Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 43(6)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334574

RESUMO

RecA ATPases are a family of proteins that catalyzes the exchange of complementary DNA regions via homologous recombination. They are conserved from bacteria to humans and are crucial for DNA damage repair and genetic diversity. In this work, Knadler et al. examine how ATP hydrolysis and divalent cations impact the recombinase activity of Saccharolobus solfataricus RadA protein (ssoRadA). They find that the ssoRadA-mediated strand exchange depends on ATPase activity. The presence of Manganese reduces ATPase activity and enhances strand exchange, while calcium inhibits ATPase activity by preventing ATP binding to the protein, yet destabilizes the nucleoprotein ssoRadA filaments, allowing strand exchange regardless of the ATPase activity. Although RecA ATPases are highly conserved, this research offers intriguing new evidence that each member of the family requires individual evaluation.


Assuntos
Proteínas de Ligação a DNA , Sulfolobus solfataricus , Humanos , Proteínas de Ligação a DNA/genética , Cátions Bivalentes/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Recombinação Homóloga , Trifosfato de Adenosina/metabolismo
2.
Biosci Rep ; 43(2)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36601994

RESUMO

Central to the universal process of recombination, RecA family proteins form nucleoprotein filaments to catalyze production of heteroduplex DNA between substrate ssDNAs and template dsDNAs. ATP binding assists the filament in assuming the necessary conformation for forming heteroduplex DNA, but hydrolysis is not required. ATP hydrolysis has two identified roles which are not universally conserved: promotion of filament dissociation and enhancing flexibility of the filament. In this work, we examine ATP utilization of the RecA family recombinase SsoRadA from Saccharolobus solfataricus to determine its function in recombinase-mediated heteroduplex DNA formation. Wild-type SsoRadA protein and two ATPase mutant proteins were evaluated for the effects of three divalent metal cofactors. We found that unlike other archaeal RadA proteins, SsoRadA-mediated strand exchange is not enhanced by Ca2+. Instead, the S. solfataricus recombinase can utilize Mn2+ to stimulate strand invasion and reduce ADP-binding stability. Additionally, reduction of SsoRadA ATPase activity by Walker Box mutation or cofactor alteration resulted in a loss of large, complete strand exchange products. Depletion of ADP was found to improve initial strand invasion but also led to a similar loss of large strand exchange events. Our results indicate that overall, SsoRadA is distinct in its use of divalent cofactors but its activity with Mn2+ shows similarity to human RAD51 protein with Ca2+.


Assuntos
Cálcio , Sulfolobus solfataricus , Humanos , Cálcio/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Recombinases Rec A/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Recombinases/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499022

RESUMO

A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.


Assuntos
Proteínas Arqueais , DNA Helicases , Sulfolobus solfataricus , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Translocação Genética , DNA Helicases/genética , DNA Helicases/metabolismo
4.
Nucleic Acids Res ; 49(22): 13150-13164, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850144

RESUMO

Genome segregation is a vital process in all organisms. Chromosome partitioning remains obscure in Archaea, the third domain of life. Here, we investigated the SegAB system from Sulfolobus solfataricus. SegA is a ParA Walker-type ATPase and SegB is a site-specific DNA-binding protein. We determined the structures of both proteins and those of SegA-DNA and SegB-DNA complexes. The SegA structure revealed an atypical, novel non-sandwich dimer that binds DNA either in the presence or in the absence of ATP. The SegB structure disclosed a ribbon-helix-helix motif through which the protein binds DNA site specifically. The association of multiple interacting SegB dimers with the DNA results in a higher order chromatin-like structure. The unstructured SegB N-terminus plays an essential catalytic role in stimulating SegA ATPase activity and an architectural regulatory role in segrosome (SegA-SegB-DNA) formation. Electron microscopy results also provide a compact ring-like segrosome structure related to chromosome organization. These findings contribute a novel mechanistic perspective on archaeal chromosome segregation.


Assuntos
Proteínas Arqueais/genética , Segregação de Cromossomos , Cromossomos de Archaea/genética , DNA Arqueal/genética , Sulfolobus solfataricus/genética , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Cristalografia por Raios X , DNA Arqueal/química , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Sulfolobus solfataricus/metabolismo
5.
Sci Rep ; 10(1): 8943, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488029

RESUMO

Chymotrypsinogen, when reduced and taken to its molten globule-like conformation, displays a single cysteine with an unusual kinetic propensity toward oxidized glutathione (GSSG) and other organic thiol reagents. A single residue, identified by mass spectrometry like Cys1, reacts with GSSG about 1400 times faster than an unperturbed protein cysteine. A reversible protein-GSSG complex and a low pKa (8.1 ± 0.1) make possible such astonishing kinetic property which is absent toward other natural disulfides like cystine, homocystine and cystamine. An evident hyper-reactivity toward 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and 1-chloro-2,4-dinitrobenzene (CDNB) was also found for this specific residue. The extraordinary reactivity toward GSSG is absent in two proteins of the thermophilic archaeon Sulfolobus solfataricus, an organism lacking glutathione: the Protein Disulphide Oxidoreductase (SsPDO) and the Bacterioferritin Comigratory Protein 1 (Bcp1) that displays Cys residues with an even lower pKa value (7.5 ± 0.1) compared to chymotrypsinogen. This study, which also uses single mutants in Cys residues for Bcp1, proposes that this hyper-reactivity of a single cysteine, similar to that found in serum albumin, lysozyme, ribonuclease, may have relevance to drive the "incipit" of the oxidative folding of proteins from organisms where the glutathione/oxidized glutathione (GSH/GSSG) system is present.


Assuntos
Proteínas Arqueais/metabolismo , Quimotripsinogênio/metabolismo , Glutationa/metabolismo , Sequência de Aminoácidos , Archaea/metabolismo , Quimotripsinogênio/fisiologia , Cisteína/metabolismo , Dissulfetos/química , Glutationa/fisiologia , Dissulfeto de Glutationa/metabolismo , Oxirredução , Oxirredutases/metabolismo , Dobramento de Proteína , Compostos de Sulfidrila/química , Reagentes de Sulfidrila/química , Sulfolobus solfataricus/metabolismo
6.
Methods Enzymol ; 616: 191-218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691643

RESUMO

Type III CRISPR effector complexes utilize a bound CRISPR RNA (crRNA) to detect the presence of RNA from invading mobile genetic elements in the cell. This RNA binding results in the activation of two enzymatic domains of the Cas10 subunit-the HD nuclease domain, which degrades DNA, and PALM/cyclase domain. The latter synthesizes cyclic oligoadenylate (cOA) molecules by polymerizing ATP, and cOA acts as a second messenger in the cell, switching on the antiviral response by activating host ribonucleases and other proteins. In this chapter, we focus on the methods required to study the biochemistry of this recently discovered cOA signaling pathway. We cover protein expression and purification, synthesis of cOA and its linear analogues, kinetic analysis of cOA synthesis and cOA-stimulated ribonuclease activity, and small molecule detection and identification with thin-layer chromatography and mass spectrometry. The methods described are based on our recent studies of the type III CRISPR system in Sulfolobus solfataricus, but are widely applicable to other type III systems.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Oligorribonucleotídeos/metabolismo , Sulfolobus solfataricus/metabolismo , Nucleotídeos de Adenina/genética , Proteínas Arqueais/genética , Proteínas Associadas a CRISPR/genética , Clonagem Molecular/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Cinética , Oligorribonucleotídeos/genética , Sistemas do Segundo Mensageiro , Transdução de Sinais , Sulfolobus solfataricus/genética
7.
Extremophiles ; 22(5): 769-780, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30047030

RESUMO

Eukaryotic eIF5A and its bacterial orthologue EF-P are translation elongation factors whose task is to rescue ribosomes from stalling during the synthesis of proteins bearing particular sequences such as polyproline stretches. Both proteins are characterized by unique post-translational modifications, hypusination and lysinylation, respectively, which are essential for their function. An orthologue is present in all Archaea but its function is poorly understood. Here, we show that aIF5A of the crenarchaeum Sulfolobus solfataricus is hypusinated and forms a stable complex with deoxyhypusine synthase, the first enzyme of the hypusination pathway. The recombinant enzyme is able to modify its substrate in vitro resulting in deoxyhypusinated aIF5A. Moreover, with the aim to identify the enzyme involved in the second modification step, i.e. hypusination, a set of proteins interacting with aIF5A was identified.


Assuntos
Proteínas Arqueais/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Sulfolobus solfataricus/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo
8.
Elife ; 72018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29963983

RESUMO

The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.


Assuntos
Nucleotídeos de Adenina/biossíntese , Sistemas CRISPR-Cas , Endodesoxirribonucleases/genética , Oligorribonucleotídeos/biossíntese , Vírus de RNA/genética , RNA Viral/genética , Sulfolobus solfataricus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Oligonucleotídeos Fosforotioatos/farmacologia , Clivagem do RNA , Vírus de RNA/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sulfolobus solfataricus/efeitos dos fármacos , Sulfolobus solfataricus/imunologia , Sulfolobus solfataricus/metabolismo , Fatores de Tempo
9.
Methods Enzymol ; 600: 255-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458762

RESUMO

Repair of DNA double-strand breaks is a critical function shared by organisms in all three domains of life. The majority of mechanistic understanding of this process has come from characterization of bacterial and eukaryotic proteins, while significantly less is known about analogous activities in the third, archaeal domain. Despite the physical resemblance of archaea to bacteria, archaeal proteins involved in break repair are remarkably similar to those used by eukaryotes. Investigating the function of the archaeal version of these proteins is, in many cases, simpler than working with eukaryotic homologs owing to their robust nature and ease of purification. In this chapter, we describe methods for purification and activity analysis for the RadA recombinase and its paralogs from the hyperthermophilic acidophilic archaeon Sulfolobus solfataricus.


Assuntos
Proteínas Arqueais/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios Enzimáticos/métodos , Reparo de DNA por Recombinação , Sulfolobus solfataricus/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrofotometria/instrumentação , Espectrofotometria/métodos , Sulfolobus solfataricus/metabolismo
10.
Nucleic Acids Res ; 46(3): 1007-1020, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29228332

RESUMO

The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.


Assuntos
Proteínas Arqueais/genética , Sistemas CRISPR-Cas , DNA Intergênico/genética , Fatores Hospedeiros de Integração/genética , RNA Guia de Cinetoplastídeos/genética , Sulfolobus solfataricus/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Arqueal , DNA Intergênico/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo
11.
Nucleic Acids Res ; 45(20): 12025-12038, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149348

RESUMO

The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA Arqueal/metabolismo , Desoxirribonucleases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA , DNA Arqueal/química , DNA Arqueal/genética , Desoxirribonucleases/química , Desoxirribonucleases/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
12.
Chem Res Toxicol ; 30(11): 2013-2022, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28810119

RESUMO

Although translesion synthesis (TLS) polymerases play key roles in replicating DNA that contains nucleobase addition products (adducts), there are many unknowns about their function. The present work gains indispensable structural insights from molecular dynamics simulations on the replication of O6-benzyl-guanine (Bz-dG) prior to bond formation during dCTP insertion opposite the adduct by Dpo4. When combined with previous X-ray crystal structures of the Bz-dG extension complex, molecular details are now available for each stage during a single TLS replication cycle for this carcinogenic lesion. Our calculations illustrate that Bz-dG preferentially adopts an intercalated bulky moiety orientation in the Dpo4 preinsertion complex, which stabilizes the complex through Bz-dG interactions with the previously replicated 3'-base pair and positions the carcinogenic group in the dNTP binding site. Nevertheless, the maintained inherent flexibility of Bz-dG due to a stark lack of interactions with the polymerase or template DNA allows the bulky moiety to adopt a major groove position opposite an incoming dCTP in an orientation that is conducive for the experimentally observed nonmutagenic bypass. Comparison of Bz-dG and canonical dG replication clarifies that the experimentally observed decrease in dCTP binding affinity and replication efficiency upon adduct formation is likely caused by a combination of factors, including the required template nucleotide conformational change and destabilized template-dCTP hydrogen bonding. Although additional aspects of the replication process, such as the impact of the adduct on the nucleotidyl-transfer reaction, may also be important for fully rationalizing experimental replication data and must be considered in future work, the present contribution emphasizes the importance of considering the effect of DNA damage on the early stages of the TLS process.


Assuntos
Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Sulfolobus solfataricus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Adutos de DNA/química , Adutos de DNA/genética , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Guanina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
13.
Int J Mol Sci ; 18(4)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425930

RESUMO

Mathematical models are key to systems biology where they typically describe the topology and dynamics of biological networks, listing biochemical entities and their relationships with one another. Some (hyper)thermophilic Archaea contain an enzyme, called non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), which catalyzes the direct oxidation of glyceraldehyde-3-phosphate to 3-phosphoglycerate omitting adenosine 5'-triphosphate (ATP) formation by substrate-level-phosphorylation via phosphoglycerate kinase. In this study we formulate three hypotheses that could explain functionally why GAPN exists in these Archaea, and then construct and use mathematical models to test these three hypotheses. We used kinetic parameters of enzymes of Sulfolobus solfataricus (S. solfataricus) which is a thermo-acidophilic archaeon that grows optimally between 60 and 90 °C and between pH 2 and 4. For comparison, we used a model of Saccharomyces cerevisiae (S. cerevisiae), an organism that can live at moderate temperatures. We find that both the first hypothesis, i.e., that the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plus phosphoglycerate kinase (PGK) route (the alternative to GAPN) is thermodynamically too much uphill and the third hypothesis, i.e., that GAPDH plus PGK are required to carry the flux in the gluconeogenic direction, are correct. The second hypothesis, i.e., that the GAPDH plus PGK route delivers less than the 1 ATP per pyruvate that is delivered by the GAPN route, is only correct when GAPDH reaction has a high rate and 1,3-bis-phosphoglycerate (BPG) spontaneously degrades to 3PG at a high rate.


Assuntos
Glicólise , Temperatura Alta , Modelos Biológicos , Sulfolobus solfataricus/metabolismo , Trifosfato de Adenosina/metabolismo , Simulação por Computador , Gliceraldeído 3-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Cinética , Redes e Vias Metabólicas , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas
14.
Biochim Biophys Acta Gen Subj ; 1861(2): 86-96, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27777086

RESUMO

BACKGROUND: Alkylated DNA-protein alkyltransferases (AGTs) are conserved proteins that repair alkylation damage in DNA by using a single-step mechanism leading to irreversible alkylation of the catalytic cysteine in the active site. Trans-alkylation induces inactivation and destabilization of the protein, both in vitro and in vivo, likely triggering conformational changes. A complete picture of structural rearrangements occurring during the reaction cycle is missing, despite considerable interest raised by the peculiarity of AGT reaction, and the contribution of a functional AGT in limiting the efficacy of chemotherapy with alkylating drugs. METHODS: As a model for AGTs we have used a thermostable ortholog from the archaeon Sulfolobus solfataricus (SsOGT), performing biochemical, structural, molecular dynamics and in silico analysis of ligand-free, DNA-bound and mutated versions of the protein. RESULTS: Conformational changes occurring during lesion recognition and after the reaction, allowed us to identify a novel interaction network contributing to SsOGT stability, which is perturbed when a bulky adduct between the catalytic cysteine and the alkyl group is formed, a mandatory step toward the permanent protein alkylation. CONCLUSIONS: Our data highlighted conformational changes and perturbation of intramolecular interaction occurring during lesion recognition and catalysis, confirming our previous hypothesis that coordination between the N- and C-terminal domains of SsOGT is important for protein activity and stability. GENERAL SIGNIFICANCE: A general model of structural rearrangements occurring during the reaction cycle of AGTs is proposed. If confirmed, this model might be a starting point to design strategies to modulate AGT activity in therapeutic settings.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Alquilantes/metabolismo , Alquilação/fisiologia , Catálise , Reparo do DNA/fisiologia , Domínios Proteicos , Estabilidade Proteica , Sulfolobus solfataricus/metabolismo
15.
J Biol Chem ; 291(21): 11042-54, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27015803

RESUMO

The glycosylation of asparagine residues is the predominant protein modification in all three domains of life. An oligosaccharide chain is preassembled on a lipid-phospho carrier and transferred onto asparagine residues by the action of a membrane-bound enzyme, oligosaccharyltransferase. The oligosaccharide donor for the oligosaccharyl transfer reaction is dolichol-diphosphate-oligosaccharide in Eukaryota and polyprenol-diphosphate-oligosaccharide in Eubacteria. The donor in some archaeal species was reportedly dolichol-monophosphate-oligosaccharide. Thus, the difference in the number of phosphate groups aroused interest in whether the use of the dolichol-monophosphate type donors is widespread in the domain Archaea. Currently, all of the archaeal species with identified oligosaccharide donors have belonged to the phylum Euryarchaeota. Here, we analyzed the donor structures of two species belonging to the phylum Crenarchaeota, Pyrobaculum calidifontis and Sulfolobus solfataricus, in addition to two species from the Euryarchaeota, Pyrococcus furiosus and Archaeoglobus fulgidus The electrospray ionization tandem mass spectrometry analyses confirmed that the two euryarchaeal oligosaccharide donors were the dolichol-monophosphate type and newly revealed that the two crenarchaeal oligosaccharide donors were the dolichol-diphosphate type. This novel finding is consistent with the hypothesis that the ancestor of Eukaryota is rooted within the TACK (Thaum-, Aig-, Cren-, and Korarchaeota) superphylum, which includes Crenarchaea. Our comprehensive study also revealed that one archaeal species could contain two distinct oligosaccharide donors for the oligosaccharyl transfer reaction. The A. fulgidus cells contained two oligosaccharide donors bearing oligosaccharide moieties with different backbone structures, and the S. solfataricus cells contained two oligosaccharide donors bearing stereochemically different dolichol chains.


Assuntos
Archaea/metabolismo , Asparagina/metabolismo , Oligossacarídeos de Poli-Isoprenil Fosfato/química , Oligossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Archaea/classificação , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/metabolismo , Asparagina/química , Glicosilação , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Estrutura Molecular , Pyrobaculum/metabolismo , Pyrococcus furiosus/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Sulfolobus solfataricus/metabolismo , Espectrometria de Massas em Tandem
16.
FEBS J ; 283(7): 1351-67, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26835881

RESUMO

Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that may be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins that may serve as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the S. solfataricus protein Sso7d scaffold. Sso7d is a small cysteine-free DNA-binding protein (approximately 7 kDa, 63 amino acids), with a melting temperature of nearly 100 °C. Tight-binding Sso7d variants were selected for a diverse set of protein targets from a 10(10) member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely related human, bovine and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context. Furthermore, phage-displayed Sso7d variants retain their binding affinity after exposure to temperatures up to 70 °C. Taken together, our results suggest that the Sso7d scaffold will be a complementary addition to the range of non-antibody scaffold proteins that may be utilized in phage display. Variants of hyperthermostable binding proteins have potential applications in diagnostics and therapeutics for environments with extreme conditions of storage and deployment.


Assuntos
Proteínas Arqueais/metabolismo , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Ligação a DNA/metabolismo , Biblioteca de Peptídeos , Sulfolobus solfataricus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Arqueais/genética , Calorimetria/métodos , Varredura Diferencial de Calorimetria , Bovinos , Proteínas de Ligação a DNA/genética , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Albumina Sérica/genética , Albumina Sérica/metabolismo , Soroalbumina Bovina/genética , Soroalbumina Bovina/metabolismo , Sulfolobus solfataricus/genética , Temperatura
17.
Nucleic Acids Res ; 43(5): 2958-67, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25712103

RESUMO

The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical 'wings' of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Hidrólise , Espectroscopia de Ressonância Magnética , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
18.
Biochemistry ; 54(3): 639-51, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25569151

RESUMO

The (5'S)-8,5'-cyclo-2'-deoxyguanosine (S-cdG) lesion is produced from reactions of DNA with hydroxyl radicals generated from ionizing radiation or endogenous oxidative metabolisms. An elevated level of S-cdG has been detected in Xeroderma pigmentosum, Cockayne syndrome, breast cancer patients, and aged mice. S-dG blocks DNA replication and transcription in vitro and in human cells and produces mutant replication and transcription products in vitro and in vivo. Major cellular protection against S-dG includes nucleotide excision repair and translesion DNA synthesis. We used kinetic and crystallographic approaches to elucidate the molecular mechanisms of S-cdG-induced DNA replication stalling using model B-family Sulfolobus solfataricus P2 DNA polymerase B1 (Dpo1) and Y-family S. solfataricus P2 DNA polymerase IV (Dpo4). Dpo1 and Dpo4 inefficiently bypassed S-cdG with dCTP preferably incorporated and dTTP (for Dpo4) or dATP (for Dpo1) misincorporated. Pre-steady-state kinetics and crystallographic data mechanistically explained the low-efficiency bypass. For Dpo1, S-cdG attenuated Kd,dNTP,app and kpol. For Dpo4, the S-cdG-adducted duplex caused a 6-fold decrease in Dpo4:DNA binding affinity and significantly reduced the concentration of the productive Dpo4:DNA:dCTP complex. Consistent with the inefficient bypass, crystal structures of Dpo4:DNA(S-cdG):dCTP (error-free) and Dpo4:DNA(S-cdG):dTTP (error-prone) complexes were catalytically incompetent. In the Dpo4:DNA(S-cdG):dTTP structure, S-cdG induced a loop structure and caused an unusual 5'-template base clustering at the active site, providing the first structural evidence of the previously suggested template loop structure that can be induced by a cyclopurine lesion. Together, our results provided mechanistic insights into S-cdG-induced DNA replication stalling.


Assuntos
Replicação do DNA , Desoxiguanosina/análogos & derivados , Animais , Proteínas Arqueais/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Primers do DNA/metabolismo , DNA Bacteriano/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Humanos , Cinética , Camundongos , Modelos Moleculares , Nucleotídeos/metabolismo , Polimerização , Sulfolobus solfataricus/metabolismo
19.
Biochim Biophys Acta ; 1840(1): 80-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23962628

RESUMO

BACKGROUND: The current paradigm of intracellular redox chemistry maintains that cells establish a reducing environment maintained by a pool of small molecule and protein thiol to protect against oxidative damage. This strategy is conserved in mesophilic organisms from all domains of life, but has been confounded in thermophilic organisms where evidence suggests that intracellular proteins have abundant disulfides. METHODS: Chemical labeling and 2-dimensional gel electrophoresis were used to capture disulfide bonding in the proteome of the model thermophile Sulfolobus solfataricus. The redox poise of the metabolome was characterized using both chemical labeling and untargeted liquid chromatography mass spectrometry. Gene annotation was undertaken using support vector machine based pattern recognition. RESULTS: Proteomic analysis indicated the intracellular protein thiol of S. solfataricus was primarily in the disulfide form. Metabolic characterization revealed a lack of reduced small molecule thiol. Glutathione was found primarily in the oxidized state (GSSG), at relatively low concentration. Combined with genetic analysis, this evidence shows that pathways for synthesis of glutathione do exist in the archaeal domain. CONCLUSIONS: In observed thermophilic organisms, thiol abundance and redox poise suggest that this system is not directly utilized for protection against oxidative damage. Instead, a more oxidized intracellular environment promotes disulfide bonding, a critical adaptation for protein thermostability. GENERAL SIGNIFICANCE: Based on the placement of thermophilic archaea close to the last universal common ancestor in rRNA phylogenies, we hypothesize that thiol-based redox systems are derived from metabolic pathways originally tasked with promoting protein stability.


Assuntos
Dissulfetos/química , Glutationa/química , Metaboloma , Proteínas/química , Proteoma/análise , Sulfolobus solfataricus/metabolismo , Adaptação Fisiológica , Cromatografia Líquida , Cisteína/química , Cisteína/metabolismo , Dissulfetos/metabolismo , Eletroforese em Gel Bidimensional , Glutationa/metabolismo , Temperatura Alta , NADP/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
J Biol Inorg Chem ; 18(8): 905-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037219

RESUMO

Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31-39CCX35-36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) (57)Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four (57)Fe hyperfine couplings to the cluster in all three proteins. (13)C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. (57)Fe resonances in all three systems revealed unusually large (57)Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster's unique magnetic properties arise from the CCG binding motif.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Methanobacteriaceae/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases/metabolismo , Ácido Succínico/metabolismo , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/química , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Dados de Sequência Molecular , NAD(P)H Desidrogenase (Quinona)/química , Oxirredutases/química , Ligação Proteica , Estrutura Terciária de Proteína , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA