Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biophys J ; 123(14): 2012-2023, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38155577

RESUMO

Shaker potassium channels have been an essential model for studying inactivation of ion channels and shaped our earliest understanding of N-type vs. C-type mechanisms. In early work describing C-type inactivation, López-Barneo and colleagues systematically characterized numerous mutations of Shaker residue T449, demonstrating that this position was a key determinant of C-type inactivation rate. In most of the closely related mammalian Kv1 channels, however, a persistent enigma has been that residue identity at this position has relatively modest effects on the rate of inactivation in response to long depolarizations. In this study, we report alternative ways to measure or elicit conformational changes in the outer pore associated with C-type inactivation. Using a strategically substituted cysteine in the outer pore, we demonstrate that mutation of Kv1.2 V381 (equivalent to Shaker T449) or W366 (Shaker W434) markedly increases susceptibility to modification by extracellularly applied MTSET. Moreover, due to the cooperative nature of C-type inactivation, Kv1.2 assembly in heteromeric channels markedly inhibits MTSET modification of this substituted cysteine in neighboring subunits. The identity of Kv1.2 residue V381 also markedly influences function in conditions that bias channels toward C-type inactivation, namely when Na+ is substituted for K+ as the permeant ion or when channels are blocked by an N-type inactivation particle (such as Kvß1.2). Overall, our findings illustrate that in mammalian Kv1 channels, the identity of the T449-equivalent residue can strongly influence function in certain experimental conditions, even while having modest effects on apparent inactivation during long depolarizations. These findings contribute to reconciling differences in experimental outcomes in many Kv1 channels vs. Shaker.


Assuntos
Ativação do Canal Iônico , Canal de Potássio Kv1.2 , Animais , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.2/química , Canal de Potássio Kv1.2/genética , Mutação , Superfamília Shaker de Canais de Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Humanos
2.
J Gen Physiol ; 144(3): 221-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25156116

RESUMO

Many voltage-gated K(+) channels exhibit C-type inactivation. This typically slow process has been hypothesized to result from dilation of the outer-most ring of the carbonyls in the selectivity filter, destroying this ring's ability to bind K(+) with high affinity. We report here strong enhancement of C-type inactivation upon extracellular addition of 10-40 mM Ca(2+) or 5-50 µM La(3+). These multivalent cations mildly increase the rate of C-type inactivation during depolarization and markedly promote inactivation and/or suppress recovery when membrane voltage (V(m)) is at resting levels (-80 to -100 mV). At -80 mV with 40 mM Ca(2+) and 0 mM K(+) externally, ShBΔN channels with the mutation T449A inactivate almost completely within 2 min or less with no pulsing. This behavior is observed only in those mutants that show C-type inactivation on depolarization and is distinct from the effects of Ca(2+) and La(3+) on activation (opening and closing of the V(m)-controlled gate), i.e., slower activation of K(+) channels and a positive shift of the mid-voltage of activation. The Ca(2+)/La(3+) effects on C-type inactivation are antagonized by extracellular K(+) in the low millimolar range. This, together with the known ability of Ca(2+) and La(3+) to block inward current through K(+) channels at negative voltage, strongly suggests that Ca(2+)/La(3+) acts at the outer mouth of the selectivity filter. We propose that at -80 mV, Ca(2+) or La(3+) ions compete effectively with K(+) at the channel's outer mouth and prevent K(+) from stabilizing the filter's outer carbonyl ring.


Assuntos
Cálcio/farmacologia , Ativação do Canal Iônico , Lantânio/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética
3.
Biophys J ; 105(12): 2724-32, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24359744

RESUMO

Measurements of inter- and intramolecular distances are important for monitoring structural changes and understanding protein interaction networks. Fluorescence resonance energy transfer and functionalized chemical spacers are the two predominantly used strategies to map short-range distances in living cells. Here, we describe the development of a hybrid approach that combines the key advantages of spectroscopic and chemical methods to estimate dynamic distance information from labeled proteins. Bifunctional spectroscopic probes were designed to make use of adaptable-anchor and length-varied spacers to estimate molecular distances by exploiting short-range collisional electron transfer. The spacers were calibrated using labeled polyproline peptides of defined lengths and validated by molecular simulations. This approach was extended to estimate distance restraints that enable us to evaluate the resting-state model of the Shaker potassium channel.


Assuntos
Simulação de Dinâmica Molecular , Superfamília Shaker de Canais de Potássio/química , Sequência de Aminoácidos , Animais , Transferência Ressonante de Energia de Fluorescência , Dados de Sequência Molecular , Mutação , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus
4.
Biochim Biophys Acta ; 1833(12): 3166-3175, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24036102

RESUMO

The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K(+) channel beta 2 subunit (Kvß2), an accessory subunit of voltage-gated K(+) channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kvß2 association. Biotinylation assays in the presence of Kvß2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kvß subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane.


Assuntos
Subunidades Proteicas/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Biotinilação , Membrana Celular/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Proteínas Recombinantes/metabolismo , Superfamília Shaker de Canais de Potássio/química
5.
Am J Physiol Cell Physiol ; 305(4): C468-78, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23761630

RESUMO

The human ether-a-go-go related (hERG) potassium channel has unusual functional characteristics in that the rates of channel activation and deactivation are much slower than inactivation, which is attributed to specific structural elements within the NH2 terminus and the S1-S4 voltage-sensing domains (VSD). Although the charged residues in the VSD have been extensively modified and mutated as a result, the role and importance of specific hydrophobic residues in the S4 has been much less explored in studies of hERG gating. We found that charged, but not neutral or hydrophobic, amino acid substitution of isoleucine 521 at the outer end of the S4 transmembrane domain resulted in channels activating at much more negative voltages associated with a marked hyperpolarization of the conductance-voltage (G-V) relationship. The contributions of different physicochemical properties to this effect were probed by chemical modification of channels substituted with cysteine at position I521. When positively charged reagents including tetramethyl-rhodamine-5-maleimide (TMRM), 1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)oxazol-2-yl] pyridinium methane-sulfonate (PyMPO), [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET), and 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) were bound to the cysteine, I521C channels activated at more negative membrane potentials. To examine the contributions to hERG gating of other residues at the outer end of S4 (520-528), we performed a cysteine scan combined with MTSET modification. Only L520C, along with I521C, shows a substantial hyperpolarizing shift of the G-V relationship upon MTSET modification. The data indicate that the neutral, hydrophobic residue I521 at the extracellular end of S4 is critical for stabilizing the closed conformation of the hERG channel relative to the open state and by comparison with Shaker supports the alignment of hERG I521 with Shaker L361.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico , Sequência de Aminoácidos , Animais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico/efeitos dos fármacos , Isoleucina , Potenciais da Membrana , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
6.
PLoS One ; 7(11): e49070, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145073

RESUMO

Recent studies have explored the utility of Fourier transform infrared spectroscopy (FTIR) in dynamic monitoring of soluble protein-protein interactions. Here, we investigated the applicability of FTIR to detect interaction between synthetic soluble and phospholipid-embedded peptides corresponding to, respectively, a voltage-gated potassium (Kv) channel inactivation domain (ID) and S4-S6 of the Shaker Kv channel (KV1; including the S4-S5 linker "pre-inactivation" ID binding site). KV1 was predominantly α-helical at 30°C when incorporated into dimyristoyl-l-α-phosphatidylcholine (DMPC) bilayers. Cooling to induce a shift in DMPC from liquid crystalline to gel phase reversibly decreased KV1 helicity, and was previously shown to partially extrude a synthetic S4 peptide. While no interaction was detected in liquid crystalline DMPC, upon cooling to induce the DMPC gel phase a reversible amide I peak (1633 cm(-1)) consistent with novel hydrogen bond formation was detected. This spectral shift was not observed for KV1 in the absence of ID (or vice versa), nor when the non-inactivating mutant V7E ID was applied to KV1 under similar conditions. Alteration of salt or redox conditions affected KV1-ID hydrogen bonding in a manner suggesting electrostatic KV1-ID interaction favored by a hairpin conformation for the ID and requiring extrusion of one or more KV1 domains from DMPC, consistent with ID binding to S4-S5. These findings support the utility of FTIR in detecting reversible interactions between soluble and membrane-embedded proteins, with lipid state-sensitivity of the conformation of the latter facilitating control of the interaction.


Assuntos
Proteínas de Membrana , Peptídeos , Superfamília Shaker de Canais de Potássio , Canais de Potássio Shaw , Dimiristoilfosfatidilcolina/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Canais de Potássio Shaw/química , Canais de Potássio Shaw/metabolismo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Mol Membr Biol ; 29(8): 321-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22881396

RESUMO

Voltage-gated ion (K(+), Na(+), Ca(2+)) channels contain a pore domain (PD) surrounded by four voltage sensing domains (VSD). Each VSD is made up of four transmembrane helices, S1-S4. S4 contains 6-7 positively charged residues (arginine/lysine) separated two hydrophobic residues, whereas S1-S3 contribute to two negatively charged clusters. These structures are conserved among all members of the voltage-gated ion channel family and play essential roles in voltage gating. The role of S4 charged residues in voltage gating is well established: During depolarization, they move out of the membrane electric field, exerting a mechanical force on channel gates, causing them to open. However, the role of the intervening hydrophobic residues in voltage sensing is unclear. Here we studied the role of these residues in the prototypical Shaker potassium channel. We have altered the physicochemical properties of both charged and hydrophobic positions of S4 and examined the effect of these modifications on the gating properties of the channel. For this, we have introduced cysteines at each of these positions, expressed the mutants in Xenopus oocytes, and examined the effect of in situ addition of charge, via Cd(2+), on channel gating by two-electrode voltage clamp. Our results reveal a face of the S4 helix (comprising residues L358, L361, R365 and R368) where introduction of charge at hydrophobic positions destabilises the closed state and removal of charges from charged positions has an opposite effect. We propose that hydrophobic residues play a crucial role in limiting gating to a physiological voltage range.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Cádmio/farmacologia , Cisteína/genética , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Íons , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Transporte Proteico/efeitos dos fármacos , Xenopus
8.
Proc Natl Acad Sci U S A ; 109(31): 12800-4, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802655

RESUMO

The structural model of a K(V) (K(+)-selective, voltage-gated) channel in the open state is known (Protein Data Bank ID code 2R9R). Each subunit of the channel has four negatively charged residues distributed in the transmembrane segments S1, S2, and S3 that bind to and facilitate the movement within the membrane of the positively charged, voltage-sensing residues of S4. When extrapolated to the closed state, the two outermost negatively charged residues are exposed to extracellular fluid and not bound to S4 residues, all of which have theoretically been driven inward by voltage. If this closed state model is correct, these residues are available to bind external cations. We examined the effects of La(3+) on voltage-gated Shaker K(+) channels. Addition of the trivalent cation La(3+) (50 µM) extracellularly markedly prolongs the lag that precedes channel opening and slows the subsequent rise of K(+) current (I(K)) at all voltages. Decay kinetics of I(K) at negative voltages are unaltered. Gating current (I(g)) recorded from a nonconducting mutant shows that La(3+) reduces the initial amplitude of I(g) nearly twofold. We postulate that, in the resting state, La(3+) binds to the unoccupied, outermost negative residues, hindering outward S4 motion, thus increasing the lag on activation and slowing the rise of I(K). In the activated state, La(3+) is displaced by outward movement of arginine residues in S4; La(3+), therefore, is not present to affect channel closing. The results give strong support to the closed state model of the K(V) channel and a clear explanation of the effect of multivalent cations on cellular excitability.


Assuntos
Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Lantânio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Mutação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética
9.
Nature ; 485(7396): 133-6, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22522931

RESUMO

A number of functionally important actions of proteins are mediated by short, intrinsically disordered peptide segments, but the molecular interactions that allow disordered domains to mediate their effects remain a topic of active investigation. Many K+ channel proteins, after initial channel opening, show a time-dependent reduction in current flux, termed 'inactivation', which involves movement of mobile cytosolic peptide segments (approximately 20-30 residues) into a position that physically occludes ion permeation. Peptide segments that produce inactivation show little amino-acid identity and tolerate appreciable mutational substitutions without disrupting the inactivation process. Solution nuclear magnetic resonance of several isolated inactivation domains reveals substantial conformational heterogeneity with only minimal tendency to ordered structures. Channel inactivation mechanisms may therefore help us to decipher how intrinsically disordered regions mediate functional effects. Whereas many aspects of inactivation of voltage-dependent K+ channels (Kv) can be described by a simple one-step occlusion mechanism, inactivation of the voltage-dependent large-conductance Ca2+-gated K+ (BK) channel mediated by peptide segments of auxiliary ß-subunits involves two distinguishable kinetic steps. Here we show that two-step inactivation mediated by an intrinsically disordered BK ß-subunit peptide involves a stereospecific binding interaction that precedes blockade. In contrast, blocking mediated by a Shaker Kv inactivation peptide is consistent with direct, simple occlusion by a hydrophobic segment without substantial steric requirement. The results indicate that two distinct types of molecular interaction between disordered peptide segments and their binding sites produce qualitatively similar functions.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Aminoácidos/metabolismo , Animais , Ligação Competitiva , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Camundongos , Oócitos/metabolismo , Peptídeos/química , Potássio/metabolismo , Ligação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus laevis
10.
J Chem Phys ; 134(16): 165102, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21528981

RESUMO

How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no quantitative comparison has yet been made. The A/D model makes a network of predictions for how the elementary steps and the channel occupancy vary with both concentration and voltage. In addition, the proposed theoretical framework suggests a new way of plotting the energetics of the simulated system using a one-dimensional permeation coordinate that uses electric potential energy as a metric for the net fractional progress through the permeation mechanism. This approach has the potential to provide a quantitative connection between atomistic simulations and permeation experiments for the first time.


Assuntos
Modelos Químicos , Superfamília Shaker de Canais de Potássio/química , Simulação por Computador , Cinética , Simulação de Dinâmica Molecular , Permeabilidade
11.
J Neurosci Methods ; 199(1): 1-9, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21497167

RESUMO

FlaSh-YFP, a fluorescent protein (FP) voltage sensor that is a fusion of the Shaker potassium channel with yellow fluorescent protein (YFP), is primarily expressed in the endoplasmic reticulum (ER) of mammalian cells, possibly due to misfolded monomers. In an effort to improve plasma membrane expression, the FP was split into two non-fluorescent halves. Each half was randomly inserted into Shaker monomers via a transposon reaction. Shaker subunits containing the 5' half were co-expressed with Shaker subunits containing the 3' half. Tetramerization of Shaker subunits is required for re-conjugation of the FP. The misfolded monomers trapped in ER are unlikely to tetramerize and reconstitute the beta-can structure, and thus intracellular fluorescence might be reduced. This split-can transposon approach yielded 56 fluorescent probes, 30 (54%) of which were expressed at the plasma membrane and were capable of optically reporting changes in membrane potential. The largest signal from these novel FP-sensors was a -1.4% in ΔF/F for a 100 mV depolarization, with on time constants of about 15 ms and off time constants of about 200 ms. This split-can transposon approach has the potential to improve other multimeric probes.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/química , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Potenciais da Membrana , Proteínas de Membrana/química , Fragmentos de Peptídeos/química , Superfamília Shaker de Canais de Potássio/química , Proteínas de Bactérias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Citosol/química , Citosol/ultraestrutura , Elementos de DNA Transponíveis , Corantes Fluorescentes/farmacocinética , Humanos , Rim/citologia , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Modelos Moleculares , Mutação de Sentido Incorreto , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Transfecção
12.
J Biol Chem ; 285(38): 29286-94, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20605786

RESUMO

Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca(2+) and K(+) channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K(+) channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H(2)O(2). We show that H(2)O(2) rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H(2)O(2) and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H(2)O(2)-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys(168) located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H(2)O(2). The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys(168) as a critical target for H(2)O(2), and implicate ROS-mediated control of the K(+) channel in regulating mineral nutrient partitioning within the plant.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Linhagem Celular , Eletrofisiologia , Humanos , Simulação de Dinâmica Molecular , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/genética
13.
Nature ; 466(7303): 272-5, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613845

RESUMO

The coupled interplay between activation and inactivation gating is a functional hallmark of K(+) channels. This coupling has been experimentally demonstrated through ion interaction effects and cysteine accessibility, and is associated with a well defined boundary of energetically coupled residues. The structure of the K(+) channel KcsA in its fully open conformation, in addition to four other partial channel openings, richly illustrates the structural basis of activation-inactivation gating. Here, we identify the mechanistic principles by which movements on the inner bundle gate trigger conformational changes at the selectivity filter, leading to the non-conductive C-type inactivated state. Analysis of a series of KcsA open structures suggests that, as a consequence of the hinge-bending and rotation of the TM2 helix, the aromatic ring of Phe 103 tilts towards residues Thr 74 and Thr 75 in the pore-helix and towards Ile 100 in the neighbouring subunit. This allows the network of hydrogen bonds among residues Trp 67, Glu 71 and Asp 80 to destabilize the selectivity filter, allowing entry to its non-conductive conformation. Mutations at position 103 have a size-dependent effect on gating kinetics: small side-chain substitutions F103A and F103C severely impair inactivation kinetics, whereas larger side chains such as F103W have more subtle effects. This suggests that the allosteric coupling between the inner helical bundle and the selectivity filter might rely on straightforward mechanical deformation propagated through a network of steric contacts. Average interactions calculated from molecular dynamics simulations show favourable open-state interaction-energies between Phe 103 and the surrounding residues. We probed similar interactions in the Shaker K(+) channel where inactivation was impaired in the mutant I470A. We propose that side-chain rearrangements at position 103 mechanically couple activation and inactivation in KcsA and a variety of other K(+) channels.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais de Potássio/química , Canais de Potássio/metabolismo , Streptomyces lividans/química , Regulação Alostérica , Proteínas de Bactérias/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Fenilalanina/metabolismo , Canais de Potássio/genética , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Relação Estrutura-Atividade
14.
J Gen Physiol ; 135(5): 415-31, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20385745

RESUMO

In ether-à-go-go (eag) K(+) channels, extracellular divalent cations bind to the resting voltage sensor and thereby slow activation. Two eag-specific acidic residues in S2 and S3b coordinate the bound ion. Residues located at analogous positions are approximately 4 A apart in the x-ray structure of a Kv1.2/Kv2.1 chimera crystallized in the absence of a membrane potential. It is unknown whether these residues remain in proximity in Kv1 channels at negative voltages when the voltage sensor domain is in its resting conformation. To address this issue, we mutated Shaker residues I287 and F324, which correspond to the binding site residues in eag, to aspartate and recorded ionic and gating currents in the presence and absence of extracellular Mg(2+). In I287D+F324D, Mg(2+) significantly increased the delay before ionic current activation and slowed channel opening with no readily detectable effect on closing. Because the delay before Shaker opening reflects the initial phase of voltage-dependent activation, the results indicate that Mg(2+) binds to the voltage sensor in the resting conformation. Supporting this conclusion, Mg(2+) shifted the voltage dependence and slowed the kinetics of gating charge movement. Both the I287D and F324D mutations were required to modulate channel function. In contrast, E283, a highly conserved residue in S2, was not required for Mg(2+) binding. Ion binding affected activation by shielding the negatively charged side chains of I287D and F324D. These results show that the engineered divalent cation binding site in Shaker strongly resembles the naturally occurring site in eag. Our data provide a novel, short-range structural constraint for the resting conformation of the Shaker voltage sensor and are valuable for evaluating existing models for the resting state and voltage-dependent conformational changes that occur during activation. Comparing our data to the chimera x-ray structure, we conclude that residues in S2 and S3b remain in proximity throughout voltage-dependent activation.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico/fisiologia , Magnésio/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Feminino , Potenciais da Membrana/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/citologia , Ligação Proteica/fisiologia , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Xenopus laevis
15.
Can J Physiol Pharmacol ; 87(6): 411-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19526034

RESUMO

Voltage clamp fluorimetry (VCF) utilizes fluorescent probes that covalently bind to cysteine residues introduced into proteins and emit light as a function of their environment. Measurement of this emitted light during membrane depolarization reveals changes in the emission level as the environment of the labelled residue changes. This allows for the correlation of channel gating events with movement of specific protein moieties, at nanosecond time resolution. Since the pioneering use of this technique to investigate Shaker potassium channel activation movements, VCF has become an invaluable technique used to understand ion channel gating. This review summarizes the theory and some of the data on the application of the VCF technique. Although its usage has expanded beyond voltage-gated potassium channels and VCF is now used in a number of other voltage- and ligand-gated channels, we will focus on studies conducted in Shaker potassium channels, and what they have told us about channel activation and inactivation gating.


Assuntos
Fluorometria , Ativação do Canal Iônico/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , Animais , Corantes Fluorescentes , Humanos , Modelos Moleculares , Mutação , Técnicas de Patch-Clamp , Conformação Proteica , Rodaminas , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética
16.
Biophys J ; 96(10): 4006-12, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19450472

RESUMO

A dihedral energy correction (CMAP) term has been recently included in the CHARMM force field to obtain a more accurate description of the peptide backbone. Its importance in improving dynamical properties of proteins and preserving their stability in long molecular-dynamics simulations has been established for several globular proteins. Here we investigate its role in maintaining the structure and function of two potassium channels, Shaker K(v)1.2 and KcsA, by performing molecular-dynamics simulations with and without the CMAP correction in otherwise identical systems. We show that without CMAP, it is not possible to maintain the experimentally observed orientations of the carbonyl groups in the selectivity filter in Shaker, and the channel loses its selectivity property. In the case of KcsA, the channel retains some selectivity even without CMAP because the carbonyl orientations are relatively better preserved compared to Shaker.


Assuntos
Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo , Cristalografia por Raios X , Conformação Proteica , Especificidade por Substrato , Termodinâmica
17.
Biosystems ; 94(3): 267-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18721853

RESUMO

The ball and chain mechanism is a widely accepted theory for the inactivation of the Shaker K(+)channel. In this paper we propose a diffusive model that predicts a rate of inactivation that is comparable to the experimental measurements.


Assuntos
Modelos Químicos , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Membrana Celular/metabolismo , Peptídeos/metabolismo
18.
J Biol Chem ; 282(34): 24485-9, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17606609

RESUMO

The movement of ions across cell membranes is essential for a wide variety of fundamental physiological processes, including secretion, muscle contraction, and neuronal excitation. This movement is possible because of the presence in the cell membrane of a class of integral membrane proteins dubbed ion channels. Ion channels, thanks to the presence of aqueous pores in their structure, catalyze the passage of ions across the otherwise ion-impermeable lipid bilayer. Ion conduction across ion channels is highly regulated, and in the case of voltage-dependent K(+) channels, the molecular foundations of the voltage-dependent conformational changes leading to the their open (conducting) configuration have provided most of the driving force for research in ion channel biophysics since the pioneering work of Hodgkin and Huxley (Hodgkin, A. L., and Huxley, A. F. (1952) J. Physiol. 117, 500-544). The voltage-dependent K(+) channels are the prototypical voltage-gated channels and govern the resting membrane potential. They are responsible for returning the membrane potential to its resting state at the termination of each action potential in excitable membranes. The pore-forming subunits (alpha) of many voltage-dependent K(+) channels and modulatory beta-subunits exist in the membrane as one component of macromolecular complexes, able to integrate a myriad of cellular signals that regulate ion channel behavior. In this review, we have focused on the modulatory effects of beta-subunits on the voltage-dependent K(+) (Kv) channel and on the large conductance Ca(2+)- and voltage-dependent (BK(Ca)) channel.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , Animais , Transporte Biológico , Biofísica/métodos , Íons , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Potenciais da Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , Conformação Molecular , Oxirredução , Estrutura Terciária de Proteína , Escorpiões , Superfamília Shaker de Canais de Potássio/química , Transdução de Sinais
19.
J Gen Physiol ; 129(5): 437-55, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17470663

RESUMO

Lowering external pH reduces peak current and enhances current decay in Kv and Shaker-IR channels. Using voltage-clamp fluorimetry we directly determined the fate of Shaker-IR channels at low pH by measuring fluorescence emission from tetramethylrhodamine-5-maleimide attached to substituted cysteine residues in the voltage sensor domain (M356C to R362C) or S5-P linker (S424C). One aspect of the distal S3-S4 linker alpha-helix (A359C and R362C) reported a pH-induced acceleration of the slow phase of fluorescence quenching that represents P/C-type inactivation, but neither site reported a change in the total charge movement at low pH. Shaker S424C fluorescence demonstrated slow unquenching that also reflects channel inactivation and this too was accelerated at low pH. In addition, however, acidic pH caused a reversible loss of the fluorescence signal (pKa = 5.1) that paralleled the reduction of peak current amplitude (pKa = 5.2). Protons decreased single channel open probability, suggesting that the loss of fluorescence at low pH reflects a decreased channel availability that is responsible for the reduced macroscopic conductance. Inhibition of inactivation in Shaker S424C (by raising external K(+) or the mutation T449V) prevented fluorescence loss at low pH, and the fluorescence report from closed Shaker ILT S424C channels implied that protons stabilized a W434F-like inactivated state. Furthermore, acidic pH changed the fluorescence amplitude (pKa = 5.9) in channels held continuously at -80 mV. This suggests that low pH stabilizes closed-inactivated states. Thus, fluorescence experiments suggest the major mechanism of pH-induced peak current reduction is inactivation of channels from closed states from which they can activate, but not open; this occurs in addition to acceleration of P/C-type inactivation from the open state.


Assuntos
Ativação do Canal Iônico , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Corantes Fluorescentes , Fluorometria , Concentração de Íons de Hidrogênio , Cinética , Potenciais da Membrana , Microinjeções , Modelos Biológicos , Mutação , Oócitos , Técnicas de Patch-Clamp , Conformação Proteica , Rodaminas , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Xenopus laevis
20.
Proc Natl Acad Sci U S A ; 104(19): 7904-9, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17470814

RESUMO

It is now well established that the voltage-sensing S4 segment in voltage-dependent ion channels undergoes a conformational change in response to varying membrane potential. However, the magnitude of the movement of S4 relative to the membrane and the rest of the protein remains controversial. Here, by using histidine scanning mutagenesis in the Shaker K channel, we identified mutants I241H (S1 segment) and I287H (S2 segment) that generate inward currents at hyperpolarized potentials, suggesting that these residues are part of a hydrophobic plug that separates the water-accessible crevices. Additional experiments with substituted cysteine residues showed that, at hyperpolarized potentials, both I241C and I287C can spontaneously form disulphide and metal bridges with R362C, the position of the first charge-carrying residue in S4. These results constrain unambiguously the closed-state positions of the S4 segment with respect to the S1 and S2 segments, which are known to undergo little or no movement during gating. To satisfy these constraints, the S4 segment must undergo an axial rotation of approximately 180 degrees and a transmembrane (vertical) movement of approximately 6.5 A at the level of R362 in going from the open to the closed state of the channel, moving the gating charge across a focused electric field.


Assuntos
Superfamília Shaker de Canais de Potássio/química , Animais , Histidina , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Superfamília Shaker de Canais de Potássio/fisiologia , Relação Estrutura-Atividade , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA