Pneumonia/tratamento farmacológico , Sulfametoxazol , Trimetoprima
13.
J Environ Manage ; 348: 119194, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832300

RESUMO

Even after pre-treatment, livestock and poultry wastewater still contain high concentrations of ammonia and residual antibiotics. These could be removed economically using the aerobic granular sludge (AGS) process with zero-valent iron (ZVI). The interaction of antibiotics and nitrogen in this process needs to be clarified and controlled, however, to achieve good removal performance. Otherwise, antibiotics might generate transformation products (TPs) with higher toxicity and lead to the emergence of antibiotic-resistant bacteria carrying antibiotic resistance genes (ARGs), which could cause persistent toxicity and the risk of disease transmission to the ecological environment. This study investigated the impact of ZVI on AGS for nitrogen and sulfamethoxazole (SMX) removal. The results show that AGS could maintain good ammonia removal performance and that the existence of SMX had a negative impact on ammonia oxidation activities. ZVI contributed to an increase in the abundance of nitrite oxidation bacteria, denitrifying bacteria and the functional genes of nitrogen removal. This led to better total nitrogen removal and a decrease in N2O emission. Accompanied by biological nitrogen transformation, SMX could be transformed into 14 TPs through five pathways. ZVI has the potential to enhance transformation pathways with TPs of lower ecotoxicity, thereby reducing the acute and chronic toxicity of the effluent. Unfortunately, ZVI might enhance the abundance of sul1, sul2, and sul3 in AGS, which increases the risk of sulfonamide antibiotic resistance. In AGS, Opitutaceae, Xanthomonas, Spartobacteria and Mesorhizobium were potential hosts for ARGs. This study provides theoretical references for the interaction of typical antibiotics and nitrogen in the biological treatment process of wastewater and bioremediation of natural water bodies.


Assuntos
Antibacterianos , Sulfametoxazol , Antibacterianos/farmacologia , Esgotos , Águas Residuárias , Ferro , Nitrogênio , Amônia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
14.
J Environ Manage ; 347: 119119, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804630

RESUMO

Advanced oxidation processes (AOPs) based on peracetic acid (PAA) has been extensively concerned for the degradation of organic pollutants. In this study, metallic iron-modified sludge biochar (Fe-SBC) was employed to activate PAA for the removal of sulfamethoxazole (SMX). The characterization results indicated that FeO and Fe2O3 were successfully loaded on the surface of the sludge biochar (SBC). Fe-SBC/PAA system achieved 92% SMX removal after 30 min. The pseudo-first-order kinetic reaction constant of the Fe-SBC/PAA system was 7.34 × 10-2 min-1, which was 2.4 times higher than the SBC/PAA system. The degradation of SMX was enhanced with increasing the Fe-SBC dosage and PAA concentration. Apart from Cl-, NO3- and SO42- had a negligible influence on the degradation of SMX. Quenching experiments and electron paramagnetic resonance (EPR) techniques identified the existence of reactive species, of which CH3C(O)OO•, 1O2, and O2•- were dominant reactive species in Fe-SBC/PAA system. The effect of different water matrices on the removal of SMX was investigated. The removal of SMX in tap water and lake water were 79% and 69%, respectively. Four possible pathways for the decay of SMX were presented according to the identification of oxidation products. In addition, following the ecological structure-activity relationship model (ECOSAR) procedure and the germination experiments with lettuce seeds to predict the toxicity of the intermediates. The acute and chronic ecotoxicity of SMX solution was dramatically diminished by processing with Fe-SBC/PAA system. In general, this study offered a prospective strategy for the degradation of organic pollutants.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Sulfametoxazol , Ferro , Esgotos , Poluentes Químicos da Água/análise , Oxirredução , Água , Peróxido de Hidrogênio
15.
Chemosphere ; 344: 140364, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797895

RESUMO

The fate of the antibiotic sulfamethoxazole in amended soils remains unclear, moreover in basic soils. This work aimed to assess the adsorption, leaching, and biodegradation of sulfamethoxazole in unamended and biochar from holm oak pruning (BC)- and green compost from urban pruning (CG)-amended basic soil. Adsorption properties of the organic amendments and soil were determined by adsorption isotherms of sulfamethoxazole. The leachability of this antibiotic from unamended (Soil) and BC- (Soil + BC) and GC- (Soil + GC) amended soil was determined by leaching columns using water as solvent up to 250 mL. Finally, Soil, Soil + BC, and Soil + GC were spiked with sulfamethoxazole and incubated for 42 days. The degradation rate and microbial activity were periodically monitored. Adsorption isotherms showed poor adsorption of sulfamethoxazole in unamended basic soil. BC and CG showed good adsorption capacity. Soil + BC and Soil + GC increased the sulfamethoxazole adsorption capacity of the soil. The low sulfamethoxazole adsorption of Soil produced quick and intense sulfamethoxazole leaching. Soil + BC reduced the sulfamethoxazole leaching, unlike to Soil + GC which enhanced it concerning Soil. The pH of adsorption isotherms and leachates indicate that the anion of sulfamethoxazole was the major specie in unamended and amended soil. CG enhanced the microbial activity of the soil and promoted the degradability of sulfamethoxazole. In contrast, the high adsorption and low biostimulation effect of BC in soil reduced the degradation of sulfamethoxazole. The half-life of sulfamethoxazole was 2.6, 6.9, and 11.9 days for Soil + GC, Soil, and Soil + BC, respectively. This work shows the benefits and risks of two organic amendments, BC and GC, for the environmental fate of sulfamethoxazole. The different nature of the organic carbon of the amendments was responsible for the different effects on the soil.


Assuntos
Compostagem , Herbicidas , Poluentes do Solo , Solo/química , Sulfametoxazol , Adsorção , Poluentes do Solo/análise , Herbicidas/química , Carvão Vegetal/química , Antibacterianos
16.
Sci Rep ; 13(1): 14489, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660165

RESUMO

The contamination of the aquatic environment with antibiotics is among the major and developing problems worldwide. The present study investigates the potential of adsorbent magnetite-chitosan nanoparticles (Fe3O4/CS NPs) for removing trimethoprim (TMP) and sulfamethoxazole (SMX). For this purpose, Fe3O4/CS NPs were synthesized by the co-precipitation method, and the adsorbent characteristics were investigated using XRD, SEM, TEM, pHzpc, FTIR, and VSM. The effect of independent variables (pH, sonication time, adsorbent amount, and analyte concentration) on removal performance was modeled and evaluated by Box-Behnken design (BBD). The SEM image of the Fe3O4/CS adsorbent showed that the adsorbent had a rough and irregular surface. The size of Fe3O4/CS crystals was about 70 nm. XRD analysis confirmed the purity and absence of impurities in the adsorbent. TEM image analysis showed that the adsorbent had a porous structure, and the particle size was in the range of nanometers. In VSM, the saturation magnetization of Fe3O4/CS adsorbent was 25 emu g-1 and the magnet could easily separate the adsorbent from the solution. The results revealed that the optimum condition was achieved at a concentration of 22 mg L-1, a sonication time of 15 min, an adsorbent amount of 0.13 g/100 mL, and a pH of 6. Among different solvents (i.e., ethanol, acetone, nitric acid, and acetonitrile), significant desorption of TMP and SMX was achieved using ethanol. Also, results confirmed that Fe3O4/CS NPs can be used for up to six adsorption/desorption cycles. In addition, applying the Fe3O4/CS NPs on real water samples revealed that Fe3O4/CS NPs could remove TMP and SMX in the 91.23-95.95% range with RSD (n = 3) < 4. Overall, the Fe3O4/CS NPs exhibit great potential for removing TMP and SMX antibiotics from real water samples.


Assuntos
Quitosana , Nanopartículas de Magnetita , Trimetoprima , Sulfametoxazol , Óxido Ferroso-Férrico , Antibacterianos , Etanol , Água
17.
Environ Pollut ; 336: 122418, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625770

RESUMO

Majority zero-valent iron (ZVI) materials are prepared by reducing agents in liquid phase, resulting in the high environmental pollution and poor particle size distribution uniformity. Therefore, this study employed a green synthesis method to prepare ZVI. Tannins (TA) with phenolic hydroxyl groups that are characterized by strong reducing capacity were employed to synthesize ZVI (TA@ZVI). The dispersity and stability of ZVI was improved by TA, which inhibited the agglomeration of ZVI. Meanwhile, the specific surface area of TA@ZVI was higher than chemical prepared ZVI, increasing the reactive sites. The organic matter components enriched on TA could promote the adsorption of pollutants and complex with Fe(II/III) to enhance the reactivity of TA@ZVI. Also, the polyphenol structure in TA was oxidized to quinone, which facilitated electron transport. In order further test the performance of TA@ZVI, SMX was chosen as a target pollutant to study the oxidative degradation performance of TA@ZVI. SO4•- degraded about 16.4%-25.5% SMX and •OH degraded about 49.8%-63.9% SMX in the pH range of 4-6 while •OH played a dominant role in the neutral and alkaline conditions. Moreover, the presence of TA reduced Fe(III) to Fe(II) and promoted the release of Fe(II), providing a continuous source of •OH for the oxidative degradation of SMX. Besides, the conversion of Fe(II/III) was accelerated due to TA, which delayed the formation of passivation layer. Thus, TA enhanced the antioxidant capacity of ZVI. Generally, this study provided an environmental-friendly technology to synthesize and improve the reactivity of ZVI.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Ferro/química , Sulfametoxazol , Taninos , Poluentes Químicos da Água/química , Compostos Ferrosos
18.
Environ Sci Technol ; 57(36): 13625-13634, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650769

RESUMO

In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.


Assuntos
Substâncias Húmicas , Sulfametoxazol , Manganês , Óxidos , Compostos de Manganês
19.
Water Res ; 242: 120193, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327547

RESUMO

Frequent occurrence of trace organic contaminants in aquatic environments, such as sulfonamide antibiotics in rivers receiving reclaimed water, is concerning. Natural attenuation by soil and sediment is increasingly relied upon. In the case of riverbank filtration for water purification, the reliability of antibiotic attenuation has been called into question due to incomplete understanding of their degradation processes. This study investigated influence of substrates and redox evolution along infiltration path on biotransformation of sulfonamides. Eight sand columns (length: 28 cm) with a riverbed sediment layer at 3-8 cm were fed by groundwater-sourced tap water spiked with 1 µg/L of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX) each, with or without amendments of dissolved organic carbon (5 mg-C/L of 1:1 yeast and humics) or ammonium (5 mg-N/L). Two flow rates were tested over 120 days (0.5 mL/min and 0.1 mL/min). Iron-reducing conditions persisted in all columns for 27 days during the initial high flow period due to respiration of sediment organics, evolving to less reducing conditions until the subsequent low flow period to resume more reducing conditions. With surplus substrates, the spatial and temporal patterns of redox conditions differentiated among columns. The removal of SDZ and SMZ in effluents was usually low (15 ± 11%) even with carbon addition (14 ± 9%), increasing to 33 ± 23% with ammonium addition. By contrast, SMX removal was higher and more consistent among columns (46 ± 21%), with the maximum of 64 ± 9% under iron-reducing conditions. When sulfonamide removal was compared between columns for the same redox zones during infiltration, their enhancements were always associated with the availability of dissolved or particulate substrates, suggesting co-metabolism. Manipulation of the exposure time to optimal redox conditions with substrate amendments, rather than to simply prolong the overall residence time, is recommended for nature-based solutions to tackle target antibiotics.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Reprodutibilidade dos Testes , Compostos Orgânicos/metabolismo , Poluentes Químicos da Água/análise , Sulfanilamida , Sulfonamidas , Sulfametoxazol , Sulfadiazina , Ferro
20.
Ecotoxicol Environ Saf ; 259: 115009, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182302

RESUMO

Microplastics and antibiotics are two common pollutants in the ocean. However, due to changes of salinity and temperature in the ocean, their interaction are significantly different from that of fresh water, and the mechanism remains unclear. Here, the interactions of sulfamethoxazole (SMZ) and microplastics were studied at different temperatures and salinities. The saturation adsorption capacity of SMZ in polypropylene (PP), polyethylene (PE), styrene (PS), polyvinyl chloride (PVC), and synthetic resins (ABS) were highest at the temperature of 20 °C, with 0.118 ± 0.002 mg·g-1, 0.106 ± 0.004 mg·g-1, 0.083 ± 0.002 mg·g-1, 0.062 ± 0.007 mg·g-1 and 0.056 ± 0.003 mg·g-1, respectively. The effect of temperature reduction is more significant than temperature rise. The intraparticle diffusion model is appropriate to PP, when film diffusion model suited for PS. The salinity has a more significant effect than temperature on different microplastics, due to the electrostatic adsorption and iron exchange. With the increase in salinity from 0.05% to 3.5%, the adsorption capacity of microplastics on SMZ fell by 53.3 ± 5%, and there was no discernible difference of various microplastics. The hydrogen bond and π-π conjugation of microplastics play an important role in the adsorption of SMZ. These findings further deepen the understanding of the interaction between microplastics and antibiotics in the marine environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/química , Sulfametoxazol/química , Temperatura , Salinidade , Polipropilenos/química , Polietileno/química , Antibacterianos , Adsorção , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA