Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Cell Death Dis ; 13(1): 11, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930890

RESUMO

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFß and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.


Assuntos
Antiporters/deficiência , Antiporters/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Sulfatos de Condroitina/biossíntese , Nanismo/metabolismo , Proteoglicanas de Heparan Sulfato/biossíntese , Transdução de Sinais/genética , Animais , Antiporters/genética , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Condrogênese/genética , Nanismo/patologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes/métodos , Glicosilação , Células HEK293 , Humanos , Hipertrofia/metabolismo , Camundongos , Transfecção
2.
Eur Rev Med Pharmacol Sci ; 25(17): 5402-5411, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34533814

RESUMO

OBJECTIVE: Chondroitin sulfate (CS) is a glycosaminoglycan with proven anti-inflammatory, anti-apoptotic, anti-oxidant properties. CS increases type II collagen and proteoglycan synthesis in human joint chondrocytes. CS can reduce the production of pro-inflammatory mediators and proteases to improve the anabolic/catabolic balance of the extracellular cartilage matrix (ECM). Due to these characteristics, it is a natural compound that is considered to be Symptomatic Slow-Acting Drugs for Osteoarthritis (SYSADOA). Microbial chondroitin sulfate (MCS) was produced from two different bacterial sources using biotechnological methods by our team. In this study, we aimed to apply microbially produced CS and bovine-derived commercial CS forms to rabbit knees with osteoarthritis experimentally and to evaluate the results. MATERIALS AND METHODS: In this study, a cruciate ligament cutting model was applied to 40 New Zealand rabbits to induce experimental osteoarthritis. Four weeks after the surgical procedure, rabbits were divided into 4 groups as control, animal-derived MCS, E coli-derived MCS and PaJC-derived MCS group. The standard rabbit diet was fed to the control group, and the other groups were additionally fed 17 mg/kg/day CS/MCS for 12 weeks. The rabbits were sacrificed at the 12th week after surgery and the preparations obtained were evaluated histopathologically. RESULTS: As a result, it was observed that regeneration tissue was statistically significant in histopathological cartilage tissue compared to the control group of CS developed from different sources given to rabbits with osteoarthritis. It was determined that among the CS groups produced from different sources, the group with the highest chondroprotective effect was MCS originating from E.coli. CONCLUSIONS: This vegan product (MCS), which we obtained as a result of our study, was produced by our team from a microbial source. According to our analysis, it has the potential to be an effective alternative therapy agent in the treatment of osteoarthritis.


Assuntos
Artrite Experimental/prevenção & controle , Sulfatos de Condroitina/farmacologia , Escherichia coli/metabolismo , Osteoartrite do Joelho/prevenção & controle , Animais , Bovinos , Sulfatos de Condroitina/biossíntese , Modelos Animais de Doenças , Coelhos
3.
Biotechnol Bioeng ; 118(11): 4503-4515, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34406648

RESUMO

The compound 3'-phosphoadenosine-5'-phosphosulfate (PAPS) serves as a sulfate group donor in the production of valuable sulfated compounds. However, elevated costs and low conversion efficiency limit the industrial applicability of PAPS. Here, we designed and constructed an efficient and controllable catalytic system for the conversion of adenosine triphosphate (ATP) (disodium salt) into PAPS without inhibition from by-products. In vitro and in vivo testing in Escherichia coli identified adenosine-5'-phosphosulfate kinase from Penicillium chrysogenum (PcAPSK) as the rate-limiting enzyme. Based on analysis of the catalytic steps and molecular dynamics simulations, a mechanism-guided "ADP expulsion" strategy was developed to generate an improved PcAPSK variant (L7), with a specific activity of 48.94 U·mg-1 and 73.27-fold higher catalytic efficiency (kcat/Km) that of the wild-type enzyme. The improvement was attained chiefly by reducing the ADP-binding affinity of PcAPSK, as well as by changing the enzyme's flexibility and lid structure to a more open conformation. By introducing PcAPSK L7 in an in vivo catalytic system, 73.59 mM (37.32 g·L-1 ) PAPS was produced from 150 mM ATP in 18.5 h using a 3-L bioreactor, and achieved titer is the highest reported to date and corresponds to a 98.13% conversion rate. Then, the PAPS catalytic system was combined with the chondroitin 4-sulfotransferase using a one-pot method. Finally, chondroitin sulfate was transformed from chondroitin at a conversion rate of 98.75%. This strategy has great potential for scale biosynthesis of PAPS and chondroitin sulfate.


Assuntos
Trifosfato de Adenosina/metabolismo , Sulfatos de Condroitina , Escherichia coli , Proteínas Fúngicas , Penicillium chrysogenum/genética , Fosfoadenosina Fosfossulfato , Fosfotransferases (Aceptor do Grupo Álcool) , Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Penicillium chrysogenum/enzimologia , Fosfoadenosina Fosfossulfato/biossíntese , Fosfoadenosina Fosfossulfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
4.
Biochimie ; 182: 61-72, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33422570

RESUMO

The use of electrospun scaffolds for neural tissue engineering applications allows a closer mimicry of the native tissue extracellular matrix (ECM), important for the transplantation of cells in vivo. Moreover, the role of the electrospun fiber mat topography on neural stem cell (NSC) differentiation remains to be completely understood. In this work REN-VM cells (NSC model) were differentiated on polycaprolactone (PCL) nanofibers, obtained by wet/wet electrospinning, and on flat glass lamellas. The obtained differentiation profile of NSCs was evaluated using immunofluorescence and qPCR analysis. Glycosaminoglycan (GAG) analysis was successfully emplyed to evaluate changes in the GAG profile of differentiating cells through the use of the highly sensitive liquid chromatography-tandem mass/mass spectrometry (LC-MS/MS) method. Our results show that both culture platforms allow the differentiation of REN-VM cells into neural cells (neurons and astrocytes) similarly. Moreover, LC-MS/MS analysis shows changes in the production of GAGs present both in cell cultures and conditioned media samples. In the media, hyaluronic acid (HA) was detected and correlated with cellular activity and the production of a more plastic extracellular matrix. The cell samples evidence changes in chondroitin sulfate (CS4S, CS6S, CS4S6S) and heparan sulfate (HS6S, HS0S), similar to those previously described in vivo studies and possibly associated with the creation of complex structures, such as perineural networks. The GAG profile of differentiating REN-VM cells on electrospun scaffolds was analyzed for the first time. Our results highlight the advantage of using platforms obtain more reliable and robust neural tissue-engineered transplants.


Assuntos
Diferenciação Celular , Sulfatos de Condroitina/biossíntese , Heparitina Sulfato/biossíntese , Células-Tronco Neurais/metabolismo , Alicerces Teciduais/química , Linhagem Celular Transformada , Humanos , Células-Tronco Neurais/citologia
5.
Carbohydr Polym ; 246: 116570, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747242

RESUMO

Chondroitin sulfate (CS) extracted from animal tissues has been widely used as nutraceutical and pharmaceutical products for osteoarthritis treatment. Here we developed an efficient sulfation-modification system for large scale preparation of CSA in vitro. First, the expression level of C4ST was improved by 30 times with fusion of the chaperone SUMO. Then, glycerol as a protein stabilizer was found to improve rat AST IV stability during the regeneration of cofactor PAPS. Then peptide linkers or protein scaffolds were employed to assemble AST IV and C4ST into artificial complexes to bring the enzymes and PAPS spatially closer and enhance the catalytic efficiency of chondroitin sulfation. Eventually, the system was scaled up to 1 L system and 15 g chondroitin was converted to CSA in 24 h, with a 98 % conversion. The present study made a step further towards the industrial production of CSA with different sulfation degrees.


Assuntos
Arilsulfotransferase/metabolismo , Sulfatos de Condroitina/biossíntese , Engenharia Metabólica/métodos , Sulfotransferases/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Organismos Geneticamente Modificados/metabolismo , Plasmídeos/genética , Ratos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Solubilidade , Biologia Sintética/métodos
6.
FASEB J ; 34(2): 2853-2868, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908019

RESUMO

Key molecules promoting migration and invasion exist in the extracellular matrix, and include chondroitin 4-sulfate (C4S) and chondroitin 6-sulfate (C6S), functionally important carbohydrate chains of chondroitin sulfate proteoglycans that participate in regulating cancer development. Here, we show that C4S and C6S expression is upregulated in human glioma tissues, when compared to normal brain tissue, and that the extent of upregulation positively correlated with glioma malignancy. Treatment of cultured glioma cells with C4S and C6S enhanced cell viability, migration, and invasion, increased MMP-2 and MMP-9 levels, enhanced N-cadherin, but reduced E-cadherin expression. Inhibition of expression of the two CS synthetic enzymes chondroitin 4-O-sulfotransferase-1 (C4ST-1/CHST11) and chondroitin 6-O-sulfotransferase-1 (C6ST-1/CHST3) suppressed cell viability, migration and invasion, reduced MMP-2 and MMP-9 expression, and reduced N-cadherin expression, but increased E-cadherin levels. The C4S- and C6S-enhanced epithelial-to-mesenchymal transition and expression of MMP-2 occurred via activation of the PI3K/AKT signaling pathway, known to be involved in promoting cell migration and invasion. In immune-deficient larval zebrafish, C4S and C6S increased the numbers of viable tumor cells, thereby promoting glioma cell proliferation. The present observations point to a novel role of C4S and C6S in human glioma cell functions, thus possibly representing targets in glioma therapy.


Assuntos
Sulfatos de Condroitina/biossíntese , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Proteínas de Neoplasias/biossíntese , Transdução de Sinais , Adolescente , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Criança , Pré-Escolar , Sulfatos de Condroitina/genética , Feminino , Glioma/genética , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
7.
J Cyst Fibros ; 18(3): e19-e25, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30415947

RESUMO

BACKGROUND: Glycosaminoglycans (GAGs) are essential in many infections, including recurrent bacterial respiratory infections, the main cause of mortality in cystic fibrosis (CF) patients. METHODS: Using a cellular model of healthy and CF lung epithelium, a comparative transcriptomic study of GAG encoding genes was performed using qRT-PCR, and their differential involvement in the adhesion of bacterial pathogens analyzed by enzymatic degradation and binding competition experiments. RESULTS: Various alterations in gene expression in CF cells were found which affect GAG structures and seem to influence bacterial adherence to lung epithelium cells. Heparan sulfate appears to be the most important GAG species involved in bacterial binding. CONCLUSIONS: Adherence to lung epithelial cells of some of the main pathogens involved in CF is dependent on GAGs, and the expression of these polysaccharides is altered in CF cells, suggesting it could play an essential role in the development of infectious pathology.


Assuntos
Bactérias , Aderência Bacteriana/fisiologia , Sulfatos de Condroitina , Fibrose Cística , Heparitina Sulfato , Infecções Respiratórias , Células Epiteliais Alveolares/enzimologia , Bactérias/classificação , Bactérias/metabolismo , Linhagem Celular , Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Perfilação da Expressão Gênica , Glicosaminoglicanos/fisiologia , Heparitina Sulfato/biossíntese , Heparitina Sulfato/metabolismo , Humanos , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia
8.
Oncotarget ; 8(30): 49303-49317, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514734

RESUMO

Intervertebral disc degeneration (IDD) is characterized by dehydration and loss of extracellular matrixes in the nucleus pulposus region. Chondroitin sulfate has been found to be the water-binding molecule that played a key role in IDD. Although investigators have reported that inflammatory cytokines are involved in the reduction of chondroitin sulfate in IDD, but the underlying mechanism is unrevealed. Since chondroitin sulfate synthesis is controlled by chondroitin sulfate glycosyltransferases CHSY-1/2/3 and CSGALNACT-1/2, their functional role and regulatory mechanism in IDD is not fully studied. Here, we set out to investigate the function and regulatory roles of these factors during IDD development. We found that among these chondroitin sulfate glycosyltransferases, CHSY-1/2/3 are significantly down-regulated in severe IDD samples than mild IDD samples. In vitro experiments revealed that Interleukin-1ß and Tumor Necrosis Factor-α stimulation led to significant reduction of CHSY-1/2/3 at protein level than mRNA level in NP cells, indicating a post-transcriptional regulatory mechanisms are involved. By computational prediction and analysis, we found that inflammatory cytokines stimulated microRNA-194 and -515 target CHSY-1/2/3 mRNA and significantly interrupt their translation and downstream chondroitin sulfate deposition. Inhibition of microRNA-194 and -515 however, significantly rescued CHSY-1/2/3 expressions and chondroitin sulfate deposition. These findings together demonstrated a vital role of inflammatory stimulated microRNAs in promoting intervertebral disc degeneration by interrupt chondroitin sulfate synthesis, which may provide new insights into the mechanism and therapeutic approaches in IDD.


Assuntos
Sulfatos de Condroitina/biossíntese , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Biomarcadores , Vias Biossintéticas , Biologia Computacional/métodos , Citocinas/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Imuno-Histoquímica , Mediadores da Inflamação , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/diagnóstico , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Interferência de RNA , RNA Mensageiro/genética , Índice de Gravidade de Doença
9.
Int J Gynecol Cancer ; 27(6): 1072-1081, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28333845

RESUMO

OBJECTIVE: The identification of a marker for early progression of preinvasive lesions into invasive pelvic high-grade serous carcinoma (HGSC) may provide novel handles for innovative screening and prevention strategies. The interplay between cancer cells and the extracellular matrix (ECM) is one of the main principles in cancer development and growth, but has been largely neglected in preinvasive lesions. This is the first study addressing the involvement of the ECM in the "step-by-step" transition of normal fallopian tube epithelium into preinvasive lesions, and eventually the progression of preinvasive lesions into invasive HGSC. METHODS: The expression of highly sulfated chondroitin sulfate (CS-E), a characteristic glycosaminoglycan of the cancer-associated ECM, was assessed by immunohistochemistry in a large cohort of precursor lesions of the full spectrum of HGSC development, including 97 serous tubal intraepithelial carcinomas (STICs), 27 serous tubal intraepithelial lesions, and 24 p53 signatures. In addition, the immunological reactivity in the microenvironment was evaluated. RESULTS: Increased stromal expression of highly sulfated CS-E was observed in 3.7%, 57.7%, and 90.6% of serous tubal intraepithelial lesions, STICs, and invasive HGSCs, respectively (P < 0.001). No or limited expression was found in p53 signatures and normal tubal epithelium (compared with STIC, P < 0.001). A gradual increase in the amount of CS-E expression between STIC and paired HGSC was demonstrated. Intense stromal CS-E expression in STIC was significantly associated with an immune infiltrate (P < 0.001). CONCLUSIONS: Our study showed that increased stromal CS-E expression is related to the degree of the tubal epithelium abnormality. Specific alterations in the ECM (ie, CS-E expression) occur early in pelvic HGSC development and may represent a novel biomarker of early cancer progression, useful for the identification of novel clinical strategies.


Assuntos
Carcinoma in Situ/patologia , Cistadenocarcinoma Seroso/patologia , Matriz Extracelular/patologia , Neoplasias das Tubas Uterinas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma in Situ/metabolismo , Sulfatos de Condroitina/biossíntese , Estudos de Coortes , Cistadenocarcinoma Seroso/metabolismo , Matriz Extracelular/metabolismo , Neoplasias das Tubas Uterinas/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gradação de Tumores , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia
10.
J Crohns Colitis ; 11(2): 221-228, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27484097

RESUMO

BACKGROUND AND AIMS: Carbohydrate sulphotransferase 15 [CHST15] is a specific enzyme biosynthesizing chondroitin sulphate E that binds various pathogenic mediators and is known to create local fibrotic lesions. We evaluated the safety of STNM01, a synthetic double-stranded RNA oligonucleotide directed against CHST15, in Crohn's disease [CD] patients whose mucosal lesions were refractory to conventional therapy. METHODS: This was a randomized, double-blind, placebo-controlled, concentration-escalation study of STNM01 by a single-dose endoscopic submucosal injection in 18 CD patients. Cohorts of increasing concentration of STNM01 were enrolled sequentially as 2.5nM [n = 3], 25nM [n = 3], and 250nM [n = 3] were applied. A cohort of placebo [n = 3] was included in each concentration. Safety was monitored for 30 days. Pharmacokinetics was monitored for 24h. The changes from baseline in the segmental Simple Endoscopic Score for CD [SES-CD] as well as the histological fibrosis score were evaluated. RESULTS: STNM01 was well tolerated and showed no drug-related adverse effects in any cohort of treated patients. There were no detectable plasma concentrations of STNM01 at all measured time points in all treatment groups. Seven of nine subjects who received STNM01 showed reduction in segmental SES-CD at Day 30, when compared with those who received placebo. Histological analyses of biopsy specimens revealed that STNM01 reduced the extent of fibrosis. CONCLUSION: Local application of STNM01 is safe and well tolerated in CD patients with active mucosal lesions.


Assuntos
Sulfatos de Condroitina , Doença de Crohn , Mucosa Intestinal , Glicoproteínas de Membrana , RNA Interferente Pequeno/farmacologia , Sulfotransferases , Biópsia/métodos , Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/metabolismo , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Ressecção Endoscópica de Mucosa/métodos , Feminino , Fibrose , Fármacos Gastrointestinais/farmacologia , Humanos , Injeções Intralesionais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Oligorribonucleotídeos Antissenso/farmacologia , Gravidade do Paciente , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/metabolismo , Resultado do Tratamento
11.
Glycoconj J ; 34(3): 411-420, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27744520

RESUMO

Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (ß4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of ß4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in ß4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.


Assuntos
Sulfatos de Condroitina/biossíntese , Dermatan Sulfato/análogos & derivados , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Heparitina Sulfato/biossíntese , Ácido Hialurônico/biossíntese , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Sulfatos de Condroitina/antagonistas & inibidores , Sulfatos de Condroitina/genética , Dermatan Sulfato/antagonistas & inibidores , Dermatan Sulfato/biossíntese , Dermatan Sulfato/genética , Células Epiteliais/patologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/genética , Humanos , Hialuronan Sintases/antagonistas & inibidores , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Ácido Hialurônico/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetil-Lactosamina Sintase/antagonistas & inibidores , N-Acetil-Lactosamina Sintase/genética , N-Acetil-Lactosamina Sintase/metabolismo , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
12.
Mar Biotechnol (NY) ; 17(4): 479-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25912370

RESUMO

Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced by using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5-7.5 and 40 °C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.


Assuntos
Arthrobacter/enzimologia , Condroitina Liases/genética , Condroitina Liases/metabolismo , Sulfatos de Condroitina/biossíntese , Dissacarídeos/biossíntese , Microbiologia Industrial/métodos , Sequência de Aminoácidos , Animais , Arthrobacter/genética , Sequência de Bases , Cartilagem/metabolismo , Biologia Computacional , Cisteína Endopeptidases , Concentração de Íons de Hidrogênio , Anotação de Sequência Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteólise , Análise de Sequência de DNA , Tubarões , Temperatura
13.
J Urol ; 194(2): 571-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25636658

RESUMO

PURPOSE: We analyzed the urothelium of cats diagnosed with feline interstitial cystitis to determine whether abnormalities in protein expression patterns could be detected and whether the expression pattern was similar to that in patients with human interstitial cystitis/bladder pain syndrome. The proteins analyzed are involved in cell adhesion and barrier function, comprise the glycosaminoglycan layer or are differentiation markers. MATERIALS AND METHODS: Formalin fixed biopsies from 8 cats with feline interstitial cystitis and from 7 healthy control cats were labeled by immunohistochemistry and scored with a modified version of a system previously used for human samples. Cluster analysis was performed to investigate relationships between markers and samples. RESULTS: Of the feline interstitial cystitis bladders 89% showed abnormal protein expression and chondroitin sulfate patterns while only 27% of normal tissues showed slight abnormalities. Abnormalities were found in most feline interstitial cystitis samples, including biglycan in 87.5%, chondroitin sulfate, decorin, E-cadherin and keratin-20 in 100%, uroplakin in 50% and ZO-1 in 87.5%. In feline interstitial cystitis bladders about 75% of chondroitin sulfate, biglycan and decorin samples demonstrated absent luminal staining or no staining. Cluster analysis revealed that feline interstitial cystitis and normal samples could be clearly separated into 2 groups, showing that the urothelium of cats with feline interstitial cystitis is altered from normal urothelium. CONCLUSIONS: Feline interstitial cystitis produces changes in luminal glycosaminoglycan and several proteins similar to that in patients, suggesting some commonality in mechanism. Results support the use of feline interstitial cystitis as a model of human interstitial cystitis.


Assuntos
Sulfatos de Condroitina/biossíntese , Cistite Intersticial/metabolismo , Proteínas/metabolismo , Animais , Biomarcadores/análise , Gatos , Diferenciação Celular , Cistite Intersticial/patologia , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Urotélio/metabolismo , Urotélio/patologia
14.
Exp Cell Res ; 330(2): 358-370, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25445787

RESUMO

There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the mechanisms of NEDD9-mediated cancer migration and growth, stable cells overexpressing NEDD9 were generated using HCC38 as a parental cell line which expresses low level of endogenous NEDD9. Microarray studies demonstrated that core proteins of CD44 and Serglycin were markedly upregulated in HCC38(NEDD9) cells compared to HCC38(Vector) cells, while those of Syndecan-1, Syndecan-2, and Versican were downregulated in HCC38(NEDD9). Importantly, enzymes generating chondroitin sulfate glycosaminoglycans (CS) such as CHST11, CHST15, and CSGALNACT1 were upregulated in HCC38(NEDD9) compared to HCC38(Vector). Immunofluorescence studies using specific antibody, GD3G7, confirmed the enhanced expression of CS-E subunit in HCC38(NEDD9). Immunoprecipitation and western blotting analysis demonstrated that CS-E was attached to CD44 core protein. We demonstrated that removing CS by chondroitinase ABC significantly inhibited anchorage-independent colony formation of HCC38(NEDD9) in methylcellulose. Importantly, the fact that GD3G7 significantly inhibited colony formation of HCC38(NEDD9) cells suggests that CS-E subunit plays a key role in this process. Furthermore, treatment of HCC38(NEDD9) cells with chondroitinase ABC or GD3G7 significantly inhibited mammosphere formation. Exogenous addition of CS-E enhanced colony formation and mammosphere formation of HCC38 parental and HCC38(Vector) cells. These results suggest that NEDD9 regulates the synthesis and expression of tumor associated glycocalyx structures including CS-E, which plays a key role in promoting and regulating breast cancer progression and metastasis and possibly stem cell phenotypes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Sulfatos de Condroitina/biossíntese , Fosfoproteínas/metabolismo , Esferoides Celulares/patologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Anticorpos Monoclonais/imunologia , Antígenos/biossíntese , Antígenos/metabolismo , Movimento Celular , Proliferação de Células , Condroitina ABC Liase/metabolismo , Condroitina ABC Liase/farmacologia , Regulação para Baixo , Feminino , Imunofluorescência , Humanos , Receptores de Hialuronatos/biossíntese , Glicoproteínas de Membrana/biossíntese , N-Acetilgalactosaminiltransferases/biossíntese , Metástase Neoplásica/patologia , Fosfoproteínas/biossíntese , Proteoglicanas/biossíntese , Proteoglicanas/metabolismo , Sulfotransferases/biossíntese , Sindecana-1/biossíntese , Sindecana-2/biossíntese , Células Tumorais Cultivadas , Regulação para Cima , Versicanas/biossíntese , Proteínas de Transporte Vesicular/biossíntese
15.
Biomed Res Int ; 2013: 656319, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555092

RESUMO

Chondroitin sulfate (CS) containing E-disaccharide units, glucuronic acid-N-acetylgalactosamine(4, 6-O-disulfate), at surfaces of tumor cells plays a key role in tumor metastasis. However, the molecular mechanism of the metastasis involving the CS chain-containing E-units is not fully understood. In this study, to clarify the role of E-units in the metastasis and to search for potential molecular targets for anticancer drugs, the isolation and characterization of Lewis lung carcinoma (LLC) cells stably downregulated by the knockdown for the gene encoding N-acetylgalactosamine 4-O-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which is responsible for the formation of E-units in CS chains, were performed. Knockdown of GalNAc4S-6ST in LLC cells resulted in a reduction in the proportion of E-units, in adhesiveness to extracellular matrix adhesion molecules and in proliferation in vitro. Furthermore, the stable downregulation of GalNAc4S-6ST expression in LLC cells markedly inhibited the colonization of the lungs by inoculated LLC cells and invasive capacity of LLC cells. These results provide clear evidence that CS chain-containing E-units and/or GalNAc4S-6ST play a crucial role in pulmonary metastasis at least through the increased adhesion and the invasive capacity of LLC cells and also provides insights into future drug targets for anticancer treatment.


Assuntos
Carcinoma Pulmonar de Lewis/genética , Sulfatos de Condroitina/biossíntese , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Sulfotransferases/biossíntese , Animais , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Terapia de Alvo Molecular , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Sulfotransferases/genética
16.
Photochem Photobiol ; 88(5): 1293-301, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22582845

RESUMO

The low level laser therapy (LLLT) has been used as an option to accelerate the regeneration of bone tissue. In this study, both femurs of male Wistar rats (30 animals) were injured with a drill and the effect of LLLT using a laser diode (100 mW at 660 nm) in the bone matrix on the left paw measured. LLLT effect on the healing bone tissue matrix was evaluated by a combination of immunohistochemical histomorphometry, confocal immunofluorescence microscopy and isolation and characterization of glycosaminoglycans. Histomorphometric analysis showed that LLLT increased bone matrix and showing more organized. Alcian Blue and PAS staining seems to suggest differential glycosaminoglycans and glycoproteins. The data showed increased expression of chondroitin sulfate and hyaluronic acid, after reduction as the LLLT and mature bone, resembling the expression of osteonectin and biglycan. The difference in expression of siblings (DMP-1, OPN and BSP) is in accordance with the repair accelerated bone formation after the application of LLLT as compared with control. The expression of osteonectin and osteocalcin supports their role in bone mineralization protein, indicating that LLLT accelerates this process. The overall data show that LLLT bone changes dynamic array, shortening the time period involved in the bone repair.


Assuntos
Matriz Óssea/efeitos da radiação , Regeneração Óssea/efeitos da radiação , Fêmur/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Azul Alciano , Animais , Matriz Óssea/lesões , Sulfatos de Condroitina/biossíntese , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fêmur/lesões , Expressão Gênica/efeitos da radiação , Ácido Hialurônico/biossíntese , Imuno-Histoquímica , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Lasers , Masculino , Microscopia de Fluorescência , Osteocalcina/genética , Osteocalcina/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Reação do Ácido Periódico de Schiff , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar
17.
Connect Tissue Res ; 53(2): 169-79, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22149722

RESUMO

The familial disease of hereditary multiple exostoses is characterized by abnormal skeletal deformities requiring extensive surgical procedures. In hereditary multiple exostoses patients there is a shortage in the pericellular glycosaminoglycan (GAG) of heparan sulfate (HS), related to defective activity of HS glycosyltransferases, mainly in the pericellular regions of chondrocytes. This study searched for a novel approach employing xylosides with different aglycone groups priming a variety of GAG chains, in attempting to alter the GAG compositional profile. Cell cultures of patients with osteochondroma responded to p-nitrophenyl ß-D-xyloside by a significant increase in total GAG synthesis, expressed mainly in the extracellular domains, limited to chondroitin sulfate). The different ß-D-xylosides, in addition to increasing the synthesis of extracellular GAGs, led to a significant depletion of the intracellular GAG domains. In mouse chondrocyte cultures, ß-D-xylosides with different aglycones created a unique distribution of the GAG pools. Of special interest was the finding that the naphthalene methanol ß-D-xyloside showed the highest absolute levels of HS-GAGs in both extracellular and intra-pericellular moieties compared with other ß-D-xylosides and with controls without xyloside. In summary, ß-D-xylosides can be utilized in chondrocyte cultures to modify the distribution of GAGs between the extracellular and intracellular compartments. In addition, xylosides may alter the profile of specific GAG chains in each moiety.


Assuntos
Condrócitos/efeitos dos fármacos , Sulfatos de Condroitina/biossíntese , Glicosídeos/farmacologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Condrócitos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Naftalenos/farmacologia , Osteocondroma , Células Tumorais Cultivadas
18.
Eur J Immunol ; 41(12): 3632-44, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22076801

RESUMO

B-cell fate and responses are modulated by soluble mediators and direct cellular interactions. Migration properties also vary during differentiation, commitment and activation. In many cells, modulation of responses to stimuli involves cell surface glycans, whose architecture depends on the simultaneous expression of multiple enzymes. By looking at the glycosylation-related gene expression patterns among B-cell populations, we determined in this study that the strongest variations were observed for CSGalNAcT-1 and EXTL1. These are enzymes involved in the biosynthesis of alternative forms of glycosaminoglycans (GAGs), namely chondroitin sulfate and heparan sulfate, respectively. These two enzymes showed inverse fluctuations in progenitors, resting B cells and activated B cells, suggesting a developmentally regulated switch between chondroitin and heparan sulfate synthesis. To explore whether these variations contributed to optimal B-cell differentiation, we overexpressed EXTL1 in the B-cell lineage of transgenic mice, yielding a partial differentiation blockade at the pro-B to pre-B transition. In the periphery, this defect was almost fully compensated for in vivo, with normal-size B-cell compartments and normal serum immunoglobulin levels in the transgenic EXTL1 mice. The peripheral B cells from EXTL1 transgenics were only affected with regard to their in vitro responses to polyclonal activation, showing reduced proliferation. Together the data suggest that despite their low amounts in lymphocytes, the heparan sulfate chains decorating the endogenous GAGs appear to be regulators of B-cell physiology.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Glicosaminoglicanos/biossíntese , Animais , Linfócitos B/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/imunologia , Variação Genética , Glicosaminoglicanos/genética , Heparitina Sulfato/biossíntese , Heparitina Sulfato/imunologia , Imunoglobulinas/biossíntese , Imunoglobulinas/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/imunologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
19.
J Biol Chem ; 285(27): 20793-805, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20439988

RESUMO

Chondroitin sulfate (CS) and dermatan sulfate (DS) containing N-acetylgalactosamine 4,6-bissulfate (GalNAc(4,6-SO(4))) show various physiological activities through interacting with numerous functional proteins. N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate in CS or DS to yield GalNAc(4,6-SO(4)) residues. We here report generation of transgenic mice that lack GalNAc4S-6ST. GalNAc4S-6ST-null mice were born normally and fertile. In GalNAc4S-6ST-null mice, GalNAc(4,6-SO(4)) residues in CS and DS disappeared completely, indicating that GalNAc4S-6ST should be a sole enzyme responsible for the synthesis of GalNAc(4,6-SO(4)) residues in both CS and DS. IdoA-GalNAc(4,6-SO(4)) units that account for approximately 40% of total disaccharide units of DS in the liver of the wild-type mice disappeared in the liver DS of GalNAc4S-6ST-null mice without reduction of IdoA content. Bone marrow-derived mast cells (BMMCs) derived from GalNAc4S-6ST-null mice contained CS without GlcA-GalNAc(4,6-SO(4)) units. Tryptase and carboxypeptidase A activities of BMMCs derived from GalNAc4S-6ST-null mice were lower than those activities of BMMCs derived from wild-type mice, although mRNA expression of these mast cell proteases was not altered. Disaccharide compositions of heparan sulfate/heparin contained in the mast cells derived from BMMCs in the presence of stem cell factor were much different from those of heparan sulfate/heparin in BMMCs but did not differ significantly between wild-type mice and GalNAc4S-6ST-null mice. These observations suggest that CS containing GalNAc(4,6-SO(4)) residues in BMMCs may contribute to retain the active proteases in the granules of BMMCs but not for the maturation of BMMCs into connective tissue-type mast cells.


Assuntos
Acetilgalactosamina/análogos & derivados , Medula Óssea/enzimologia , Sulfatos de Condroitina/biossíntese , Dermatan Sulfato/biossíntese , Glicosaminoglicanos/biossíntese , Peptídeo Hidrolases/metabolismo , RNA Mensageiro/genética , Sulfotransferases/deficiência , Acetilgalactosamina/biossíntese , Acetilgalactosamina/química , Animais , Medula Óssea/ultraestrutura , Sulfatos de Condroitina/química , DNA/genética , Primers do DNA , Dermatan Sulfato/química , Dissacarídeos/análise , Éxons/genética , Vetores Genéticos , Mastócitos/enzimologia , Mastócitos/ultraestrutura , Camundongos , Microscopia Eletrônica , Reação em Cadeia da Polimerase , Baço/enzimologia , Sulfotransferases/genética
20.
J Rheumatol ; 37(3): 656-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20110528

RESUMO

OBJECTIVE: During osteoarthritis (OA), the altered metabolism of cartilage involves proinflammatory factors and matrix metalloprotease (MMP) activity. Studies showed that chondroitin sulfate (CS) may exert a positive effect on the cartilage. Because of differences in CS in terms of purity and the production/purification process, we compared the effects of 3 different types of CS on human OA cartilage. METHODS: Three types of CS were tested: CS1 (porcine, purity 90.4%), CS2 (bovine, purity 96.2%), and CS3 (bovine, purity 99.9%). Treatment with CS at 200 and 1000 microg/ml was performed on human OA cartilage explants in the presence/absence of interleukin 1ss (IL-1ss), and the protein modulations of factors including prostaglandin E(2) (PGE(2)), IL-6, and MMP-1 measured by ELISA. The CS effect on the expression of collagen type II was also investigated on OA chondrocytes using quantitative polymerase chain reaction. RESULTS: In the presence of IL-1ss, CS2 at 1000 microg/ml significantly inhibited IL-6 and PGE(2) production, and CS3 at 200 microg/ml markedly reduced the level of IL-6. CS1 was much less efficient at reducing the catabolic markers and in the absence of IL-1ss, it significantly increased IL-6 and MMP-1. IL-1ss significantly inhibited the gene expression level of collagen type II; only CS3 was able to limit this inhibition. CS1, in the presence or absence of IL-1ss, further markedly decreased collagen type II expression. CONCLUSION: Our data indicate that among the 3 tested CS, CS1 increased production of some catabolic pathways and inhibited the gene expression level of collagen type II. Our study provides new information in the context of prescribing CS for alleviating OA symptoms, as the purity and/or production/purification of the CS compound could orient the current OA disease process toward increased catabolic pathways.


Assuntos
Cartilagem/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Osteoartrite do Joelho/metabolismo , Idoso , Animais , Cartilagem/metabolismo , Bovinos , Células Cultivadas , Condrócitos/metabolismo , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/biossíntese , Colágeno Tipo II/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Pessoa de Meia-Idade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA