Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.777
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nature ; 629(8011): 443-449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658754

RESUMO

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Assuntos
Antineoplásicos , Descoberta de Drogas , Inibidores Enzimáticos , Instabilidade de Microssatélites , Neoplasias , Mutações Sintéticas Letais , Helicase da Síndrome de Werner , Animais , Feminino , Humanos , Camundongos , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Domínios Proteicos , Reprodutibilidade dos Testes , Supressão Genética , Mutações Sintéticas Letais/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Helicase da Síndrome de Werner/antagonistas & inibidores , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Drug Resist Updat ; 71: 101009, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797431

RESUMO

Human P-glycoprotein (P-gp) or ABCB1 is overexpressed in many cancers and has been implicated in altering the bioavailability of chemotherapeutic drugs due to their efflux, resulting in the development of chemoresistance. To elucidate the mechanistic aspects and structure-function relationships of P-gp, we previously utilized a tyrosine (Y)-enriched P-gp mutant (15Y) and demonstrated that at least 15 conserved residues in the drug-binding pocket of P-gp are responsible for optimal substrate interaction and transport. To further understand the role of these 15 residues, two new mutants were generated, namely 6Y with the substitution of six residues (F72, F303, I306, F314, F336 and L339) with Y in transmembrane domain (TMD) 1 and 9Y with nine substitutions (F732, F759, F770, F938, F942, M949, L975, F983 and F994) in TMD2. Although both the mutants were expressed at normal levels at the cell surface, the 6Y mutant failed to transport all the tested substrates except Bodipy-verapamil, whereas the 9Y mutant effluxed all tested substrates in a manner very similar to that of the wild-type protein. Further mutational analysis revealed that two second-site mutations, one in intracellular helix (ICH) 4 (F916Y) and one in the Q loop of nucleotide-binding domain (NBD) 1 (F480Y) restored the transport function of 6Y. Additional biochemical data and comparative molecular dynamics simulations of the 6Y and 6Y+F916Y mutant indicate that the Q-loop of NBD1 of P-gp communicates with the substrate-binding sites in the transmembrane region through ICH4. This is the first evidence for the existence of second-site suppressors in human P-gp that allow recovery of the loss of transport function caused by primary mutations. Further study of such mutations could facilitate mapping of the communication pathway between the substrate-binding pocket and the NBDs of P-gp and possibly other ABC drug transporters.


Assuntos
Neoplasias , Supressão Genética , Humanos , Mutação , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP , Nucleotídeos
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047074

RESUMO

Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.


Assuntos
Códon sem Sentido , Doenças Genéticas Inatas , Elongação Traducional da Cadeia Peptídica , Medicina de Precisão , Doenças Raras , Supressão Genética , Animais , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Códon sem Sentido/genética , Fibrose Cística/genética , Fibrose Cística/terapia , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/terapia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Nefrite Hereditária/genética , Nefrite Hereditária/terapia , Degradação do RNAm Mediada por Códon sem Sentido , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Doenças Raras/genética , Doenças Raras/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/terapia , Supressão Genética/efeitos dos fármacos , Supressão Genética/genética , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Aminoglicosídeos/farmacologia
4.
mBio ; 14(1): e0220222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36541759

RESUMO

Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Supressão Genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Transporte Biológico/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo
5.
Nucleic Acids Res ; 49(22): 12769-12784, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34878142

RESUMO

Uncoordinated clashes between replication forks and transcription cause replication stress and genome instability, which are hallmarks of cancer and neurodegeneration. Here, we investigate the outcomes of head-on replication-transcription collisions, using as a model system budding yeast mutants for the helicase Sen1, the ortholog of human Senataxin. We found that RNA Polymerase II accumulates together with RNA:DNA hybrids at sites of head-on collisions. The replication fork and RNA Polymerase II are both arrested during the clash, leading to DNA damage and, in the long run, the inhibition of gene expression. The inactivation of RNA Polymerase II elongation factors, such as the HMG-like protein Spt2 and the DISF and PAF complexes, but not alterations in chromatin structure, allows replication fork progression through transcribed regions. Attenuation of RNA Polymerase II elongation rescues RNA:DNA hybrid accumulation and DNA damage sensitivity caused by the absence of Sen1, but not of RNase H proteins, suggesting that such enzymes counteract toxic RNA:DNA hybrids at different stages of the cell cycle with Sen1 mainly acting in replication. We suggest that the main obstacle to replication fork progression is the elongating RNA Polymerase II engaged in an R-loop, rather than RNA:DNA hybrids per se or hybrid-associated chromatin modifications.


Assuntos
Replicação do DNA , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas Cromossômicas não Histona/genética , DNA/química , Dano ao DNA , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Estruturas R-Loop , RNA/química , RNA Helicases/genética , Ribonuclease H/genética , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética , Elongação da Transcrição Genética
6.
J Neuroinflammation ; 18(1): 304, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961526

RESUMO

BACKGROUND: Neuroinflammation is a key pathological component of neurodegenerative disease and is characterized by microglial activation and the secretion of proinflammatory mediators. We previously reported that a surge in prostaglandin D2 (PGD2) production and PGD2-induced microglial activation could provoke neuroinflammation. We also reported that a lipid sensor GPR120 (free fatty acid receptor 4), which is expressed in intestine, could be activated by polyunsaturated fatty acids (PUFA), thereby mediating secretion of glucagon-like peptide-1 (GLP-1). Dysfunction of GPR120 results in obesity in both mice and humans. METHODS: To reveal the relationship between PGD2-microglia-provoked neuroinflammation and intestinal PUFA/GPR120 signaling, we investigated neuroinflammation and neuronal function with gene and protein expression, histological, and behavioral analysis in GPR120 knockout (KO) mice. RESULTS: In the current study, we discovered notable neuroinflammation (increased PGD2 production and microglial activation) and neurodegeneration (declines in neurogenesis, hippocampal volume, and cognitive function) in GPR120 KO mice. We also found that Hematopoietic-prostaglandin D synthase (H-PGDS) was expressed in microglia, microglia were activated by PGD2, H-PGDS expression was upregulated in GPR120 KO hippocampus, and inhibition of PGD2 production attenuated this neuroinflammation. GPR120 KO mice exhibited reduced intestinal, plasma, and intracerebral GLP-1 contents. Peripheral administration of a GLP-1 analogue, liraglutide, reduced PGD2-microglia-provoked neuroinflammation and further neurodegeneration in GPR120 KO mice. CONCLUSIONS: Our results suggest that neurological phenotypes in GPR120 KO mice are probably caused by dysfunction of intestinal GPR120. These observations raise the possibility that intestinal GLP-1 secretion, stimulated by intestinal GPR120, may remotely contributed to suppress PGD2-microglia-provoked neuroinflammation in the hippocampus.


Assuntos
Hipocampo/patologia , Microglia/patologia , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Prostaglandina D2/genética , Receptores Acoplados a Proteínas G/genética , Supressão Genética/genética , Animais , Comportamento Animal , Ácidos Graxos Insaturados/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Liraglutida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/psicologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/psicologia , Prostaglandina D2/biossíntese
8.
Mol Biol Cell ; 32(2): 169-185, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33206585

RESUMO

We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving "outside-in" and "inside-out" signaling that restrain cilium assembly.


Assuntos
Cílios/genética , Testes Genéticos , Genoma Humano , Organogênese/genética , Transdução de Sinais/genética , Actinas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Matriz Extracelular/metabolismo , Feminino , Adesões Focais/metabolismo , Inativação Gênica , Estudos de Associação Genética , Humanos , Integrinas/metabolismo , Ligantes , RNA Interferente Pequeno/metabolismo , Supressão Genética
9.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260377

RESUMO

We previously showed that lipopolysaccharide (LPS) assembly requires the essential LapB protein to regulate FtsH-mediated proteolysis of LpxC protein that catalyzes the first committed step in the LPS synthesis. To further understand the essential function of LapB and its role in LpxC turnover, multicopy suppressors of ΔlapB revealed that overproduction of HslV protease subunit prevents its lethality by proteolytic degradation of LpxC, providing the first alternative pathway of LpxC degradation. Isolation and characterization of an extragenic suppressor mutation that prevents lethality of ΔlapB by restoration of normal LPS synthesis identified a frame-shift mutation after 377 aa in the essential gene designated lapC, suggesting LapB and LapC act antagonistically. The same lapC gene was identified during selection for mutations that induce transcription from LPS defects-responsive rpoEP3 promoter, confer sensitivity to LpxC inhibitor CHIR090 and a temperature-sensitive phenotype. Suppressors of lapC mutants that restored growth at elevated temperatures mapped to lapA/lapB, lpxC and ftsH genes. Such suppressor mutations restored normal levels of LPS and prevented proteolysis of LpxC in lapC mutants. Interestingly, a lapC deletion could be constructed in strains either overproducing LpxC or in the absence of LapB, revealing that FtsH, LapB and LapC together regulate LPS synthesis by controlling LpxC amounts.


Assuntos
Amidoidrolases/metabolismo , Biocatálise , Proteínas de Escherichia coli/metabolismo , Lipopolissacarídeos/biossíntese , Proteases Dependentes de ATP/química , Proteases Dependentes de ATP/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Sequência Conservada , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Ácidos Hidroxâmicos/farmacologia , Lipopolissacarídeos/química , Mutação/genética , Óperon/genética , Periplasma/efeitos dos fármacos , Periplasma/metabolismo , Fosfolipídeos/biossíntese , Fosfolipídeos/química , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteólise/efeitos dos fármacos , Supressão Genética , Temperatura , Treonina/análogos & derivados , Treonina/farmacologia , Transcrição Gênica/efeitos dos fármacos
10.
Mol Syst Biol ; 16(9): e9828, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939983

RESUMO

Essential genes tend to be highly conserved across eukaryotes, but, in some cases, their critical roles can be bypassed through genetic rewiring. From a systematic analysis of 728 different essential yeast genes, we discovered that 124 (17%) were dispensable essential genes. Through whole-genome sequencing and detailed genetic analysis, we investigated the genetic interactions and genome alterations underlying bypass suppression. Dispensable essential genes often had paralogs, were enriched for genes encoding membrane-associated proteins, and were depleted for members of protein complexes. Functionally related genes frequently drove the bypass suppression interactions. These gene properties were predictive of essential gene dispensability and of specific suppressors among hundreds of genes on aneuploid chromosomes. Our findings identify yeast's core essential gene set and reveal that the properties of dispensable essential genes are conserved from yeast to human cells, correlating with human genes that display cell line-specific essentiality in the Cancer Dependency Map (DepMap) project.


Assuntos
Genes Essenciais , Genes Fúngicos , Saccharomyces cerevisiae/genética , Supressão Genética , Aneuploidia , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Redes Reguladoras de Genes , Genes Supressores , Complexos Multiproteicos/metabolismo
11.
Nat Commun ; 11(1): 4258, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848127

RESUMO

Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Substituição de Aminoácidos , Sítios de Ligação/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células HEK293 , Humanos , Técnicas In Vitro , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Dobramento de Proteína , Modificação Traducional de Proteínas/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Supressão Genética , Temperatura
12.
Genes (Basel) ; 11(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708255

RESUMO

Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Luteolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Luteolina/química , Fármacos Neuroprotetores/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Supressão Genética
13.
Cell Commun Signal ; 18(1): 104, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641132

RESUMO

BACKGROUND: Sepsis is an infection-induced aggressive and life-threatening organ dysfunction with high morbidity and mortality worldwide. Infection-associated inflammation and coagulation promote the progression of adverse outcomes in sepsis. Here, we report that phospho-Tyr705 of STAT3 (pY-STAT3), not total STAT3, contributes to systemic inflammation and coagulopathy in sepsis. METHODS: Cecal ligation and puncture (CLP)-induced septic mice were treated with BP-1-102, Napabucasin, or vehicle control respectively and then assessed for systemic inflammation, coagulation response, lung function and survival. Human pulmonary microvascular endothelial cells (HPMECs) and Raw264.7 cells were exposed to lipopolysaccharide (LPS) with pharmacological or genetic inhibition of pY-STAT3. Cells were assessed for inflammatory and coagulant factor expression, cell function and signaling. RESULTS: Pharmacological inhibition of pY-STAT3 expression by BP-1-102 reduced the proinflammatory factors, suppressed coagulation activation, attenuated lung injury, alleviated vascular leakage and improved the survival rate in septic mice. Pharmacological or genetic inhibition of pY-STAT3 diminished LPS-induced cytokine production in macrophages and protected pulmonary endothelial cells via the IL-6/JAK2/STAT3, NF-κB and MAPK signaling pathways. Moreover, the increase in procoagulant indicators induced by sepsis such as tissue factor (TF), the thrombin-antithrombin complex (TAT) and D-Dimer were down-regulated by pY-STAT3 inhibition. CONCLUSIONS: Our results revealed a therapeutic role of pY-STAT3 in modulating the inflammatory response and defective coagulation during sepsis. Video Abstract.


Assuntos
Coagulação Sanguínea , Inflamação/sangue , Inflamação/complicações , Terapia de Alvo Molecular , Fosfotirosina/metabolismo , Fator de Transcrição STAT3/metabolismo , Sepse/sangue , Sepse/complicações , Ácidos Aminossalicílicos , Animais , Benzofuranos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Ceco/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Ligadura , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Naftoquinonas/farmacologia , Punções , Células RAW 264.7 , Sulfonamidas , Supressão Genética/efeitos dos fármacos , Análise de Sobrevida , Tromboplastina/metabolismo , Receptor 4 Toll-Like/metabolismo
14.
PLoS One ; 15(6): e0234192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479562

RESUMO

Saccharomyces cerevisiae Coq8 is a member of the ancient UbiB atypical protein kinase family. Coq8, and its orthologs UbiB, ABC1, ADCK3, and ADCK4, are required for the biosynthesis of coenzyme Q in yeast, E. coli, A. thaliana, and humans. Each Coq8 ortholog retains nine highly conserved protein kinase-like motifs, yet its functional role in coenzyme Q biosynthesis remains mysterious. Coq8 may function as an ATPase whose activity is stimulated by coenzyme Q intermediates and phospholipids. A key yeast point mutant expressing Coq8-A197V was previously shown to result in a coenzyme Q-less, respiratory deficient phenotype. The A197V substitution occurs in the crucial Ala-rich protein kinase-like motif I of yeast Coq8. Here we show that long-term cultures of mutants expressing Coq8-A197V produce spontaneous revertants with the ability to grow on medium containing a non-fermentable carbon source. Each revertant is shown to harbor a secondary intragenic suppressor mutation within the COQ8 gene. The intragenic suppressors restore the synthesis of coenzyme Q. One class of the suppressors fully restores the levels of coenzyme Q and key Coq polypeptides necessary for the maintenance and integrity of the high-molecular mass CoQ synthome (also termed complex Q), while the other class provides only a partial rescue. Mutants harboring the first class of suppressors grow robustly under respiratory conditions, while mutants containing the second class grow more slowly under these conditions. Our work provides insight into the function of this important yet still enigmatic Coq8 family.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Ubiquinona/biossíntese , Substituição de Aminoácidos , Asparagina , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética
15.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G309-G322, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32463333

RESUMO

Pancreatic cancer (PC) is a lethal cancer in the digestive system. microRNAs (miRNAs) have been demonstrated to participate in PC progression. In this context, we, thus, aimed to explore the mechanism of miR-382 in epithelial mesenchymal transition (EMT) and lymph node metastasis in PC in relation to Anxa3 and the PI3K/Akt signaling pathway. Gene expression data sets GSE16515, GSE71989, and GSE32676 were screened out, with the findings showing the significance of miR-382 and annexin A3 (Anxa3) in PC. A total of 115 PC patients were selected for determination of miR-382 and Anxa3 expression with lowly expressed miR-382 and highly expressed Anxa3 found via RT-quantitative PCR and Western blot analysis. Additionally, negative correlation was found between miR-382 and Anxa3 in PC. Dual-luciferase reporter gene assay and in situ hybridization results confirmed that miR-382 negatively regulated Anxa3. miR-382 targeted Anxa3 and suppressed PC progression by blocking the PI3K/Akt signaling pathway. After a series of gain- and loss-of function approaches, upregulation of miR-382 or silencing of Anxa3 inhibited the EMT and lymph node metastasis, as evidenced by increased level of E-cadherin and decreased level of N-cadherin, vimentin, vascular endothelial growth factor(VEGFR)-3, VEGF-C, and VEGF-D. Overexpression of miR-382 or downregulation of Anxa3 was shown to inhibit colony formation, migration, and invasion abilities of PC cells. Further, tumor xenograft in nude mice in vivo also confirmed the inhibitory role of miR-382 and silenced Anxa3 in lymph node metastasis in PC. Thus, this study provides promising therapeutic targets for PC treatment.NEW & NOTEWORTHY This study focused on the mechanism of miR-382 in epithelial mesenchymal transition and lymph node metastasis in PC in relation to Anxa3 and the PI3K/Akt signaling pathway. We found the inhibitory role of miR-382 in PC in vitro and in vivo.


Assuntos
Anexina A3/genética , MicroRNAs/genética , Proteína Oncogênica v-akt/genética , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Supressão Genética/genética , Adulto , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Marcação de Genes , Humanos , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Genome Res ; 30(4): 540-552, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32317254

RESUMO

Mutations in X-linked methyl-CpG-binding protein 2 (MECP2) cause Rett syndrome (RTT). To identify functional pathways that could inform therapeutic entry points, we carried out a genetic screen for secondary mutations that improved phenotypes in Mecp2/Y mice after mutagenesis with N-ethyl-N-nitrosourea (ENU). Here, we report the isolation of 106 founder animals that show suppression of Mecp2-null traits from screening 3177 Mecp2/Y genomes. Whole-exome sequencing, genetic crosses, and association analysis identified 22 candidate genes. Additional lesions in these candidate genes or pathway components associate variant alleles with phenotypic improvement in 30 lines. A network analysis shows that 63% of the genes cluster into the functional categories of transcriptional repression, chromatin modification, or DNA repair, delineating a pathway relationship with MECP2. Many mutations lie in genes that modulate synaptic signaling or lipid homeostasis. Mutations in genes that function in the DNA damage response (DDR) also improve phenotypes in Mecp2/Y mice. Association analysis was successful in resolving combinatorial effects of multiple loci. One line, which carries a suppressor mutation in a gene required for cholesterol synthesis, Sqle, carries a second mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8, also known as CtIP), which regulates a DDR choice in double-stranded break (DSB) repair. Cells from Mecp2/Y mice have increased DSBs, so this finding suggests that the balance between homology-directed repair and nonhomologous end joining is important for neuronal cells. In this and other lines, two suppressor mutations confer greater improvement than one alone, suggesting that combination therapies could be effective in RTT.


Assuntos
Dano ao DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Supressão Genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genótipo , Homozigoto , Metabolismo dos Lipídeos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Síndrome de Rett/metabolismo , Transdução de Sinais , Sequenciamento do Exoma
17.
Cell Mol Life Sci ; 77(21): 4209-4222, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32270227

RESUMO

Inherited or acquired mutations can lead to pathological outcomes. However, in a process defined as synthetic rescue, phenotypic outcome created by primary mutation is alleviated by suppressor mutations. An exhaustive characterization of these mutations in humans is extremely valuable to better comprehend why patients carrying the same detrimental mutation exhibit different pathological outcomes or different responses to treatment. Here, we first review all known suppressor mutations' mechanisms characterized by genetic screens on model species like yeast or flies. However, human suppressor mutations are scarce, despite some being discovered based on orthologue genes. Because of recent advances in high-throughput screening, developing an inventory of human suppressor mutations for pathological processes seems achievable. In addition, we review several screening methods for suppressor mutations in cultured human cells through knock-out, knock-down or random mutagenesis screens on large scale. We provide examples of studies published over the past years that opened new therapeutic avenues, particularly in oncology.


Assuntos
Mutagênese , Supressão Genética , Animais , Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Neoplasias/genética , Interferência de RNA
18.
Acta Histochem ; 122(3): 151527, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32113857

RESUMO

MicroRNA-214-5p has been reported to be expressed in placental tissue and suppressed the proliferation and invasion of various tumor cells. However, the role of miR-214-5p in pre-eclampsia has not been reported. We aimed to explore the effects of miR-214-5p in proliferation, migration, and invasion of placental trophoblast cells. RT-qPCR was used to quantify the miR-214-5p expression level in placental samples and four types of trophoblast cell lines. Cell proliferation was monitored by CCK-8 and Edu staining assays. Flow cytometry was used to determine the cell cycle. Wound healing and transwell assays were performed to measure the migratory and invasive capacities in JEG-3 and BEWO cells. In addition, we investigated whether miR-214-5p targeted Jagged 1 to regulate the Notch signaling pathway to affect trophoblast cells by luciferase assay and western blot. The expression of miR-214-5p was significantly increased in the placenta of patients with PE. Moreover, the proliferation, migration, and invasion of JEG-3 cells transfected with miR-214-5p mimic were inhibited. The results were reversed when BEWO cells were transfected with miR-214-5p inhibitor. The dual-luciferase assay demonstrated that miR-214-5p directly regulated Jagged 1. The expression of the proteins associated with the Notch signaling pathway, Jagged 1, Notch 1, HEY 1 and HES 1 were all decreased when Jagged 1 was negatively regulated by miR-214-5p. miR-214-5p directly down-regulated Jagged 1 expression, then suppressed proliferation, migration, and invasion of human placental trophoblast cells by inhibiting the Notch signaling pathway.


Assuntos
Movimento Celular/genética , Proliferação de Células , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , MicroRNAs/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Receptores Notch/genética , Transdução de Sinais/genética , Trofoblastos/patologia , Adulto , Linhagem Celular , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Placenta/metabolismo , Gravidez , Supressão Genética
19.
Genetics ; 214(4): 941-959, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32005655

RESUMO

Epithelial cells form intercellular junctions to strengthen cell-cell adhesion and limit diffusion, allowing epithelia to function as dynamic tissues and barriers separating internal and external environments. Junctions form as epithelial cells differentiate; clusters of junction proteins first concentrate apically, then mature into continuous junctional belts that encircle and connect each cell. In mammals and Drosophila, atypical protein kinase C (aPKC) is required for junction maturation, although how it contributes to this process is poorly understood. A role for the Caenorhabditis elegans aPKC homolog PKC-3 in junction formation has not been described previously. Here, we show that PKC-3 is essential for junction maturation as epithelia first differentiate. Using a temperature-sensitive allele of pkc-3 that causes junction breaks in the spermatheca and leads to sterility, we identify intragenic and extragenic suppressors that render pkc-3 mutants fertile. Intragenic suppressors include an unanticipated stop-to-stop mutation in the pkc-3 gene, providing evidence for the importance of stop codon identity in gene activity. One extragenic pkc-3 suppressor is a loss-of-function allele of the lethal(2) giant larvae homolog lgl-1, which antagonizes aPKC within epithelia of Drosophila and mammals, but was not known previously to function in C. elegans epithelia. Finally, two extragenic suppressors are loss-of-function alleles of sups-1-a previously uncharacterized gene. We show that SUPS-1 is an apical extracellular matrix protein expressed in epidermal cells, suggesting that it nonautonomously regulates junction formation in the spermatheca. These findings establish a foundation for dissecting the role of PKC-3 and interacting genes in epithelial junction maturation.


Assuntos
Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Proteína Quinase C/metabolismo , Supressão Genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular , Células Epiteliais/citologia , Mutação , Proteína Quinase C/genética
20.
Mol Microbiol ; 113(6): 1155-1169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052499

RESUMO

In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.


Assuntos
Bacillus subtilis/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Trifosfato/biossíntese , Ligases/metabolismo , Metionina/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligases/genética , Supressão Genética/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA