Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
J Radiat Res ; 62(5): 861-867, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34370027

RESUMO

Radon inhalation decreases the level of lipid peroxide (LPO); this is attributed to the activation of antioxidative functions. This activation contributes to the beneficial effects of radon therapy, but there are no studies on the risks of radon therapy, such as DNA damage. We evaluated the effect of radon inhalation on DNA damage caused by oxidative stress and explored the underlying mechanisms. Mice were exposed to radon inhalation at concentrations of 2 or 20 kBq/m3 (for one, three, or 10 days). The 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels decreased in the brains of mice that inhaled 20 kBq/m3 radon for three days and in the kidneys of mice that inhaled 2 or 20 kBq/m3 radon for one, three or 10 days. The 8-OHdG levels in the small intestine decreased by approximately 20-40% (2 kBq/m3 for three days or 20 kBq/m3 for one, three or 10 days), but there were no significant differences in the 8-OHdG levels between mice that inhaled a sham treatment and those that inhaled radon. There was no significant change in the levels of 8-oxoguanine DNA glycosylase, which plays an important role in DNA repair. However, the level of Mn-superoxide dismutase (SOD) increased by 15-60% and 15-45% in the small intestine and kidney, respectively, following radon inhalation. These results suggest that Mn-SOD probably plays an important role in the inhibition of oxidative DNA damage.


Assuntos
Dano ao DNA/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Radônio/farmacologia , Superóxido Dismutase/fisiologia , 8-Hidroxi-2'-Desoxiguanosina/análise , Administração por Inalação , Animais , Química Encefálica/efeitos da radiação , DNA Glicosilases/análise , Indução Enzimática/efeitos da radiação , Intestino Delgado/química , Intestino Delgado/efeitos da radiação , Rim/química , Rim/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Oxirredução , Radônio/administração & dosagem , Radônio/uso terapêutico , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética
2.
J Invest Dermatol ; 141(10): 2344-2353.e7, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33836179

RESUMO

With aging, the skin becomes thin and drastically loses collagen. Extracellular superoxide dismutase (EC-SOD), also known as superoxide dismutase (SOD) 3, is the major SOD in the extracellular matrix of the tissues and is well-known to maintain the reduction‒oxidation homeostasis and matrix components of such tissues. However, the role of EC-SOD in aging-associated reductions of skin thickness and collagen production is not well-studied. In this study, we compared the histological differences in the dorsal skin of EC-SOD‒overexpressing transgenic mice (Sod3+/+) of different age groups with that in wild-type mice and also determined the underlying signaling mechanism. Our data showed that the skin thickness in Sod3+/+ mice significantly increased with aging compared with that in wild-type male mice. Furthermore, Sod3+/+ mice had promoted collagen production through the activation of adenosine monophosphate-activated protein kinase and Nrf2/HO-1 pathways in aged mice. Interestingly, subcutaneous injection of adeno-associated virus‒overexpressing EC-SOD exhibited increased skin thickness and collagen expression. Furthermore, combined recombinant EC-SOD and dihydrotestosterone treatment synergistically elevated collagen production through the activation of TGFß in human dermal fibroblasts. Altogether, these results showed that EC-SOD prevents skin aging by promoting collagen production in vivo and in vitro. Therefore, we propose that EC-SOD may be a potential therapeutic target for antiaging in the skin.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Colágeno/biossíntese , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Envelhecimento da Pele , Superóxido Dismutase/fisiologia , Animais , Di-Hidrotestosterona/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Life Sci ; 267: 118929, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359244

RESUMO

OBJECTIVE: To investigate if the modification of human adipose-derived mesenchymal stem cells (hADSCs) by the antioxidants superoxide dismutase 2 (Sod2) and catalase (Cat) can attenuate the pathological conditions of intervertebral disc degeneration (IVD). METHODS: In vitro, MTT assay and qRT-PCR was used to detect cell proliferation and gene expressions in hADSCs transduced with Ad-null (an adenovirus vector containing no transgene expression cassette), Ad-Sod2 (recombinant adenovirus Sod2) and Ad-Cat. IVD mouse models were generated by needle puncture and treated with hADSCs with/without Ad-null/Ad-Sod2/Ad-Cat. X-ray evaluation, magnetic resonance imaging (MRI) analysis, histological analysis, immunohistochemistry, Western blots, ELISAs and qRT-PCR were performed. RESULTS: hADSCs transduced with Ad-Sod2 and Ad-Cat showed enhanced cell proliferation with the upregulation of SOX9, ACAN, and COL2. In vivo, IVD mice injected with hADSCs showed increased disc height index, MRI index and mean T2 intensities, as well as the attenuated histologic grading of the annulus fibrosus (AF) and NP accompanied by the upregulation of GAG and COL2, which were further improved in the Ad-Sod2 hADSC + IVD and Ad-Cat hADSC + IVD groups. Furthermore, the increased expression of IL-1ß, IL-6 and TNF-α was reduced in IVD mice injected with hADSCs. Compared with the hADSC + IVD group, the Ad-Sod2 hADSC/Ad-Cat hADSC + IVD groups had lower expression of pro-inflammatory factors. CONCLUSION: Modification of hADSCs by the antioxidants Sod2 and Cat improved the pathological condition of intervertebral disc tissues with increased GAG and COL2 expression, as well as reduced inflammation, thereby demonstrating a therapeutic effect in IVD.


Assuntos
Catalase/metabolismo , Degeneração do Disco Intervertebral/terapia , Superóxido Dismutase/metabolismo , Animais , Catalase/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/enzimologia , Degeneração do Disco Intervertebral/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/patologia , Camundongos , Distribuição Aleatória , Superóxido Dismutase/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Calcif Tissue Int ; 107(5): 474-488, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32767062

RESUMO

Wear particles released by joint implants are a major cause of osteolysis around the prosthesis by negatively affecting bone reconstruction. Bone marrow mesenchymal stem cells (BMMSCs) stimulated by wear particles showed an impaired osteogenic potential. Melatonin has been shown beneficial effects on intracellular antioxidant functions and bone formation; however, whether it could restore the osteogenic potential of BMMSCs inhibited by wear particles was unknown. This study aimed to evaluate the protective effect of melatonin on the osteogenic capacity of BMMSCs exposed to titanium (Ti) wear particles and to investigated the underlying mechanisms involving intracellular antioxidant properties. When BMMSCs were exposed to Ti particles in vitro, melatonin treatment successfully improved the matrix mineralization and expression of osteogenic markers in BMMSCs, while decreasing the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. The protective effect of melatonin on osteolysis was validated in a Ti particle-exposed murine calvarial model. Meanwhile, silent information regulator type 1 (SIRT1) and intracellular antioxidant enzymes were significantly up-regulated, particularly superoxide dismutase 2 (SOD2), in melatonin-treated BMMSCs. Furthermore, inhibition of SIRT1 by EX527 completely counteracted the protective effect of melatonin on Ti particle-treated BMMSCs, evidenced by the reduced expression of SOD2, increased ROS and superoxide, and decreased osteogenic differentiation. These results demonstrated that melatonin restored the osteogenic potential and improved the antioxidant properties of BMMSCs through the SIRT1 signaling pathway. Our findings suggest that melatonin is a promising candidate for treating osteolysis induced by wear particles.


Assuntos
Melatonina/uso terapêutico , Células-Tronco Mesenquimais , Osteogênese , Transdução de Sinais , Titânio/efeitos adversos , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Camundongos , Sirtuína 1/fisiologia , Superóxido Dismutase/fisiologia
5.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32591431

RESUMO

BACKGROUND: Tumor-infiltrating lymphocytes (TILs), mainly CD8+ cytotoxic T lymphocytes (CTL), are linked to immune-mediated control of human cancers and response to immunotherapy. Tumors have nonetheless developed specific mechanisms that selectively restrict T cell entry into the tumor microenvironment. The extracellular superoxide dismutase (SOD3) is an anti-oxidant enzyme usually downregulated in tumors. We hypothesize that upregulation of SOD3 in the tumor microenvironment might be a mechanism to boost T cell infiltration by normalizing the tumor-associated endothelium. RESULTS: Here we show that SOD3 overexpression in endothelial cells increased in vitro transmigration of naïve and activated CD4+ and CD8+ T cells, but not of myeloid cells. Perivascular expression of SOD3 also specifically increased CD4+ and CD8+ effector T cell infiltration into tumors and improved the effectiveness of adoptively transferred tumor-specific CD8+ T cells. SOD3-induced enhanced transmigration in vitro and tumor infiltration in vivo were not associated to upregulation of T cell chemokines such as CXCL9 or CXCL10, nor to changes in the levels of endothelial adhesion receptors such as intercellular adhesion molecule-1 (ICAM-1) or vascular cell adhesion molecule-1 (VCAM-1). Instead, SOD3 enhanced T cell infiltration via HIF-2α-dependent induction of specific WNT ligands in endothelial cells; this led to WNT signaling pathway activation in the endothelium, FOXM1 stabilization, and transcriptional induction of laminin-α4 (LAMA4), an endothelial basement membrane component permissive for T cell infiltration. In patients with stage II colorectal cancer, SOD3 was associated with increased CD8+ TIL density and disease-free survival. SOD3 expression was also linked to a T cell-inflamed gene signature using the COAD cohort from The Cancer Genome Atlas program. CONCLUSION: Our findings suggest that SOD3-induced upregulation of LAMA4 in endothelial cells boosts selective tumor infiltration by T lymphocytes, thus transforming immunologically "cold" into "hot" tumors. High SOD3 levels are associated with human colon cancer infiltration by CD8+ T cells, with potential consequences for the clinical outcome of these patients. Our results also uncover a cell type-specific, distinct activity of the WNT pathway for the regulation of T cell infiltration into tumors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Endoteliais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Superóxido Dismutase/genética , Células Tumorais Cultivadas , Microambiente Tumoral
6.
Neurobiol Dis ; 136: 104743, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931138

RESUMO

Rho GTPases play a central role in neuronal survival; however, the antagonistic relationship between Rac and Rho in the regulation of motor neuron survival remains poorly defined. In the current study, we demonstrate that treatment with NSC23766, a selective inhibitor of the Rac-specific guanine nucleotide exchange factors, Tiam1 and Trio, is sufficient to induce the death of embryonic stem cell (ESC)-derived motor neurons. The mode of cell death is primarily apoptotic and is characterized by caspase-3 activation, de-phosphorylation of ERK5 and AKT, and nuclear translocation of the BH3-only protein Bad. As opposed to the inhibition of Rac, motor neuron cell death is also induced by constitutive activation of Rho, via a mechanism that depends on Rho kinase (ROCK) activity. Investigation of Rac and Rho in the G93A mutant, human Cu, Zn-superoxide dismutase (hSOD1) mouse model of amyotrophic lateral sclerosis (ALS), revealed that active Rac1-GTP is markedly decreased in spinal cord motor neurons of transgenic mice at disease onset and end-stage, when compared to age-matched wild type (WT) littermates. Furthermore, although there is no significant change in active RhoA-GTP, total RhoB displays a striking redistribution from motor neuron nuclei in WT mouse spinal cord to motor neuron axons in end-stage G93A mutant hSOD1 mice. Collectively, these data suggest that the intricate balance between pro-survival Rac signaling and pro-apoptotic Rho/ROCK signaling is critical for motor neuron survival and therefore, disruption in the balance of their activities and/or localization may contribute to the death of motor neurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase/fisiologia , Quinases Associadas a rho/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Morte Celular/fisiologia , Feminino , GTP Fosfo-Hidrolases/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Mutação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Quinases Associadas a rho/genética
7.
Proc Natl Acad Sci U S A ; 116(47): 23534-23541, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31591207

RESUMO

Mitochondrial superoxide dismutase (SOD2) suppresses tumor initiation but promotes invasion and dissemination of tumor cells at later stages of the disease. The mechanism of this functional switch remains poorly defined. Our results indicate that as SOD2 expression increases acetylation of lysine 68 ensues. Acetylated SOD2 promotes hypoxic signaling via increased mitochondrial reactive oxygen species (mtROS). mtROS, in turn, stabilize hypoxia-induced factor 2α (HIF2α), a transcription factor upstream of "stemness" genes such as Oct4, Sox2, and Nanog. In this sense, our findings indicate that SOD2K68Ac and mtROS are linked to stemness reprogramming in breast cancer cells via HIF2α signaling. Based on these findings we propose that, as tumors evolve, the accumulation of SOD2K68Ac turns on a mitochondrial pathway to stemness that depends on HIF2α and may be relevant for the progression of breast cancer toward poor outcomes.


Assuntos
Neoplasias da Mama/patologia , Autorrenovação Celular/fisiologia , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/fisiologia , Superóxido Dismutase/fisiologia , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neoplasias da Mama/metabolismo , Reprogramação Celular , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/enzimologia , Invasividade Neoplásica , Proteínas de Neoplasias/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/química
8.
Yakugaku Zasshi ; 139(9): 1139-1144, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31474628

RESUMO

Excessive generation of reactive oxygen species (ROS) has been implicated in the progression of tumors. Superoxide dismutase 3 (SOD3) is a copper-containing secretory antioxidative enzyme that plays a critical role in redox homeostasis, particularly in extracellular spaces. Considerable evidence suggests that SOD3 protein expression is significantly decreased or lost in several tumor tissues, and this loss results in tumor metastasis. On the other hand, epigenetic disturbances, including DNA hyper-/hypomethylation, histone de/acetylation, and histone de/methylation, may be involved in tumorigenesis and the progression of metastasis. However, regulation of SOD3 in the tumor microenvironment and the involvement of epigenetics in its expression remain unclear. To elucidate the molecular mechanisms underlying SOD3 expression, we investigated the involvement of epigenetics, including DNA methylation and histone modifications, in its regulation in tumor cells and macrophages. SOD3 expression in human monocytic THP-1 cells and human lung cancer A549 cells was silenced by DNA hypermethylation within the SOD3 promoter region. Furthermore, the DNA demethylase, ten-eleven translocation 1, was shown for the first time to play a key role in regulation of DNA methylation within that region. We also demonstrated that myocyte enhancer factor 2 functioned as one of the transcription factors of SOD3 expression in THP-1 cells. Collectively, these novel results will contribute to the elucidation of epigenetic redox regulation, and may provide important insights into tumorigenesis and tumor metastasis.


Assuntos
Homeostase , Neoplasias/metabolismo , Oxirredução , Superóxido Dismutase/genética , Superóxido Dismutase/fisiologia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Carcinogênese/genética , Metilação de DNA/genética , Progressão da Doença , Epigênese Genética/genética , Expressão Gênica , Código das Histonas , Humanos , Metástase Neoplásica/genética , Espécies Reativas de Oxigênio/metabolismo
9.
PLoS One ; 14(3): e0213699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870480

RESUMO

Francisella tularensis is a Gram-negative, facultative intracellular pathogen and the causative agent of a lethal human disease known as tularemia. Due to its extremely high virulence and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a Category A Select Agent. As an intracellular pathogen, F. tularensis during its intracellular residence encounters a number of oxidative and nitrosative stresses. The roles of the primary antioxidant enzymes SodB, SodC and KatG in oxidative stress resistance and virulence of F. tularensis live vaccine strain (LVS) have been characterized in previous studies. However, very fragmentary information is available regarding the role of peroxiredoxin of the AhpC/TSA family (annotated as AhpC) of F. tularensis SchuS4; whereas the role of AhpC of F. tularensis LVS in tularemia pathogenesis is not known. This study was undertaken to exhaustively investigate the role of AhpC in oxidative stress resistance of F. tularensis LVS and SchuS4. We report that AhpC of F. tularensis LVS confers resistance against a wide range of reactive oxygen and nitrogen species, and serves as a virulence factor. In highly virulent F. tularensis SchuS4 strain, AhpC serves as a key antioxidant enzyme and contributes to its robust oxidative and nitrosative stress resistance, and intramacrophage survival. We also demonstrate that there is functional redundancy among primary antioxidant enzymes AhpC, SodC, and KatG of F. tularensis SchuS4. Collectively, this study highlights the differences in antioxidant defense mechanisms of F. tularensis LVS and SchuS4.


Assuntos
Antioxidantes/fisiologia , Francisella tularensis/enzimologia , Estresse Oxidativo , Peroxirredoxinas/fisiologia , Tularemia/microbiologia , Animais , Proteínas de Bactérias/fisiologia , Vacinas Bacterianas/imunologia , Francisella tularensis/patogenicidade , Teste de Complementação Genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Superóxido Dismutase/fisiologia , Tularemia/imunologia , Vacinas Atenuadas/imunologia , Virulência
10.
Environ Toxicol Pharmacol ; 68: 19-26, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30861468

RESUMO

Antioxidant enzymes play vital roles against oxidative stress induced by decabromodiphenyl ether (BDE-209), being widespread in marine environment. However, the effect of BDE-209 on antioxidant enzymes remains poorly understood in marine bivalves. In this study, the clams Mactra veneriformis were exposed to 0.1, 1, and 10 µg/L BDE-209 for 7 days and then maintained in clean seawater for 3 days as the depuration. The bioaccumulation of BDE-209 and the effects on superoxide dismutase, catalase, and glutathione peroxidase were investigated. BDE-209 accumulation was concentration-dependent and decreased by 36%-52% after recovery. Malondialdehyde contents increased in a time- and dose-dependent manner. mRNA expression and activity of antioxidant enzymes changed with different patterns and recovered after depuration. These results suggested that antioxidant systems were triggered to protect the clams from oxidative damage caused by BDE-209. Thus, this research is helpful in elucidating the effect of BDE-209 on antioxidant system in marine bivalves.


Assuntos
Bivalves/efeitos dos fármacos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/metabolismo , Catalase/fisiologia , Retardadores de Chama/análise , Glutationa Peroxidase/fisiologia , Éteres Difenil Halogenados/análise , Malondialdeído/metabolismo , Superóxido Dismutase/fisiologia , Poluentes Químicos da Água/análise
11.
Minerva Stomatol ; 68(1): 25-30, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30620163

RESUMO

BACKGROUND: Free radicals (FRs) are active chemical substances having unpaired electron(s) which participate in the causation of precancerous lesions or cancer in tobacco habituates. Alterations in the antioxidant levels are reflected throughout the antioxidant enzyme activities in blood, wherein erythrocytes are considered highly sensitive to those enzymes. Our study was therefore aimed to assess the effects of tobacco consumption on erythrocyte antioxidant enzyme- Superoxide dismutase (E-SOD) and evaluate its defensive action. METHODS: E-SOD was estimated in 32 participants categorized in 2 groups (tobacco users and controls). 3 mL venous blood was withdrawn and antioxidant levels were assessed using RANSOD kit (Randox, Catalogue No.-125) as per the manufacturer's instructions. The E-SOD activity was then determined using spectrophotometry and the data was statistically evaluated. RESULTS: The Two-tailed Paired t-test was applied in smokers-SOD intergroup (mean=-124.45, P<0.0001) and chewers-SOD intergroup (mean=-66.70, P=0.1017). The mean SOD values (139.72±36.94) in cases were found to be significantly lower as compared to controls (212.75±37.04). The lowest SOD level was seen with chewers compared to other groups. CONCLUSIONS: E-SOD was found to be lowest among tobacco chewers probably due to the fact of excessive enzyme activity against prolonged release of carcinogens. The variability in the enzyme activity envisaged its potential as a biomarker in establishing the oral potentially malignant disorders (OPMDs) much before the lesions arises or detect the progression of existing lesion to malignancy.


Assuntos
Eritrócitos/enzimologia , Superóxido Dismutase/fisiologia , Fumar Tabaco/metabolismo , Uso de Tabaco/metabolismo , Tabaco sem Fumaça , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Biochem Biophys Res Commun ; 509(4): 983-987, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654942

RESUMO

Articular cartilage defects are considered a major clinical problem because they cannot heal by themselves. To date, bone marrow-derived mesenchymal stem cells (BMSCs)-based therapy has been widely applied for cartilage repair. However, fibrocartilage was often generated after BMSC therapy; therefore, there is an urgent need to stimulate and maintain BMSCs chondrogenic differentiation. The specific role of superoxide dismutase 3 (SOD3) in chondrogenesis is unknown; therefore, the present study aimed to clarify whether SOD3 could facilitate the chondrogenic differentiation of BMSCs. We first evaluated SOD3 protein levels during chondrogenesis of BMSCs using plate cultures. We then tested whether SOD3 could facilitate chondrogenesis of BMSCs using knockdown or overexpression experiments. Increased SOD3 protein levels were observed during BMSCs chondrogenesis. SOD3 knockdown inhibited collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box 9 (SOX9) expression. Overexpression of SOD3 increased the levels of chondrogenesis markers (COL2A1, ACAN, and SOX9). Elevated superoxide anions were observed when SOD3 was knocked down. We concluded that SOD3 could facilitate chondrogenesis of BMSCs to improve cartilage regeneration.


Assuntos
Condrogênese , Células-Tronco Mesenquimais/citologia , Superóxido Dismutase/fisiologia , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Cartilagem Articular/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Regeneração/efeitos dos fármacos , Superóxido Dismutase/farmacologia
13.
Braz. j. med. biol. res ; 52(6): e8009, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1001539

RESUMO

The progression of myocardial injury secondary to hypertension is a complex process related to a series of physiological and molecular factors including oxidative stress. This study aimed to investigate whether moderate-intensity exercise (MIE) could improve cardiac function and oxidative stress in spontaneously hypertensive rats (SHRs). Eight-week-old male SHRs and age-matched male Wistar-Kyoto rats were randomly assigned to exercise training (treadmill running at a speed of 20 m/min for 1 h continuously) or kept sedentary for 16 weeks. Cardiac function was monitored by polygraph; cardiac mitochondrial structure was observed by scanning electron microscope; tissue free radical production was measured using dihydroethidium staining. Expression levels of SIRT3 and SOD2 protein were measured by western blot, and cardiac antioxidants were assessed by assay kits. MIE improved the cardiac function of SHRs by decreasing left ventricular systolic pressure (LVSP), and first derivation of LVP (+LVdP/dtmax and −LVdP/dtmax). In addition, exercise-induced beneficial effects in SHRs were mediated by decreasing damage to myocardial mitochondrial morphology, decreasing production of reactive oxygen species, increasing glutathione level, decreasing oxidized glutathione level, increasing expression of SIRT3/SOD2, and increasing activity of superoxide dismutase. Exercise training in SHRs improved cardiac function by inhibiting hypertension-induced myocardial mitochondrial damage and attenuating oxidative stresses, offering new insights into prevention and treatment of hypertension.


Assuntos
Animais , Masculino , Ratos , Pressão Sanguínea/fisiologia , Estresse Oxidativo/fisiologia , Hipertensão/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Cardiomiopatias/prevenção & controle , Condicionamento Físico Animal/fisiologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Superóxido Dismutase/fisiologia , Microscopia Eletrônica de Varredura , Modelos Animais de Doenças , Cardiomiopatias/fisiopatologia , Cardiomiopatias/diagnóstico por imagem
14.
Proc Natl Acad Sci U S A ; 115(39): 9797-9802, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201715

RESUMO

Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ΔrelA spoT mutant (ΔSR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.


Assuntos
Farmacorresistência Bacteriana Múltipla , Pseudomonas aeruginosa/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Gentamicinas/farmacologia , Ligases/metabolismo , Meropeném , Testes de Sensibilidade Microbiana , Ofloxacino/farmacologia , Pseudomonas aeruginosa/enzimologia , Transdução de Sinais , Superóxido Dismutase/fisiologia , Tienamicinas/farmacologia
15.
Taiwan J Obstet Gynecol ; 57(2): 217-226, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29673664

RESUMO

OBJECTIVE: To validate the gene expression profile obtained from the previous microarray analysis and to further study the biological functions of these genes in endometrial cancer. From our previous study, we identified 621 differentially expressed genes in laser-captured microdissected endometrioid endometrial cancer as compared to normal endometrial cells. Among these genes, 146 were significantly up-regulated in endometrial cancer. MATERIALS AND METHODS: A total of 20 genes were selected from the list of up-regulated genes for the validation assay. The qPCR confirmed that 19 out of the 20 genes were up-regulated in endometrial cancer compared with normal endometrium. RNA interference (RNAi) was used to knockdown the expression of the upregulated genes in ECC-1 and HEC-1A endometrial cancer cell lines and its effect on proliferation, migration and invasion were examined. RESULTS: Knockdown of MIF, SOD2, HIF1A and SLC7A5 by RNAi significantly decreased the proliferation of ECC-1 cells (p < 0.05). Our results also showed that the knockdown of MIF, SOD2 and SLC7A5 by RNAi significantly decreased the proliferation and migration abilities of HEC-1A cells (p < 0.05). Moreover, the knockdown of SLC38A1 and HIF1A by RNAi resulted in a significant decrease in the proliferation of HEC1A cells (p < 0.05). CONCLUSION: We have identified the biological roles of SLC38A1, MIF, SOD2, HIF1A and SLC7A5 in endometrial cancer, which opens up the possibility of using the RNAi silencing approach to design therapeutic strategies for treatment of endometrial cancer.


Assuntos
Neoplasias do Endométrio/genética , Inativação Gênica , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/fisiologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/fisiologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/fisiologia , Interferência de RNA , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/genética , Superóxido Dismutase/fisiologia , Regulação para Cima
16.
Sci Rep ; 7(1): 5235, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701774

RESUMO

Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Modelos Animais de Doenças , Glucosilceramidase/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Superóxido Dismutase/fisiologia , Idoso , Animais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Junção Neuromuscular/fisiologia , Células PC12 , Ratos , Transdução de Sinais
17.
J Bioenerg Biomembr ; 49(4): 325-333, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28616679

RESUMO

It is becoming increasingly clear that mitochondria drive cellular functions and in vivo phenotypes by directing the production rate and abundance of metabolites that are proposed to function as signaling molecules (Chandel 2015; Selak et al. 2005; Etchegaray and Mostoslavsky 2016). Many of these metabolites are intermediates that make up cellular metabolism, part of which occur in mitochondria (i.e. the TCA and urea cycles), while others are produced "on demand" mainly in response to alterations in the microenvironment in order to participate in the activation of acute adaptive responses (Mills et al. 2016; Go et al. 2010). Reactive oxygen species (ROS) are well suited for the purpose of executing rapid and transient signaling due to their short lived nature (Bae et al. 2011). Hydrogen peroxide (H2O2), in particular, possesses important characteristics including diffusibility and faster reactivity with specific residues such as methionine, cysteine and selenocysteine (Bonini et al. 2014). Therefore, it is reasonable to propose that H2O2 functions as a relatively specific redox signaling molecule. Even though it is now established that mtH2O2 is indispensable, at least for hypoxic adaptation and energetic and/or metabolic homeostasis (Hamanaka et al. 2016; Guzy et al. 2005), the question of how H2O2 is produced and regulated in the mitochondria is only partially answered. In this review, some roles of this indispensable signaling molecule in driving cellular metabolism will be discussed. In addition, we will discuss how H2O2 formation in mitochondria depends on and is controlled by MnSOD. Finally, we will conclude this manuscript by highlighting why a better understanding of redox hubs in the mitochondria will likely lead to new and improved therapeutics of a number of diseases, including cancer.


Assuntos
Mitocôndrias/metabolismo , Transdução de Sinais , Superóxido Dismutase/fisiologia , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução
18.
Oncogene ; 36(31): 4393-4404, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28368421

RESUMO

By causing mitochondrial DNA (mtDNA) mutations and oxidation of mitochondrial proteins, reactive oxygen species (ROS) leads to perturbations in mitochondrial proteostasis. Several studies have linked mtDNA mutations to metastasis of cancer cells but the nature of the mtDNA species involved remains unclear. Our data suggests that no common mtDNA mutation identifies metastatic cells; rather the metastatic potential of several ROS-generating mutations is largely determined by their mtDNA genomic landscapes, which can act either as an enhancer or repressor of metastasis. However, mtDNA landscapes of all metastatic cells are characterized by activation of the SIRT/FOXO/SOD2 axis of the mitochondrial unfolded protein response (UPRmt). The UPRmt promotes a complex transcription program ultimately increasing mitochondrial integrity and fitness in response to oxidative proteotoxic stress. Using SOD2 as a surrogate marker of the UPRmt, we found that in primary breast cancers, SOD2 is significantly increased in metastatic lesions. We propose that the ability of selected mtDNA species to activate the UPRmt is a process that is exploited by cancer cells to maintain mitochondrial fitness and facilitate metastasis.


Assuntos
DNA Mitocondrial/fisiologia , Metástase Neoplásica , Sirtuína 3/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box O3/fisiologia , Humanos , Mitocôndrias/patologia , Superóxido Dismutase/fisiologia
19.
Biochim Biophys Acta Bioenerg ; 1858(8): 628-632, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28087256

RESUMO

Reactive oxygen species (ROS) largely originating in the mitochondria play essential roles in the metabolic and (epi)genetic reprogramming of cancer cell evolution towards more aggressive phenotypes. Recent studies have indicated that the activity of superoxide dismutase (SOD2) may promote tumor progression by serving as a source of hydrogen peroxide (H2O2). H2O2 is a form of ROS that is particularly active as a redox agent affecting cell signaling due to its ability to freely diffuse out of the mitochondria and alter redox active amino acid residues on regulatory proteins. Therefore, there is likely a dichotomy whereas SOD2 can be considered a protective antioxidant, as well as a pro-oxidant during cancer progression, with these effects depending on the accumulation and detoxification of H2O2. Glutathione peroxidase-1 GPX1, is a selenium-dependent scavenger of H2O2 which partitions between the mitochondria and the cytosol. Epidemiologic studies indicated that allelic variations in the SOD2 and GPX1 genes alter the distribution and relative concentrations of SOD2 and GPX1 in mitochondria, thereby affecting the dynamic between the production and elimination of H2O2. Experimental and epidemiological evidence supporting a conflicting role of SOD2 in tumor biology, and epidemiological evidence that SOD2 and GPX1 can interact to affect cancer risk and progression indicated that it is the net accumulation of mitochondrial H2O2 (mtH2O2) resulting from of the balance between the activities SOD2 and anti-oxidants such as GPX1 that determines whether SOD2 prevents or promotes oncogenesis. In this review, research supporting the idea that GPX1 is a gatekeeper restraining the oncogenic power of mitochondrial ROS generated by SOD2 is presented. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Assuntos
Transformação Celular Neoplásica , Glutationa Peroxidase/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Neoplasias/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/fisiologia , Alelos , Progressão da Doença , Glutationa Peroxidase/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Neoplasias/epidemiologia , Oxirredução , Superóxido Dismutase/genética , Glutationa Peroxidase GPX1
20.
Eur J Cardiothorac Surg ; 50(6): 1035-1044, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27999072

RESUMO

OBJECTIVES: Cardiac surgery with cardiopulmonary bypass (CPB) provokes ischaemia and reperfusion injury (IRI). Superoxide is a main mediator of IRI and is detoxified by superoxide dismutases (SODs). Extracellular SOD (SOD3) is the prevailing isoform in the cardiovascular system. Its mutation is associated with elevated risk for ischaemic heart disease as epidemiological and experimental studies suggest. We investigated the influence of SOD3 on IRI in the context of CPB and hypothesized a protective role for this enzyme. METHODS: Mutant rats with loss of SOD3 function induced by amino acid shift, SOD3-E124D, (SOD3 mutant; n = 9) were examined in a model of CPB with deep hypothermic circulatory arrest provoking global IRI and compared with SOD3 competent controls (n = 8) as well as sham animals (n = 7). SOD3 plasma activity was photometrically measured with a diazo dye-forming reagent. Activation of cardioprotective rescue pathways (p44-42 MAPK and STAT3), cleavage of PARP-1, expression of SOD isoforms (SOD1, 2 and 3) and nitric oxide metabolism were analysed on the protein level by western blot. To evaluate whether SOD3 inactivity directly affects the myocardium, we isolated adult cardiac myocytes, which underwent hypoxia prior to protein analyses. RESULTS: Relative SOD3 plasma activity in SOD3 mutant rats was significantly decreased by at least 50% compared with that in SOD3 competent controls (prior to euthanasia P = 0.008). Effectively, physiological parameters [heart rate and mean arterial pressure (MAP)] indicated a trend toward impaired handling of ischaemia and reperfusion in SOD3 mutants: after reperfusion, mean heart rate was 46 bpm lower (P = 0.083) and MAP 8 mmHg lower (P = 0.288) than that in SOD competent controls. Decreased SOD3 activity led to reduced activation of cardioprotective rescue pathways in vivo and in vitro: relative activation of p44-42 MAPK (P = 0.074) and STAT3 (P = 0.027) was more than 30% decreased in heart and aortic tissue of SOD3 mutants (activity normalized to sham control as 1). After CPB, cleavage of PARP-1 was doubled in the control group (P = 0.017), but increased 3-fold in SOD3 mutants (P = 0.002). Furthermore, 3-nitrotyrosine as a measure of decreased nitric oxide bioavailability and other SOD isoforms (SOD1 and 2) were increased. CONCLUSIONS: Collectively, SOD3 has a significant cardioprotective role in cases of IRI and directly affects the myocardium as hypothesized. Exploration of intervention strategies targeting SOD3 may provide therapeutic options against IRI and associated systemic inflammation.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Isquemia Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/etiologia , Superóxido Dismutase/fisiologia , Animais , Gasometria , Western Blotting , Parada Cardíaca Induzida/efeitos adversos , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Isoformas de Proteínas/fisiologia , Ratos , Ratos Mutantes , Superóxido Dismutase/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA