Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 222: 106535, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38901714

RESUMO

Human superoxide dismutase (hSOD1) plays an important role in the aerobic metabolism and free radical eliminating process in the body. However, the production of existing SOD faces problems such as complex purification methods, high costs, and poor product stability. This experiment achieved low-cost, rapid, and simple purification of hSOD1 through ammonium sulfate precipitation method and heat resistance of recombinant protein. We constructed a recombinant protein hSOD1-LR containing a resilin-like polypeptide tag and expressed it. The interest protein was purified by ammonium sulfate precipitation method, and the results showed that the purification effect of 1.5 M (NH4)2SO4 was the best, with an enzyme activity recovery rate of 80 % after purification. Then, based on its thermal stability, further purification of the interest protein at 60 °C revealed a purification fold of up to 24 folds, and the purification effect was similar to that of hSOD1-6xHis purified by nickel column affinity chromatography. The stability of hSOD1-LR showed that the recombinant protein hSOD1-LR has better stability than hSOD-6xHis. hSOD1-LR can maintain 76.57 % activity even after 150 min of reaction at 70 °C. At same time, hSOD1-LR had activity close to 80 % at pH < 5, indicating good acid resistance. In addition, after 28 days of storage at 4 °C and 40 °C, hSOD1-LR retained 92 % and 87 % activity, respectively. Therefore, the method of purifying hSOD1-LR through salt precipitation may have positive implications for the study of SOD purification.


Assuntos
Proteínas Recombinantes de Fusão , Humanos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/isolamento & purificação , Superóxido Dismutase-1/metabolismo , Estabilidade Enzimática , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Clonagem Molecular , Proteínas de Insetos
2.
ChemMedChem ; 19(19): e202400244, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38863235

RESUMO

Proteinopathies or amyloidoses are a group of life-threatening disorders that result from misfolding of proteins and aggregation into toxic insoluble amyloid aggregates. Amyloid aggregates have low clearance from the body due to the insoluble nature, leading to their deposition in various organs and consequent organ dysfunction. While amyloid deposition in the central nervous system leads to neurodegenerative diseases that mostly cause dementia and difficulty in movement, several other organs, including heart, liver and kidney are also affected by systemic amyloidoses. Regardless of the site of amyloid deposition, misfolding and structural alteration of the precursor proteins play the central role in amyloid formation. Kinetic stabilizers are an emerging class of drugs, which act like pharmacological chaperones to stabilize the native state structure of amyloidogenic proteins and to increase the activation energy barrier that is required for adopting a misfolded structure or conformation, ultimately leading to the inhibition of protein aggregation. In this review, we discuss the kinetic stabilizers that stabilize the native quaternary structure of transthyretin, immunoglobulin light chain and superoxide dismutase 1 that cause transthyretin amyloidoses, light chain amyloidosis and familial amyotrophic lateral sclerosis, respectively.


Assuntos
Proteínas Amiloidogênicas , Humanos , Cinética , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/antagonistas & inibidores , Proteínas Amiloidogênicas/química , Agregados Proteicos/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/antagonistas & inibidores , Pré-Albumina/metabolismo , Pré-Albumina/química , Pré-Albumina/antagonistas & inibidores , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Relevância Clínica
3.
Anal Chem ; 96(16): 6493-6500, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38595323

RESUMO

Mitochondria play a crucial role in maintaining cellular homeostasis, and the depolarization of mitochondrial membrane potential (MMP) is an important signal of apoptosis. Additionally, protein misfolding and aggregation are closely related to diseases including neurodegenerative diseases, diabetes, and cancers. However, the interaction between MMP changes and disease-related protein aggregation was rarely studied. Herein, we report a novel "turn-on" fluorescent probe MitoRhB that specifically targets to mitochondria for Cu2+ detection in situ. The fluorescence lifetime (τ) of MitoRhB exhibits a positive correlation with MMP changes, allowing us to quantitatively determine the relative MMP during SOD1 (A4 V) protein aggregation. Finally, we found that (1) the increasing concentrations of copper will accelerate the depolarization of mitochondria and reduce MMP; (2) the depolarization of mitochondria can intensify the degree of protein aggregation, suggesting a new routine of copper-induced cell death mediated through abnormal MMP depolarization and protein aggregation.


Assuntos
Cobre , Corantes Fluorescentes , Potencial da Membrana Mitocondrial , Agregados Proteicos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cobre/química , Cobre/metabolismo , Humanos , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Mitocôndrias/química , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/química , Células HeLa
4.
Biochem Genet ; 62(5): 3658-3680, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38196030

RESUMO

One of the recognized motor neuron degenerative disorders is amyotrophic lateral sclerosis (ALS). By now, several mutations have been reported and linked to ALS patients, some of which are induced by mutations in the human superoxide dismutase (hSOD1) gene. The ALS-provoking mutations are located throughout the structure of hSOD1 and promote the propensity to aggregate. Despite numerous investigations, the underlying mechanism related to the toxicity of mutant hSOD1 through the gain of a toxic function is still vague. We surveyed two mutant forms of hSOD1 by removing and adding cysteine at positions 146 and 72, respectively, to investigate the biochemical characterization and amyloid formation. Our findings predicted the harmful and destabilizing impact of two SOD1 mutants using multiple programs. The specific activity of the wild-type form was about 1.42- and 1.92-fold higher than that of C146R and G72C mutants, respectively. Comparative structural studies using CD spectropolarimetry, and intrinsic and ANS fluorescence showed alterations in secondary structure content, exposure of hydrophobic patches, and structural compactness of WT-hSOD1 vs. mutants. We demonstrated that two mutants were able to promote amyloid-like aggregates under amyloid induction circumstances (50-mM Tris-HCl pH 7.4, 0.2-M KSCN, 50-mM DTT, 37 °C, 190 rpm). Monitoring aggregates were done using an enhancement in thioflavin T fluorescence and alterations in Congo red absorption. The mutants accelerated fibrillation with subsequently greater fluorescence amplitude and a shorter lag time compared to WT-SOD1. These findings support the aggregation of ALS-associated SOD1 mutants as an integral part of ALS pathology.


Assuntos
Esclerose Lateral Amiotrófica , Mutação , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/química , Amiloide/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/genética
5.
Comput Biol Chem ; 107: 107967, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844376

RESUMO

Aggregation of proteins is a biological phenomenon caused by misfolded proteins. Human superoxide dismutase (hSOD1) misfolding and aggregation underlie the neurological illness amyotrophic lateral sclerosis (ALS). The most significant contributing factor to ALS is genetic point mutations in SOD1. particularly, D101G mutant is the most harmful because it significantly reduces the life expectancy of patients. Subsequently, the use of natural polyphenolic flavonoids is strongly recommended to reduce the amyloidogenic behavior of protopathic proteins. In this study, using computational parameters such as protein-ligand interaction and molecular dynamics (MD) simulation analyses, we are trying to identify a pharmacodynamically promising flavonoid compound that can effectively inhibit the pathogenic behavior of the D101G mutant. Epigallocatechin-gallate (EGCG), Hesperidin, Isorhamnetin, and Diosmetin were identified as potential leads in a preliminary screening of flavonoids to anti-amyloid action. The results of MD showed that the binding of flavonoids to D101G mutant caused changes in stability, hydrophobicity of protein, and flexibility, as well as significantly led to the restoration of lost hydrogen bonds. Secondary structure analysis showed that protein destabilization and the increased propensity of ß-sheet caused by the mutation were restored to the wild-type state upon binding of flavonoids. Besides, to differentiate aggregation, we elucidated alterations in the free energy landscape (FEL) and dynamic cross-correlation matrix (DCCM) of WT-SOD1 and mutant (unbound /bound) states. Among flavonoids, Epigallocatechin-gallate and Hesperidin had the most therapeutic efficacy against the D101G mutant. Therefore, Epigallocatechin-gallate and Hesperidin promise considerable therapeutic potential to develop highly effective inhibitors in reducing fatal and irreversible ALS.


Assuntos
Esclerose Lateral Amiotrófica , Hesperidina , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Hesperidina/farmacologia , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Mutação
6.
J Biol Chem ; 299(8): 105040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442237

RESUMO

Cu/Zn-superoxide dismutase (CuZnSOD) is an enzyme that binds a copper and zinc ion and also forms an intramolecular disulfide bond. Together with the copper ion as the active site, the disulfide bond is completely conserved among these proteins; indeed, the disulfide bond plays critical roles in maintaining the catalytically competent conformation of CuZnSOD. Here, we found that a CuZnSOD protein in Paenibacillus lautus (PaSOD) has no Cys residue but exhibits a significant level of enzyme activity. The crystal structure of PaSOD revealed hydrophobic and hydrogen-bonding interactions in substitution for the disulfide bond of the other CuZnSOD proteins. Also notably, we determined that PaSOD forms a homodimer through an additional domain with a novel fold at the N terminus. While the advantages of lacking Cys residues and adopting a novel dimer configuration remain obscure, PaSOD does not require a disulfide-introducing/correcting system for maturation and could also avoid misfolding caused by aberrant thiol oxidations under an oxidative environment.


Assuntos
Proteínas de Bactérias , Dissulfetos , Superóxido Dismutase-1 , Cobre , Cisteína , Dissulfetos/química , Superóxido Dismutase-1/química , Zinco , Proteínas de Bactérias/química , Paenibacillus , Dobramento de Proteína
7.
Phys Chem Chem Phys ; 25(8): 6232-6246, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36756854

RESUMO

Pathology of superoxide dismutase 1 (SOD1) aggregation is linked to a neurodegenerative disease known as amyotrophic lateral sclerosis (ALS). Without suitable post-translational modifications (PTMs), the protein structure tends to become aggregation-prone. Understanding the role of PTMs and targeting the aggregation-prone SOD1 with small molecules can be used to design a strategy to inhibit its aggregation. Microsecond long molecular dynamics (MD) simulations followed by free energy surface (FES) analyses show that the loss of structure in the apo monomer happens locally and stepwise. Removing the disulfide bond from apoprotein leads to further instability in the zinc-binding loop, giving rise to non-native protein conformations. Further, it was found that these non-native conformations have a higher propensity to form a non-native dimer. We chose three structurally similar polyphenols based on their binding energies and investigated their impact on SOD1 aggregation kinetics. MD simulations of apo-SOD1SH/corkscrew fibril-polyphenol complexes were also carried out. The effect of polyphenols was seen on fibril elongation as well. Based on the experiments and MD simulation results, it can be inferred that the choice of inhibitors is influenced not only by the binding energy but also by dimer interface stabilization, the proclivity to form non-native dimers, the propensity to break fibrils, and the propensity to decrease the rate of elongation. The polyphenols with 3' and 4' hydroxyl groups are better inhibitors of SOD1 aggregation.


Assuntos
Doenças Neurodegenerativas , Humanos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Amiloide/química , Conformação Proteica , Proteínas Amiloidogênicas , Mutação
8.
Commun Biol ; 5(1): 1085, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224351

RESUMO

Eukaryotic Cu, Zn-superoxide dismutase (SOD1) is primarily responsible for cytotoxic filament formation in amyotrophic lateral sclerosis (ALS) neurons. Two cysteine residues in SOD1 form an intramolecular disulfide bond. This study aims to explore the molecular mechanism of SOD1 filament formation by cysteine overoxidation in sporadic ALS (sALS). In this study, we determined the crystal structure of the double mutant (C57D/C146D) SOD1 that mimics the overoxidation of the disulfide-forming cysteine residues. The structure revealed the open and relaxed conformation of loop IV containing the mutated Asp57. The double mutant SOD1 produced more contagious filaments than wild-type protein, promoting filament formation of the wild-type SOD1 proteins. Importantly, we further found that HOCl treatment to the wild-type SOD1 proteins facilitated their filament formation. We propose a feasible mechanism for SOD1 filament formation in ALS from the wild-type SOD1, suggesting that overoxidized SOD1 is a triggering factor of sALS. Our findings extend our understanding of other neurodegenerative disorders associated with ROS stresses at the molecular level.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Cisteína , Dissulfetos/química , Humanos , Mutação , Espécies Reativas de Oxigênio , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/química , Zinco/metabolismo
9.
J Mol Model ; 28(4): 89, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279789

RESUMO

Mutant superoxide dismutase 1 (SOD1) may form cyclic structures due to its greater instability from aberrant demetallization and oxidation of cysteine bonds. This cyclic structure may allow SOD1 to form ion channels on membranes such as the mitochondrial membrane, causing imbalances in the concentration of intracellular ions as a potential mechanism for the progressive neuron death involved in amyotrophic lateral sclerosis (ALS). Using docking programs within modeling software, models of mutant SOD1 dimers and eventually ring oligomers were constructed based on known descriptions of such structures in addition to information on the orientation of the models associated with a membrane. The resulting structure consists of a ring of four demetallated mutant SOD1 dimers with cross-linked disulfide bonds. Stability of the octamer model was supported by the molecular dynamics simulations. Further analysis of the octamer model indicated that its inner- and outer-pore diameters were stable, matching the dimensions of known SOD1 ion channels.


Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase , Esclerose Lateral Amiotrófica/genética , Cisteína/química , Dissulfetos/química , Humanos , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética
10.
Metallomics ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34402915

RESUMO

Bacterial Cu/Zn-superoxide dismutase (SodC) is an enzyme catalyzing the disproportionation of superoxide radicals, to which the binding of copper and zinc ions and the formation of an intramolecular disulfide bond are essential. We previously showed that Escherichia coli SodC (SodC) was prone to spontaneous degradation in vivo in an immature form prior to the introduction of the disulfide bond. The post-translational maintenance involving the metal binding and the disulfide formation would thus control the stability as well as the enzymatic function of SodC; however, a mechanism of the SodC maturation remains obscure. Here, we show that the disulfide-reduced SodC can secure a copper ion as well as a zinc ion through the thiolate groups. Furthermore, the disulfide-reduced SodC was found to bind cuprous and cupric ions more tightly than SodC with the disulfide bond. The thiolate groups ligating the copper ion were then autooxidized to form the intramolecular disulfide bond, leading to the production of enzymatically active SodC. Based upon the experiments in vitro, therefore, we propose a mechanism for the activation of SodC, in which the conserved Cys residues play a dual role: the acquisition of a copper ion for the enzymatic activity and the formation of the disulfide bond for the structural stabilization.


Assuntos
Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Superóxido Dismutase-1/metabolismo , Catálise , Cobre/metabolismo , Dissulfetos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Ligação Proteica , Conformação Proteica , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase-1/química , Zinco/metabolismo
11.
Vet J ; 274: 105710, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34166783

RESUMO

Canine degenerative myelopathy (DM) is a progressive and fatal neurodegenerative disorder that has been linked to mutations in the superoxide dismutase 1 (SOD1) gene. The accumulation of misfolded protein aggregates in spinal neurons and astrocytes is implicated as an important pathological process in DM; however, the mechanism of protein aggregate formation is largely unknown. In human neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), cell-to-cell propagation of disease-relevant proteins has been demonstrated. Therefore, in this study, propagation of aggregation-forming property of mutant SOD1 protein in DM in vitro was investigated. This study demonstrated that aggregates composed of canine wild type SOD1 protein were increased by co-transfection with canine mutant SOD1 (E40K SOD1), indicating intracellular propagation of SOD1 aggregates. Further, aggregated recombinant SOD1 proteins were released from the cells, taken up by other cells, and induced further aggregate formation of normally folded SOD1 proteins. These results suggest intercellular propagation of SOD1 aggregates. The hypothesis of cell-to-cell propagation of SOD1 aggregates proposed in this study may underly the progressive nature of DM pathology.


Assuntos
Doenças do Cão/genética , Agregação Patológica de Proteínas/veterinária , Superóxido Dismutase-1/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doenças do Cão/patologia , Cães , Camundongos , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/veterinária , Plasmídeos , Dobramento de Proteína , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/veterinária , Superóxido Dismutase-1/química , Transfecção
12.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923808

RESUMO

Superoxide dismutase 1 (SOD1) is a metalloenzyme with high structural stability, but a lack of Cu and Zn ions decreases its stability and enhances the likelihood of misfolding, which is a pathological hallmark of amyotrophic lateral sclerosis (ALS). A growing body of evidence has demonstrated that misfolded SOD1 has prion-like properties such as transmissibility between cells and intracellular propagation of misfolding of natively folded SOD1. Recently, we found that SOD1 is misfolded in the cerebrospinal fluid of sporadic ALS patients, providing a route by which misfolded SOD1 spreads via the extracellular environment of the central nervous system. Unlike intracellular misfolded SOD1, it is unknown which extracellular misfolded species is most relevant to prion-like properties. Here, we determined a conformational feature of extracellular misfolded SOD1 that is linked to prion-like properties. Using culture media from motor neuron-like cells, NSC-34, extracellular misfolded wild-type, and four ALS-causing SOD1 mutants were characterized as a metal-free, disulfide oxidized form of SOD1 (apo-SOD1S-S). Extracellular misfolded apo-SOD1S-S exhibited cell-to-cell transmission from the culture medium to recipient cells as well as intracellular propagation of SOD1 misfolding in recipient cells. Furthermore, culture medium containing misfolded apo-SOD1S-S exerted cytotoxicity to motor neuron-like cells, which was blocked by removal of misfolded apo-SOD1S-S from the medium. We conclude that misfolded apo-SOD1S-S is a primary extracellular species that is linked to prion-like properties.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Espaço Extracelular/metabolismo , Neurônios Motores/metabolismo , Dobramento de Proteína , Superóxido Dismutase-1/química , Animais , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Camundongos , Neurônios Motores/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo
13.
Chem Rev ; 121(4): 2545-2647, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33543942

RESUMO

Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.


Assuntos
Amiloide/química , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Doenças Neurodegenerativas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas , Deficiências na Proteostase/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
14.
Biochemistry ; 60(10): 735-746, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33635054

RESUMO

The structural stability of proteins is found to markedly change upon their transfer to the crowded interior of live cells. For some proteins, the stability increases, while for others, it decreases, depending on both the sequence composition and the type of host cell. The mechanism seems to be linked to the strength and conformational bias of the diffusive in-cell interactions, where protein charge is found to play a decisive role. Because most proteins, nucleotides, and membranes carry a net-negative charge, the intracellular environment behaves like a polyanionic (Z:1) system with electrostatic interactions different from those of standard 1:1 ion solutes. To determine how such polyanion conditions influence protein stability, we use negatively charged polyacetate ions to mimic the net-negatively charged cellular environment. The results show that, per Na+ equivalent, polyacetate destabilizes the model protein SOD1barrel significantly more than monoacetate or NaCl. At an equivalent of 100 mM Na+, the polyacetate destabilization of SOD1barrel is similar to that observed in live cells. By the combined use of equilibrium thermal denaturation, folding kinetics, and high-resolution nuclear magnetic resonance, this destabilization is primarily assigned to preferential interaction between polyacetate and the globally unfolded protein. This interaction is relatively weak and involves mainly the outermost N-terminal region of unfolded SOD1barrel. Our findings point thus to a generic influence of polyanions on protein stability, which adds to the sequence-specific contributions and needs to be considered in the evaluation of in vivo data.


Assuntos
Neoplasias Ovarianas/enzimologia , Polieletrólitos/química , Conformação Proteica , Superóxido Dismutase-1/química , Estabilidade Enzimática , Feminino , Humanos , Modelos Moleculares , Neoplasias Ovarianas/tratamento farmacológico , Polieletrólitos/farmacologia , Dobramento de Proteína , Termodinâmica
15.
Arch Biochem Biophys ; 697: 108701, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33259795

RESUMO

During cellular respiration, radicals, such as superoxide, are produced, and in a large concentration, they may cause cell damage. To combat this threat, the cell employs the enzyme Cu/Zn Superoxide Dismutase (SOD1), which converts the radical superoxide into molecular oxygen and hydrogen peroxide, through redox reactions. Although this is its main function, recent studies have shown that the SOD1 has other functions that deviates from its original one including activation of nuclear gene transcription or as an RNA binding protein. This comprehensive review looks at the most important aspects of human SOD1 (hSOD1), including the structure, properties, and characteristics as well as transcriptional and post-translational modifications (PTM) that the enzyme can receive and their effects, and its many functions. We also discuss the strategies currently used to analyze it to better understand its participation in diseases linked to hSOD1 including Amyotrophic Lateral Sclerosis (ALS), cancer, and Parkinson.


Assuntos
Antioxidantes/metabolismo , Superóxido Dismutase-1/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/química , Saúde , Humanos , Superóxido Dismutase-1/química
16.
PLoS One ; 15(4): e0232408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353034

RESUMO

Mitochondria are quantitatively the most important sources of reactive oxygen species (ROS) which are formed as by-products during cellular respiration. ROS generation occurs when single electrons are transferred to molecular oxygen. This leads to a number of different ROS types, among them superoxide. Although most studies focus on ROS generation in the mitochondrial matrix, the intermembrane space (IMS) is also important in this regard. The main scavengers for the detoxification of superoxide in the IMS are Cu, Zn superoxide dismutase (SOD1) and cytochrome-c. Similar to ROS, certain reactive carbonyl species are known for their high reactivity. The consequences are deleterious modifications to essential components compromising cellular functions and contributing to the etiology of severe pathological conditions like cancer, diabetes and neurodegeneration. In this study, we investigated the susceptibility of SOD1 and cytochrome-c to in vitro glycation by the dicarbonyl methylglyoxal (MGO) and the resulting effects on their structure. We utilized experimental techniques like immunodetection of the MGO-mediated modification 5-hydro-5-methylimidazolone, differential scanning calorimetry, fluorescence emission and circular dichroism measurements. We found that glycation of cytochrome-c leads to monomer aggregation, an altered secondary structure (increase in alpha helical content) and slightly more compact folding. In addition to structural changes, glycated cytochrome-c displays an altered thermal unfolding behavior. Subjecting SOD1 to MGO does not influence its secondary structure. However, similar to cytochrome-c, subunit aggregation is observed under denaturating conditions. Furthermore, the appearance of a second peak in the calorimetry diagram indirectly suggests de-metallation of SOD1 when high MGO levels are used. In conclusion, our data demonstrate that MGO has the potential to alter several structural parameters in important proteins of energy metabolism (cytochrome-c) and antioxidant defense (cytochrome-c, SOD1).


Assuntos
Citocromos c/química , Mitocôndrias/metabolismo , Aldeído Pirúvico/farmacologia , Superóxido Dismutase-1/química , Animais , Citocromos c/metabolismo , Cavalos , Mitocôndrias/efeitos dos fármacos , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo
17.
J Mol Neurosci ; 70(11): 1742-1770, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32415434

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and is characterized by degeneration and axon loss from the upper motor neuron, that descends from the lower motor neuron in the brain. Over the period, assorted outcomes from medical findings, molecular pathogenesis, and structural and biophysical studies have abetted in providing thoughtful insights underlying the importance of disease-causing genes in ALS. Consequently, numerous mechanisms were proposed for the pathogenesis of ALS, considering protein mutations, aggregation, and misfolding. Besides, the answers to the majority of ALS cases that happen to be sporadic still remain obscure. The application in discovering susceptibility factors in ALS contemplating the genetic factors is to be further dissevered in the future years with innovation in research studies. Hence, this review targets in revisiting the breakthroughs on the disease-causing genes related with ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Predisposição Genética para Doença , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
18.
J Biol Chem ; 295(21): 7301-7316, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284329

RESUMO

Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Homeodomínio/química , Agregação Patológica de Proteínas , Superóxido Dismutase-1/química , Proteínas Supressoras de Tumor/química , Substituição de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação de Sentido Incorreto , Superóxido Dismutase-1/genética , Proteínas Supressoras de Tumor/genética
19.
Mol Cell Biochem ; 466(1-2): 117-128, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32056106

RESUMO

Aberrant structural formations of Cu/Zn superoxide dismutase enzyme (SOD1) are the probable mechanism by which circumscribed mutations in the SOD1 gene cause familial amyotrophic lateral sclerosis (ALS1). SOD1 forms aberrant structures which can proceed by nucleation to insoluble aggregates. Here, the SOD1 aggregation reaction was investigated predominantly by time-course studies on ALS1 variants G85R, G37R, D101G, and D101N in human embryonic kidney cells (HEK293FT), with analysis by detergent ultracentrifugation extractions and high-resolution PAGE methodologies. Nucleation was found to be pseudo-zeroth order and dependent on time and concentration at constant 37.0 °C and pH 7.4. The predominant subsets of the total SOD1 expression set which comprised the nucleation phase were both soluble and insoluble inactive monomers, trimers, and hexamers with reduced intra-disulfide bonds. Superoxide exposure via paraquat initiated the formation of SOD1 trimers in untransfected SH-SY5Y cells and increased the aggregation propensity of G85R in HEK293FT. These data show the kinetic formation of aberrant SOD1 subsets implicated in ALS1 and indicate that superoxide substrate may initiate its radical polymerization. In an instance of the utility of methodological reductionism in molecular theory: though many ALS1 variants retain their global enzymatic activity, the SOD1 subsets most implicated in causing ALS1 do not retain their specific activity.


Assuntos
Mutação de Sentido Incorreto , Agregação Patológica de Proteínas/metabolismo , Superóxido Dismutase-1/metabolismo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Agregação Patológica de Proteínas/genética , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética
20.
Redox Biol ; 30: 101421, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31931282

RESUMO

Methylglyoxal (MG) is a highly reactive aldehyde spontaneously formed in human cells mainly as a by-product of glycolysis. Such endogenous metabolite reacts with proteins, nucleotides and lipids forming advanced glycation end-products (AGEs). MG binds to arginine, lysine and cysteine residues of proteins causing the formation of stable adducts that can interfere with protein function. Among the proteins affected by glycation, MG has been found to react with superoxide dismutase 1 (SOD1), a fundamental anti-oxidant enzyme that is abundantly expressed in neurons. Considering the high neuronal susceptibility to MG-induced oxidative stress, we sought to investigate by mass spectrometry and NMR spectroscopy which are the structural modifications induced on SOD1 by the reaction with MG. We show that MG reacts preferentially with the disulfide-reduced, demetallated form of SOD1, gradually causing its unfolding, and to a lesser extent, with the intermediate state of maturation - the reduced, zinc-bound homodimer - causing its gradual monomerization. These results suggest that MG could impair the correct maturation of SOD1 in vivo, thus both increasing cellular oxidative stress and promoting the cytotoxic misfolding and aggregation process of SOD1.


Assuntos
Aldeído Pirúvico/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Sítios de Ligação , Glicólise , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Estresse Oxidativo , Ligação Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA