Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.833
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124463, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38749205

RESUMO

In this work, a triphenylamine-benzofuran-derived fluorescent probe TBSF was developed for monitoring the sulfite level in Chinese medicinal materials and imaging in living cells. In the testing system, under 445 nm excitation, TBSF responded to sulfite steadily with a 540 nm fluorescence reporting signal. The testing system showed advantages including high sensitivity, rapid response, and high selectivity. In particular, TBSF achieved the sulfite detection in the water decoction of Chinese medicinal materials from both addition and excessive fumigation. It also realized the intracellular imaging of both exogenous and endogenous sulfite in living HepG2 cells. The imaging in water decoction-treated cells inferred the potential for the interdisciplinary detection.


Assuntos
Benzofuranos , Corantes Fluorescentes , Espectrometria de Fluorescência , Sulfitos , Sulfitos/análise , Corantes Fluorescentes/química , Humanos , Benzofuranos/química , Benzofuranos/análise , Células Hep G2 , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Compostos de Anilina/química , Imagem Óptica
2.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697543

RESUMO

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Sulfitos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Sulfitos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Sulfatos/metabolismo , Hidrogênio/metabolismo , Bactérias/metabolismo , Ferro/metabolismo
3.
Oncol Res ; 32(4): 737-752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560573

RESUMO

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sulfitos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Metaloproteinase 12 da Matriz , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 16 da Matriz , Prognóstico , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Rim/metabolismo , Rim/patologia
4.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613974

RESUMO

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Assuntos
Cobalto , Hidróxidos , Manganês , Metronidazol , Cobalto/química , Metronidazol/química , Hidróxidos/química , Manganês/química , Porosidade , Propriedades de Superfície , Sulfitos/química , Catálise , Tamanho da Partícula , Teoria da Densidade Funcional , Poluentes Químicos da Água/química
5.
Food Chem ; 449: 138944, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613993

RESUMO

Sulfite addition is a common tool for ensuring wines' oxidative stability via the activity of its free and weakly bound molecular fraction. As a nucleophile, bisulfite forms covalent adducts with wine's most relevant electrophiles, such as carbonyls, polyphenols, and thiols. The equilibrium in these reactions is often represented as dissociation rather than formation. Recent studies from our laboratory demonstrate, first, the acetaldehyde sulfonate dissociation, and second, the chemical stability of cysteine and epicatechin sulfonates under wine aging conditions. Thus, the objective of this study was to monitor by 1H NMR the binding specificity of known carbonyl-derived SO2 binders (acetaldehyde and pyruvic acid) in the presence of S-containing compounds (cysteine and glutathione). We report that during simulated wine aging, the sulfur dioxide that is rapidly bound to carbonyl compounds will be released and will bind to cysteine and glutathione, demonstrating the long-term sulfur dioxide binding potential of S-containing compounds. These results are meant to serve as a complement to existing literature reviews focused on molecular markers related to wines' oxidative stability and emphasize once more the importance of S-containing compounds in wine aging chemical mechanisms.


Assuntos
Compostos de Sulfidrila , Vinho , Vinho/análise , Cinética , Compostos de Sulfidrila/química , Oxirredução , Dióxido de Enxofre/química , Cisteína/química , Cisteína/metabolismo , Acetaldeído/química , Sulfitos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Glutationa/química , Glutationa/metabolismo
6.
Anal Chim Acta ; 1305: 342588, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677842

RESUMO

BACKGROUND: Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS: We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 µM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 µM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE: We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Viscosidade , Humanos , Dióxido de Enxofre/análise , Sulfitos/análise , Sulfitos/química , Limite de Detecção , Compostos de Quinolínio/química
7.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542469

RESUMO

The use of non-invasive liquid biopsy-based cell-free DNA (cfDNA) analysis is an emerging method of cancer detection and intervention. Different analytical methodologies are used to investigate cfDNA characteristics, resulting in costly and long analysis processes needed for combining different data. This study investigates the possibility of using cfDNA data converted for methylation analysis for combining the cfDNA fragment size with copy number variation (CNV) in the context of early colorectal cancer detection. Specifically, we focused on comparing enzymatically and bisulfite-converted data for evaluating cfDNA fragments belonging to chromosome 18. Chromosome 18 is often reported to be deleted in colorectal cancer. We used counts of short and medium cfDNA fragments of chromosome 18 and trained a linear model (LDA) on a set of 2959 regions to predict early-stage (I-IIA) colorectal cancer on an independent test set. In total, 87.5% sensitivity and 92% specificity were obtained on the enzymatically converted libraries. Repeating the same workflow on bisulfite-converted data yielded lower accuracy results with 58.3% sensitivity, implying that enzymatic conversion preserves the cancer fragmentation footprint in whole genome data better than bisulfite conversion. These results could serve as a promising new avenue for the early detection of colorectal cancer using fragmentation and methylation approaches on the same datasets.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Sulfitos , Humanos , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biomarcadores Tumorais/genética
8.
Bioorg Chem ; 146: 107305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537335

RESUMO

Sulfite is one of the main existing forms of sulfur dioxide (SO2) in living system, which has been recognized as an endogenous mediator in inflammation. Evidence has accumulated to show that abnormal level of sulfite is associated with many inflammatory diseases, including neurological diseases and cancers. Herein, a novel fluorescent probe named QX-OA was designed and synthesized to detect sulfite. QX-OA was constructed by choosing quinolinium-xanthene as the fluorophore and levulinate as the specific and relatively steady recognition reaction. The probe showed remarkable green turn-on signal at 550 nm, together with high sensitivity (90-fold) and excellent selectivity to sulfite over other possible interfering species. In the meantime, QX-OA was successfully applied to visualize endogenous and exogenous sulfite in Hela cells. In the LPS-induced inflammation model, QX-OA could visualize the dose-dependent increase of sulfite level (0-2 mg/mL). Consequently, QX-OA was determined to be a potential method for detecting sulfite in pre-clinical diagnosis.


Assuntos
Corantes Fluorescentes , Sulfitos , Humanos , Células HeLa , Dióxido de Enxofre , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem
9.
Anal Chim Acta ; 1300: 342463, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38521572

RESUMO

BACKGROUND: 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS: We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by ß-glucosyltransferase (ß-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE: This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.


Assuntos
5-Metilcitosina/análogos & derivados , Técnicas Biossensoriais , Neoplasias , Sulfitos , Glicosilação , DNA/genética , 5-Metilcitosina/metabolismo
10.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471507

RESUMO

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Assuntos
Metilação de DNA , Leucemia Linfocítica Crônica de Células B , Sulfitos , Humanos , Metilação de DNA/genética , Alelos , Leucemia Linfocítica Crônica de Células B/genética , Funções Verossimilhança , Impressão Genômica/genética , Ilhas de CpG/genética
11.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488030

RESUMO

DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high­throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation­Sensitive Restriction Enzyme­droplet digital PCR (MSRE­ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high­sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the Solute Carrier Family 22 Member 17 in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE­ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE­ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.


Assuntos
Metilação de DNA , Melanoma , Sulfitos , Humanos , Metilação de DNA/genética , Melanoma/diagnóstico , Melanoma/genética , Reação em Cadeia da Polimerase/métodos , DNA/genética
12.
Bone ; 182: 117049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364881

RESUMO

BACKGROUND: Ectopic calcification is inappropriate biomineralization of soft tissues occurring due to genetic or acquired causes of hyperphosphataemia and rarely in normophosphataemic individuals. Tumoral Calcinosis (TC) is a rare metabolic bone disorder commonly presenting in childhood and adolescence with periarticular extra-capsular calcinosis. Three subtypes of TC have been recognised: primary hyperphosphataemic familial TC (HFTC), primary normophosphataemic familial TC and secondary TC most commonly seen in chronic renal failure. In the absence of established treatment, management is challenging due to variable success rates with medical therapies and recurrence following surgery. AIM: We outline the successful treatment approaches in four children with TC (2 normophosphatemic TC, 2 HFTC) aged 2.5-10 years at initial presentation. CASES: Patient 1 (P1) presented at 10 years with a painless lump behind the right knee, P2 with swelling of the right knee anteriorly at 9 years, P3 and P4 with pain and swelling over the right elbow at 5 and 2.5 years respectively. All patients were of Black African-Caribbean origin and were previously reported to be fit and well with no family history of TC. RESULTS: P1, P2 had normophosphataemic TC and P3, P4 had HFTC with genetically confirmed GALNT3 mutation. All four patients had initial surgical resection with TC confirmed on histology. P1 had complete surgical resection with no recurrence at 27 months post-operatively. P2 had significant overgrowth of the tumour following surgery and was subsequently successfully managed with 25 % topical sodium metabisulphite (total duration of 8 months with a 4 month gap during which there was recurrence). P3 had post-surgical recurrence of TC on the right elbow and a new lesion on left elbow which resolved with oral acetazolamide monotherapy (15-20 mg/kg/day). P4 had recurrence of right elbow lesion following surgery and developed an extensive new hip lesion on sevelamer therapy which resolved completely with additional acetazolamide therapy (18-33 mg/kg/day). Acetazolamide was well tolerated with normal growth for 5 years in P3 and 6.5 years in P4 and no recurrence of lesions. CONCLUSION: The frequent post-surgical recurrence in TC and successful medical therapy on the other hand indicates that medical management as first line therapy should be adopted. Monotherapies with topical 25 % sodium metabisulphite in normophosphataemic and oral acetazolamide in HFTC are effective treatment strategies which are well tolerated.


Assuntos
Calcinose , Hiperfosfatemia , Criança , Adolescente , Humanos , Acetazolamida/uso terapêutico , Sulfitos , Hiperfosfatemia/genética , Calcinose/genética
13.
Med Mycol ; 62(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38389246

RESUMO

Candida albicans is a dimorphic opportunistic pathogen in immunocompromised individuals. We have previously demonstrated that sodium houttuyfonate (SH), a derivative of medicinal herb Houttuynia cordata Thunb, was effective for antifungal purposes. However, the physical impediment of SH by C. albicans ß-glucan may weaken the antifungal activity of SH. In this study, the interactions of SH with cell wall (CW), extracellular matrix (EM), CW ß-glucan, and a commercial ß-glucan zymosan A (ZY) were inspected by XTT assay and total plate count in a standard reference C. albicans SC5314 as well as two clinical fluconazole-resistant strains Z4935 and Z5172. After treatment with SH, the content and exposure of CW ß-glucan, chitin, and mannan were detected, the fungal clearance by phagocytosis of RAW264.7 and THP-1 was examined, and the gene expressions and levels of cytokines TNF-ɑ and IL-10 were also monitored. The results showed that SH could be physically impeded by ß-glucan in CW, EM, and ZY. This impediment subsequently triggered the exposure of CW ß-glucan and chitin with mannan masked in a time-dependent manner. SH-induced ß-glucan exposure could significantly enhance the phagocytosis and inhibit the growth of C. albicans. Meanwhile, the SH-pretreated fungal cells could greatly stimulate the cytokine gene expressions and levels of TNF-ɑ and IL-10 in the macrophages. In sum, the strategy that the instant physical impediment of C. albicans CW to SH, which can induce the exposure of CW ß-glucan may be universal for C. albicans in response to physical deterrent by antifungal drugs.


Assuntos
Alcanos , Candida albicans , Sulfitos , beta-Glucanas , Humanos , Antifúngicos/uso terapêutico , beta-Glucanas/farmacologia , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Fator de Necrose Tumoral alfa , Mananas , Fagocitose , Quitina/metabolismo , Parede Celular/metabolismo
14.
J Hazard Mater ; 467: 133719, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335615

RESUMO

Sodium sulfite (SS) is a biological derivative of the air pollutant sulfur dioxide, and is often used as a food and pharmaceutical additive. Improper or excessive SS exposure in liver cell death. The phenomenon of simultaneous regulation of apoptosis, necroptosis, and pyroptosis is defined as PANoptosis. However, the specific types of programmed cell death (PCD) caused by SS and their interconnections remain unclear. In the present study, C57BL/6 mice were orally administered SS for 30 d, consecutively, to establish an in vivo mouse exposure model. AML-12 cells were treated with SS for 24 h to establish an in vitro exposure model. The results showed that SS-induced mitochondrial reactive oxygen species (mtROS) accumulation activated the BAX/Bcl-2/caspase 3 pathway to trigger apoptosis and RIPK1/RIPK3/p-MLKL to trigger necroptosis. Interestingly, ROS-activated p-MLKL perforated not the cell membrane as well as the lysosomal membrane. We determined that p-MLKL mediates lysosomal membrane permeabilization (LMP), resulting in cathepsin B (CTSB) release. Furthermore, knockdown of MLKL, a CTSB inhibitor (CA074-ME) and an NLRP3 inhibitor (MCC950) alleviated SS-induced pyroptosis. In summary, our study showed that SS induced apoptosis and necroptosis though mtROS accumulation, whereas the activation of p-MLKL mediated NLRP3-dependent pyroptosis by causing CTSB leakage through LMP. This study comprehensively explored the mechanism unerlying SS-induced PCD and provided an experimental basis for p-MLKL as a potential regulatory protein in PANoptosis.


Assuntos
Leucemia Mieloide Aguda , Piroptose , Sulfitos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Necroptose , Camundongos Endogâmicos C57BL , Apoptose , Fígado
15.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257235

RESUMO

Juglone, a quinonic compound present in walnut extracts, was proposed as a restoring agent for hair keratin treated with permanent or discoloration processes. The proposed mechanism of restoration by juglone involves the formation of a Michael adduct between the quinone and the thiol moieties of cysteine residues. To this purpose, the first part of the present paper involved the spectroscopic study of the product of the reaction between juglone and N-acetyl-L-cysteine as a model compound. IR spectroscopy and Scanning Electron Microscopy (SEM) monitored the chemical and morphological variations induced by applying juglone to hair keratin. In order to simulate the most common hair treatments (i.e., permanent and discoloration), juglone was applied to hair that had been previously treated with a reducing agent, i.e., methyl thioglycolate (MT) or with bleaching agents (based on hydrogen peroxide and persulfates) followed by sodium hydrogen sulfite. IR spectroscopy allowed us to monitor the formation of Michael adducts between juglone and cysteine residues: the Michael adducts' content was related to the cysteine content of the samples. In fact, MT and sodium hydrogen sulfite favored the reduction of the disulfide bonds and increased the content of free cysteine residues, which can react with juglone. SEM analyses confirmed the trend observed by IR spectroscopy since hair samples treated with juglone adopted a more regular hair surface and more imbricated scales, thus supporting the possible use of juglone as a restoring agent for damaged hair keratins.


Assuntos
Acetilcisteína , Queratinas Específicas do Cabelo , Naftoquinonas , Sulfitos , Microscopia Eletrônica de Varredura , Cabelo
16.
J Vet Intern Med ; 38(1): 316-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38115210

RESUMO

BACKGROUND: DNA methylation analysis might identify prognostic CpG sites in CHOP-treated dogs with multicentric high-grade B-cell lymphoma (MHGL) with heterogenous prognosis. OBJECTIVE: To identify prognostic CpG sites of MHGL through genome-wide DNA methylation analysis with pyrosequencing validation. ANIMALS: Test group: 24 dogs. Validation group: 100 dogs. All client-owned dogs were diagnosed with MHGL and treated with CHOP chemotherapy. METHODS: Cohort study. DNA was extracted from lymph node samples obtained via FNA. Genome-wide DNA methylation analysis using Digital Restriction Enzyme Analysis of Methylation (DREAM) was performed on the test group to identify differentially methylated CpG sites (DMCs). Bisulfite pyrosequencing was used to measure methylation status of candidate DMCs in the validation group. Median survival times (MST) were analyzed using Kaplan-Meier (log-rank) product limit method. RESULTS: DREAM analyzed 101 576 CpG sites. Hierarchical clustering of 16 262 CpG sites in test group identified group with better prognosis (MST = 55-477 days vs 10-301 days, P = .007). Volcano plot identified 1371 differentially methylated CpG sites (DMCs). DMC near the genes of FAM213A (DMC-F) and PHLPP1 (DMC-P) were selected as candidates. Bisulfite-pyrosequencing performed on validation group showed group with methylation level of DMC-F < 40% had favorable prognosis (MST = 11-1072 days vs 8-1792 days, P = .01), whereas group with the methylation level combination of DMC-F < 40% plus DMC-P < 10% had excellent prognosis (MST = 18-1072 days vs 8-1792 days, P = .009). CONCLUSION AND CLINICAL IMPORTANCE: Methylation status of prognostic CpG sites delineate canine MGHL cases with longer MST, providing owners with information on expectations of potential improved treatment outcomes.


Assuntos
Doenças do Cão , Linfoma de Células B , Sulfitos , Humanos , Cães , Animais , Metilação de DNA , Prognóstico , Estudos de Coortes , Linfoma de Células B/genética , Linfoma de Células B/veterinária , Doenças do Cão/tratamento farmacológico , Doenças do Cão/genética
17.
Proc Natl Acad Sci U S A ; 120(49): e2310367120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011566

RESUMO

Existing single-cell bisulfite-based DNA methylation analysis is limited by low DNA recovery, and the measurement of 5hmC at single-base resolution remains challenging. Here, we present a bisulfite-free single-cell whole-genome 5mC and 5hmC profiling technique, named Cabernet, which can characterize 5mC and 5hmC at single-base resolution with high genomic coverage. Cabernet utilizes Tn5 transposome for DNA fragmentation, which enables the discrimination between different alleles for measuring hemi-methylation status. Using Cabernet, we revealed the 5mC, hemi-5mC and 5hmC dynamics during early mouse embryo development, uncovering genomic regions exclusively governed by active or passive demethylation. We show that hemi-methylation status can be used to distinguish between pre- and post-replication cells, enabling more efficient cell grouping when integrated with 5mC profiles. The property of Tn5 naturally enables Cabernet to achieve high-throughput single-cell methylome profiling, where we probed mouse cortical neurons and embryonic day 7.5 (E7.5) embryos, and constructed the library for thousands of single cells at high efficiency, demonstrating its potential for analyzing complex tissues at substantially low cost. Together, we present a way of high-throughput methylome and hydroxymethylome detection at single-cell resolution, enabling efficient analysis of the epigenetic status of biological systems with complicated nature such as neurons and cancer cells.


Assuntos
5-Metilcitosina , Metilação de DNA , Animais , Camundongos , Sulfitos , Análise de Sequência de DNA/métodos , Citosina
18.
Acc Chem Res ; 56(21): 2980-2991, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37851547

RESUMO

Since the discovery of the first chemically modified RNA nucleotide in 1951, more than 170 types of chemical modifications have been characterized in RNA so far. Since the discovery of the reversible and dynamic nature of N6-methyladenosine (m6A) in mRNA modification, researchers have identified about ten modifications in eukaryotic mRNA; together with modifications on the noncoding RNAs, the term "epitranscriptome" has been coined to describe the ensemble of various chemical RNA modifications. The past decade has witnessed the discovery of many novel molecular functions of mRNA modifications, demonstrating their crucial roles in gene expression regulation. As the most abundant modifications in mRNA, the study of m6A and Ψ has been facilitated by innovative high-throughput sequencing technologies, which can be based on antibodies, enzymes, or novel chemistry. Among them, chemical-assisted methods utilize selective chemistry that can discriminate modified versus unmodified nucleotides, enabling the transcriptome-wide mapping of m6A and Ψ modifications and functional studies.Our group has developed several sequencing technologies to investigate these epitranscriptomic marks including m6A, Ψ, m1A, and m6Am. Among them, we have recently developed two methods for absolute quantification of m6A and Ψ in the transcriptome based on chemical reactivity to distinguish and measure the two modifications. In GLORI, we used glyoxal and nitrite to mediate efficient deamination of regular adenosine, while m6A remained unaffected, thereby enabling efficient and unbiased detection of single-base resolution and absolute quantification of m6A modification. In CeU-seq and PRAISE, we used different chemistry to achieve selective labeling and detection of transcriptome-wide Ψ. CeU-seq is based on an azido-derivatized carbodiimide compound, while PRAISE utilizes the unique activity of bisulfite to Ψ. PRAISE results in the formation of ring-opening Ψ-bisulfite adduct and quantitatively detects Ψ as 1-2 nt deletion signatures during sequencing. The resulting base-resolution and stoichiometric information expanded our understanding to the profiles of RNA modifications in the transcriptome. In particular, the quantitative information on RNA methylome is critical for characterizing the dynamic and reversible nature of RNA modifications, for instance, under environmental stress or during development. Additionally, base-resolution and stoichiometric information can greatly facilitate the analysis and characterization of functional modification sites that are important for gene expression regulation, especially when one modification type may have multiple or even opposing functions within a specific transcript. Together, the quantitative profiling methods provide the modification stoichiometry information, which is critical to study the regulatory roles of RNA modifications.In this Account, we will focus on the quantitative sequencing technologies of m6A and Ψ developed in our group, review recent advances in chemical-assisted reactions for m6A and Ψ detection, and discuss the challenges and future opportunities of transcriptome-wide mapping technologies for RNA modifications.


Assuntos
RNA , Transcriptoma , RNA/química , Sulfitos , RNA Mensageiro , Processamento Pós-Transcricional do RNA
19.
Molecules ; 28(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836841

RESUMO

Sulfite oxidase is one of five molybdenum-containing enzymes known in eukaryotes where it catalyzes the oxidation of sulfite to sulfate. This review covers the history of sulfite oxidase research starting out with the early years of its discovery as a hepatic mitochondrial enzyme in vertebrates, leading to basic biochemical and structural properties that have inspired research for decades. A personal view on sulfite oxidase in plants, that sulfates are assimilated for their de novo synthesis of cysteine, is presented by Ralf Mendel with numerous unexpected findings and unique properties of this single-cofactor sulfite oxidase localized to peroxisomes. Guenter Schwarz connects his research to sulfite oxidase via its deficiency in humans, demonstrating its unique role amongst all molybdenum enzymes in humans. In essence, in both the plant and animal kingdoms, sulfite oxidase represents an important player in redox regulation, signaling and metabolism, thereby connecting sulfur and nitrogen metabolism in multiple ways.


Assuntos
Sulfito Oxidase , Animais , Humanos , Sulfito Oxidase/metabolismo , Molibdênio/química , Sulfitos , Plantas/metabolismo , Cofatores de Molibdênio , Sulfatos/metabolismo
20.
BMC Bioinformatics ; 24(1): 340, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704947

RESUMO

BACKGROUND: Bisulfite sequencing is a powerful tool for profiling genomic methylation, an epigenetic modification critical in the understanding of cancer, psychiatric disorders, and many other conditions. Raw data generated by whole genome bisulfite sequencing (WGBS) requires several computational steps before it is ready for statistical analysis, and particular care is required to process data in a timely and memory-efficient manner. Alignment to a reference genome is one of the most computationally demanding steps in a WGBS workflow, taking several hours or even days with commonly used WGBS-specific alignment software. This naturally motivates the creation of computational workflows that can utilize GPU-based alignment software to greatly speed up the bottleneck step. In addition, WGBS produces raw data that is large and often unwieldy; a lack of memory-efficient representation of data by existing pipelines renders WGBS impractical or impossible to many researchers. RESULTS: We present BiocMAP, a Bioconductor-friendly methylation analysis pipeline consisting of two modules, to address the above concerns. The first module performs computationally-intensive read alignment using Arioc, a GPU-accelerated short-read aligner. Since GPUs are not always available on the same computing environments where traditional CPU-based analyses are convenient, the second module may be run in a GPU-free environment. This module extracts and merges DNA methylation proportions-the fractions of methylated cytosines across all cells in a sample at a given genomic site. Bioconductor-based output objects in R utilize an on-disk data representation to drastically reduce required main memory and make WGBS projects computationally feasible to more researchers. CONCLUSIONS: BiocMAP is implemented using Nextflow and available at http://research.libd.org/BiocMAP/ . To enable reproducible analysis across a variety of typical computing environments, BiocMAP can be containerized with Docker or Singularity, and executed locally or with the SLURM or SGE scheduling engines. By providing Bioconductor objects, BiocMAP's output can be integrated with powerful analytical open source software for analyzing methylation data.


Assuntos
Genômica , Sulfitos , Humanos , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA