Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Int J Med Sci ; 21(5): 775-783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617013

RESUMO

Pulmonary surfactants, a complex assembly of phospholipids and surfactant proteins such as SP-B and SP-C, are critical for maintaining respiratory system functionality by lowering surface tension (ST) and preventing alveolar collapse. Our study introduced five synthetic SP-B peptides and one SP-C peptide, leading to the synthesis of CHAsurf candidates (CHAsurf-1 to CHAsurf-5) for evaluation. We utilized a modified Wilhelmy balance test to assess the surface tension properties of the surfactants, measuring spreading rate, surface adsorption, and ST-area diagrams to comprehensively evaluate their performance. Animal experiments were performed on New Zealand white rabbits to test the efficacy of CHAsurf-4B, a variant chosen for its economic viability and promising ST reduction properties, comparable to Curosurf®. The study confirmed that higher doses of SP-B in CHAsurf-4 are associated with improved ST reduction. However, due to cost constraints, CHAsurf-4B was selected for in vivo assessment. The animal model revealed that CHAsurf-4B could restore alveolar structure and improve lung elasticity, akin to Curosurf®. Our research highlights the significance of cysteine residues and disulfide bonds in the structural integrity and function of synthetic SP-B analogues, offering a foundation for future surfactant therapy in respiratory disorders. This study's findings support the potential of CHAsurf-4B as a therapeutic agent, meriting further investigation to solidify its role in clinical applications.


Assuntos
Surfactantes Pulmonares , Animais , Coelhos , Cisteína , Elasticidade , Surfactantes Pulmonares/farmacologia , Tensoativos
2.
Biomaterials ; 303: 122404, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992600

RESUMO

Idiopathic pulmonary fibrosis (IPF) stands as a highly heterogeneous and deadly lung disease, yet the available treatment options remain limited. Combining myofibroblast inhibition with ROS modulation in damaged AECs offers a comprehensive strategy to halt IPF progression, but delivering drugs separately to these cell types is challenging. Inspired by the successful application of pulmonary surfactant (PS) replacement therapy in lung disease treatment, we have developed PS nano-biomimetic liposomes (PSBs) to utilize its natural transport pathway for targeting AECs while reducing lung tissue clearance. In this collaborative pulmonary drug delivery system, PSBs composed of DPPC/POPG/DPPG/CHO (20:9:5:4) were formulated for inhalation. These PSBs loaded with ROS-scavenger astaxanthin (AST) and anti-fibrosis drug pirfenidone (PFD) were aerosolized for precise quantification and mimicking patient inhalation. Through aerosol inhalation, the lipid membrane of PSBs gradually fused with natural PS, enabling AST delivery to AECs by hitchhiking with PS circulation. Simultaneously, PFD was released within the PS barrier, effectively penetrating lung tissue to exert therapeutic effects. In vivo results have shown that PSBs offer numerous therapeutic advantages in mice with IPF, particularly in terms of lung function recovery. This approach addresses the challenges of drug delivery to specific lung cells and offers potential benefits for IPF patients.


Assuntos
Fibrose Pulmonar Idiopática , Surfactantes Pulmonares , Humanos , Camundongos , Animais , Surfactantes Pulmonares/uso terapêutico , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacologia , Lipossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Aerossóis e Gotículas Respiratórios , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Piridonas/farmacologia
3.
Respir Physiol Neurobiol ; 316: 104138, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579929

RESUMO

Accumulation of reactive oxygen species during hyperoxia together with secondary bacteria-induced inflammation leads to lung damage in ventilated critically ill patients. Antioxidant N-acetylcysteine (NAC) in combination with surfactant may improve lung function. We compared the efficacy of NAC combined with surfactant in the double-hit model of lung injury. Bacterial lipopolysaccharide (LPS) instilled intratracheally and hyperoxia were used to induce lung injury in Wistar rats. Animals were mechanically ventilated and treated intravenously with NAC alone or in combination with intratracheal surfactant (poractant alfa; PSUR+NAC). Control received saline. Lung functions, inflammatory markers, oxidative damage, total white blood cell (WBC) count and lung oedema were evaluated during 4 hrs. Administration of NAC increased total antioxidant capacity (TAC) and decreased IL-6. This effect was potentiated by the combined administration of surfactant and NAC. In addition, PSUR+NAC reduced the levels of TNFα, IL-1ß, and TAC compared to NAC only and improved lung injury score. The combination of exogenous surfactant with NAC suppresses lung inflammation and oxidative stress in the experimental double-hit model of lung injury.


Assuntos
Hiperóxia , Lesão Pulmonar , Surfactantes Pulmonares , Síndrome do Desconforto Respiratório , Ratos , Animais , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Tensoativos , Roedores , Ratos Wistar , Pulmão , Surfactantes Pulmonares/farmacologia
4.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446012

RESUMO

Lung surfactant is a complex mixture of phospholipids and surfactant proteins that is produced in alveolar type 2 cells. It prevents lung collapse by reducing surface tension and is involved in innate immunity. Exogenous animal-derived and, more recently, synthetic lung surfactant has shown clinical efficacy in surfactant-deficient premature infants and in critically ill patients with acute respiratory distress syndrome (ARDS), such as those with severe COVID-19 disease. COVID-19 pneumonia is initiated by the binding of the viral receptor-binding domain (RBD) of SARS-CoV-2 to the cellular receptor angiotensin-converting enzyme 2 (ACE2). Inflammation and tissue damage then lead to loss and dysfunction of surface activity that can be relieved by treatment with an exogenous lung surfactant. Surfactant protein B (SP-B) is pivotal for surfactant activity and has anti-inflammatory effects. Here, we study the binding of two synthetic SP-B peptide mimics, Super Mini-B (SMB) and B-YL, to a recombinant human ACE2 receptor protein construct using molecular docking and surface plasmon resonance (SPR) to evaluate their potential as antiviral drugs. The SPR measurements confirmed that both the SMB and B-YL peptides bind to the rhACE2 receptor with affinities like that of the viral RBD-ACE2 complex. These findings suggest that synthetic lung surfactant peptide mimics can act as competitive inhibitors of the binding of viral RBD to the ACE2 receptor.


Assuntos
COVID-19 , Surfactantes Pulmonares , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Simulação de Acoplamento Molecular , Peptídeos , Proteínas Associadas a Surfactantes Pulmonares , Ligação Proteica , Receptores Virais , Surfactantes Pulmonares/farmacologia , Tensoativos
5.
Transl Res ; 262: 60-74, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37499744

RESUMO

Respiratory distress syndrome (RDS) in premature infants is caused by insufficient amounts of endogenous lung surfactant and is efficiently treated with replacement therapy using animal-derived surfactant preparations. On the other hand, adult/acute RDS (ARDS) occurs secondary to for example, sepsis, aspiration of gastric contents, and multitrauma and is caused by alveolar endothelial damage, leakage of plasma components into the airspaces and inhibition of surfactant activity. Instillation of surfactant preparations in ARDS has so far resulted in very limited treatment effects, partly due to inactivation of the delivered surfactants in the airspace. Here, we develop a combined surfactant protein B (SP-B) and SP-C peptide analogue (Combo) that can be efficiently expressed and purified from Escherichia coli without any solubility or purification tag. NMR spectroscopy shows that Combo peptide forms α-helices both in organic solvents and in lipid micelles, which coincide with the helical regions described for the isolated SP-B and SP-C parts. Artificial Combo surfactant composed of synthetic dipalmitoylphosphatidylcholine:palmitoyloleoylphosphatidylglycerol, 1:1, mixed with 3 weights % relative to total phospholipids of Combo peptide efficiently improves tidal volumes and lung gas volumes at end-expiration in a premature rabbit fetus model of RDS. Combo surfactant also improves oxygenation and respiratory parameters and lowers cytokine release in an acid instillation-induced ARDS adult rabbit model. Combo surfactant is markedly more resistant to inhibition by albumin and fibrinogen than a natural-derived surfactant in clinical use for the treatment of RDS. These features of Combo surfactant make it attractive for the development of novel therapies against human ARDS.


Assuntos
Surfactantes Pulmonares , Síndrome do Desconforto Respiratório do Recém-Nascido , Síndrome do Desconforto Respiratório , Recém-Nascido , Animais , Feminino , Coelhos , Adulto , Humanos , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Surfactantes Pulmonares/química , Tensoativos/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Peptídeos/farmacologia , Peptídeos/química
6.
Biomater Adv ; 150: 213430, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37104963

RESUMO

Lung cancer is often diagnosed at an advanced stage where tumors are usually inoperable and first-line therapies are inefficient and have off-targeted adverse effects, resulting in poor patient survival. Here, we report the development of an inhalable poly lactic-co-glycolic acid polymer-based nanoparticle (PLGA-NP) formulation with a biomimetic Infasurf® lung surfactant (LS) coating, for localized and sustained lung cancer drug delivery. The nanoparticles (188 ± 7 nm) were stable in phosphate buffered saline, serum and Gamble's solution (simulated lung fluid), and demonstrated cytocompatibility up to 1000 µg/mL concentration and dose-dependent uptake by lung cancer cells. The LS coating significantly decreased nanoparticle (NP) uptake by NR8383 alveolar macrophages in vitro compared to uncoated NPs. The coating, however, did not impair NP uptake by A549 lung adenocarcinoma cells. The anti-cancer drug gemcitabine hydrochloride encapsulated in the PLGA core was released in a sustained manner while the paclitaxel loaded in the LS shell demonstrated a rapid or burst release profile over 21 days. The drug-loaded NPs significantly decreased cancer cell survival and colony formation in vitro compared to free drugs and single drug-loaded NPs. In vivo studies confirmed greater retention of LS-coated NPs in the lungs of C57BL/6 WT mice compared to uncoated NPs, at 24 h and 72 h following intranasal administration. The overall results confirm that LS coating is a unique strategy for cloaking polymeric NPs to potentially prevent their rapid lung clearance and facilitate prolonged pulmonary drug delivery.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Surfactantes Pulmonares , Camundongos , Animais , Polímeros/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Camundongos Endogâmicos C57BL , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Tensoativos
7.
Viruses ; 15(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992456

RESUMO

Rhinoviruses (RVs) are major instigators of acute exacerbations of asthma, COPD, and other respiratory diseases. RVs are categorized into three species (RV-A, RV-B, and RV-C), which comprise more than 160 serotypes, making it difficult to develop an effective vaccine. Currently, no effective treatment for RV infection is available. Pulmonary surfactant is an extracellular complex of lipids and proteins that plays a central role in regulating innate immunity in the lung. The minor pulmonary surfactant lipids, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI), are potent regulators of inflammatory processes and exert antiviral activity against respiratory syncytial virus (RSV) and influenza A viruses (IAV). In the current study, we examined the potencies of POPG and PI against rhinovirus A16 (RV-A16) in primary human airway epithelial cells (AECs) differentiated at an air-liquid interface (ALI). After AECs were infected with RV-A16, PI reduced the viral RNA copy number by 70% and downregulated (55-75%) the expression of antiviral (MDA5, IRF7, and IFN-lambda) and CXCL11 chemokine genes. In contrast, POPG only slightly decreased MDA5 (24%) and IRF7 (11%) gene expression but did not inhibit IFN-lambda gene expression or RV-A16 replication in AECs. However, both POPG and PI inhibited (50-80%) IL6 gene expression and protein secretion and CXCL11 protein secretion. PI treatment dramatically attenuated global gene expression changes induced by RV-A16 infection alone in AECs. The observed inhibitory effects were indirect and resulted mainly from the inhibition of virus replication. Cell-type enrichment analysis of viral-regulated genes opposed by PI treatment revealed the PI-inhibited viral induction of goblet cell metaplasia and the virus-induced downregulation of ciliated, club, and ionocyte cell types. Notably, the PI treatment also altered the ability of RV-A16 to regulate the expression of some phosphatidylinositol 4-kinase (PI4K); acyl-CoA-binding, domain-containing (ACBD); and low-density lipoprotein receptor (LDLR) genes that play critical roles in the formation and functioning of replication organelles (ROs) required for RV replication in host cells. These data suggest PI can be used as a potent, non-toxic, antiviral agent for RV infection prophylaxis and treatment.


Assuntos
Infecções por Enterovirus , Infecções por Picornaviridae , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/farmacologia , Rhinovirus/genética , Células Epiteliais , Epitélio/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Enterovirus/tratamento farmacológico , Pulmão/metabolismo , Lipídeos
8.
Pediatr Res ; 93(3): 541-550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35701606

RESUMO

BACKGROUND: The pathogenesis of neonatal meconium aspiration syndrome (MAS) involves meconium-induced lung inflammation and surfactant inactivation. Bronchoalveolar lavage (BAL) with diluted surfactant facilitates the removal of meconium. CHF5633, one of the most promising synthetic surfactants, is effective in neonatal respiratory distress syndrome. Here we investigated its efficacy via BAL in an experimental MAS model. METHODS: Experimental MAS was induced at birth in near-term newborn rabbits by intratracheal instillation of reconstituted human meconium. First, undiluted CHF5633 was compared with a porcine-derived surfactant (Poractant alfa) via intratracheal bolus (200 mg/kg). Second, the efficacy of BAL with diluted CHF5633 (5 mg/mL, 20 ml/kg) alone, or followed by undiluted boluses (100 or 300 mg/kg), was investigated. RESULTS: Meconium instillation caused severe lung injury, reduced endogenous surfactant pool, and poor survival. CHF5633 had similar benefits in improving survival and alleviating lung injury as Poractant alfa. CHF5633 BAL plus higher boluses exerted better effects than BAL or bolus alone in lung injury alleviation by reversing phospholipid pools and mitigating proinflammatory cytokine mRNA expression, without fluid retention and function deterioration. CONCLUSIONS: CHF5633 improved survival and alleviated meconium-induced lung injury, the same as Poractant alfa. CHF5633 BAL plus boluses was the optimal modality, which warrants further clinical investigation. IMPACT: To explore the efficacy of a synthetic surfactant, CHF5633, in neonatal lung protection comparing with Poractant alfa in a near-term newborn rabbit model with meconium-induced lung injury. Similar effects on improving survival and alleviating lung injury were found between CHF5633 and Poractant alfa. Optimal therapeutic effects were identified from the diluted CHF5633 bronchoalveolar lavage followed by its undiluted bolus instillation compared to the lavage or bolus alone regimens. Animals with CHF5633 lavage plus bolus regimen exerted neither substantial lung fluid retention nor lung mechanics deterioration but a trend of higher pulmonary surfactant-associated phospholipid pools.


Assuntos
Lesão Pulmonar , Síndrome de Aspiração de Mecônio , Pneumonia , Surfactantes Pulmonares , Feminino , Humanos , Coelhos , Recém-Nascido , Animais , Suínos , Mecônio , Animais Recém-Nascidos , Lesão Pulmonar/tratamento farmacológico , Síndrome de Aspiração de Mecônio/tratamento farmacológico , Irrigação Terapêutica , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Fosfolipídeos/uso terapêutico , Tensoativos/uso terapêutico
9.
Allergol Immunopathol (Madr) ; 50(6): 176-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335462

RESUMO

BACKGROUND: Injury to the lung is a common, clinically serious inflammatory disease. However, its pathogenesis remains unclear, and the existing treatments, including cytokine therapy, stem cell therapy, and hormone therapy, are not completely effective in treating this disease. Dimethyl itaconate (DMI) is a surfactant with important anti-inflammatory effects. OBJECTIVE: The present study used alveolar type II (AT II) and bronchial epithelial cells as models to determine the role of DMI in lung injury. MATERIAL AND METHODS: First, the effects of DMI were established on the survival, inflammatory release, and apoptosis in lipopolysaccharide (LPS)-induced AT II and bronchial epithelial cells. The association between DMI and Sirtuin1 (SIRT1) was assessed using molecular docking. Next, by constructing interference plasmids to inhibit surfactant protein (SP)-A and SP-D expressions, the effect of DMI was observed on inflammatory release and apoptosis. RESULTS: The results revealed that DMI increased the survival rate and expression levels of SP-A, SP-D, and SIRT1, and inhibited inflammatory factors as well as apoptosis in LPS-induced cells. Furthermore, DMI could bind to SIRT1 to regulate SP-A and SP-D expressions. After SP-A and SP-D expressions were inhibited, the inhibitory effect of DMI was reversed on inflammatory release and apoptosis. CONCLUSION: The findings of the present study revealed that DMI inhibited LPS-induced inflammatory release and apoptosis in cells by targeting SIRT1 and then activating SP-A and SP-D. This novel insight into the pharmacological mechanism of DMI lays the foundation for its later use for alleviating lung injury.


Assuntos
Lesão Pulmonar , Surfactantes Pulmonares , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/farmacologia , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Lesão Pulmonar/metabolismo , Simulação de Acoplamento Molecular , Células Epiteliais/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/farmacologia , Apoptose , Tensoativos/metabolismo , Tensoativos/farmacologia
10.
Chemosphere ; 300: 134617, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430205

RESUMO

Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.


Assuntos
Nanopartículas , Surfactantes Pulmonares , 1,2-Dipalmitoilfosfatidilcolina , Células Espumosas , Ferro , Macrófagos , Nanopartículas Magnéticas de Óxido de Ferro , Surfactantes Pulmonares/farmacologia
11.
Respir Physiol Neurobiol ; 302: 103911, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35430285

RESUMO

Mechanical ventilation is an essential supportive therapy in the treatment of critical patients, and it aims to maintain adequate gas exchange; however, it can also contribute to inflammation and oxidative stress, thus leading to lung injury. We tested the hypothesis that exogenous surfactant administration will be protective against ventilator-induced lung injury in adult healthy Wistar rats both because of its anti-inflammatory properties as well as its role in preventing alveolar collapse at end-expiration. Thus, the effect of intranasal instillation of a bovine exogenous surfactant was tested in Wistar rats submitted to mechanical ventilation. The animals were divided into four groups: (1) CONTROL; (2) SURFACTANT; (3) Mechanical ventilation (MV); (4) MV with pre-treatment with surfactant (MVSURFACTANT). The MV and MVSURFACTANT were submitted to MV with high tidal volume (12 mL/kg) for 1 h. After the experimental protocol, all animals were euthanized and the arterial blood, bronchoalveolar lavage fluid and lungs were collected for biochemical, immunoenzymatic assay, arterial blood gases, and morphometric analyzes. The Wistar rats that received exogenous surfactant (Survanta®) by intranasal instillation before MV demonstrated reduced levels of leukocytes, inflammatory biomarkers such as CCL2, IL-1, IL-6 and TNF-α. Furthermore, it prevented oxidative damage by reducing lipid peroxidation and protein carbonylation as well as histological pattern changes of pulmonary parenchyma. Our data indicate that exogenous surfactant attenuated lung inflammation and redox imbalance induced by mechanical ventilation in healthy adult rats suggesting a preventive effect on ventilator-induced lung injury.


Assuntos
Surfactantes Pulmonares , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Líquido da Lavagem Broncoalveolar/química , Bovinos , Humanos , Pulmão , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacologia , Ratos , Ratos Wistar , Respiração Artificial , Tensoativos/farmacologia , Tensoativos/uso terapêutico , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
12.
Biomed J ; 44(6): 645-650, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34942391

RESUMO

This issue of the Biomedical Journal provides a comprehensive insight into the role of pulmonary surfactant and influencing its components as well as involved molecules to treat a variety of respiratory distress disorders. We also discover how epithelial mesenchymal transition (EMT) could be targeted as part of a therapeutic strategy against lung cancer. Furthermore, a method is described to eliminate chemoresistance against gemcitabine, a drug administered to treat pancreatic cancer. We gain an insight into the composition of salivary calcium particles in periodontitis, a technique to circumvent complications in hip surgery, and a potential treatment to accelerate diabetic wound healing. Moreover, we get to know an essential oil that exerts a similar effect as diazepam on the central nervous system. A trial in patients with myofascial pain syndrome demonstrates how laser assisted trigger point therapy leads to immediate relief. Finally, a case study outlines the discovery of a genetic mutation that plays a role in intellectual disability.


Assuntos
Neoplasias Pancreáticas , Surfactantes Pulmonares , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Cicatrização
13.
Physiol Rep ; 9(1): e14700, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33403805

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with diffuse inflammation, alveolar epithelial damage, and leakage of plasma proteins into the alveolar space, which together contribute to inactivation of pulmonary surfactant and respiratory failure. Exogenous surfactant delivery is therefore considered to hold potential for ARDS treatment, but clinical trials with natural derived surfactant or synthetic surfactant containing a surfactant protein C (SP-C) analogue have been negative. Synthetic surfactant CHF5633, containing analogues of SP-B and SP-C, may be effective against ARDS. The aim here was to compare treatment effects of CHF5633 and animal-derived surfactant poractant alfa in animal model of ARDS. ARDS was induced in adult New Zealand rabbits by mild lung lavages followed by injurious ventilation until respiratory failure (P/F ratio <26.7 kPa). The animals were then treated with intratracheal bolus of 200 mg/kg CHF5633 or poractant alfa (Curosurf® ), or air as control. The animals were subsequently ventilated for an additional 4 hr and respiratory parameters were recorded regularly. Postmortem, histological analysis, degree of lung edema, and levels of the cytokines TNFα, IL-6, and IL-8 in lung homogenates were evaluated. Both surfactant preparations improved lung function, reduced the levels of pro-inflammatory cytokines, and degree of lung edema to very similar degrees versus the controls. No significant differences in any of the analyzed parameters were observed between the CHF5633- and poractant alfa-treated groups. This study indicates that single dose of CHF5633 improves lung function and attenuates inflammation as effectively as poractant alfa in experimental ARDS caused by injurious ventilation.


Assuntos
Produtos Biológicos/farmacologia , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfatidilcolinas/farmacologia , Fosfolipídeos/farmacologia , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Modelos Animais de Doenças , Inflamação/patologia , Pulmão/patologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/farmacologia , Coelhos , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
14.
Pediatr Res ; 90(2): 328-334, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33177678

RESUMO

BACKGROUND: Chorioamnionitis is associated with increased rates of bronchopulmonary dysplasia (BPD) in ventilated preterm infants. Budesonide when added to surfactant decreased lung and systemic inflammation from mechanical ventilation in preterm lambs and decreased the rates and severity of BPD in preterm infants. We hypothesized that the addition of budesonide to surfactant will decrease the injury from mechanical ventilation in preterm lambs exposed to intra-amniotic (IA) lipopolysaccharide (LPS). METHODS: Lambs at 126 ± 1 day GA received LPS 10 mg IA 48 h prior to injurious mechanical ventilation. After 15 min, lambs received either surfactant mixed with: (1) saline or (2) Budesonide 0.25 mg/kg, then ventilated with normal tidal volumes for 4 h. Injury markers in the lung, liver, and brain were compared. RESULTS: Compared with surfactant alone, the addition of budesonide improved blood pressures, dynamic compliance, and ventilation, while decreasing mRNA for pro-inflammatory cytokines in the lung, liver, and multiple areas of the brain. LPS caused neuronal activation and structural changes in the brain that were not altered by budesonide. Budesonide was not retained within the lung beyond 4 h. CONCLUSIONS: In preterm lambs exposed to IA LPS, the addition of budesonide to surfactant improved physiology and markers of lung and systemic inflammation. IMPACT: The addition of budesonide to surfactant decreases the lung and systemic responses to injurious mechanical ventilation preterm lambs exposed to fetal LPS. Budesonide was present in the plasma by 15 min and the majority of the budesonide is no longer in the lung at 4 h of ventilation. IA LPS and mechanical ventilation caused structural changes in the brain that were not altered by short-term exposure to budesonide. The budesonide dose of 0.25 mg/kg being used clinically seems likely to decrease lung inflammation in preterm infants with chorioamnionitis.


Assuntos
Produtos Biológicos/farmacologia , Displasia Broncopulmonar/prevenção & controle , Budesonida/farmacologia , Corioamnionite/tratamento farmacológico , Doenças Fetais/prevenção & controle , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Fosfolipídeos/farmacologia , Pneumonia/prevenção & controle , Surfactantes Pulmonares/farmacologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatologia , Corioamnionite/induzido quimicamente , Corioamnionite/metabolismo , Corioamnionite/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Doenças Fetais/etiologia , Doenças Fetais/metabolismo , Doenças Fetais/fisiopatologia , Idade Gestacional , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/fisiopatologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Gravidez , Respiração Artificial/efeitos adversos , Carneiro Doméstico , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia
15.
Sci Rep ; 10(1): 19436, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173147

RESUMO

Pulmonary surfactant forms a sub-micrometer thick fluid layer that covers the surface of alveolar lumen and inhaled nanoparticles therefore come in to contact with surfactant prior to any interaction with epithelial cells. We investigate the role of the surfactant as a protective physical barrier by modeling the interactions using silica-Curosurf-alveolar epithelial cell system in vitro. Electron microscopy displays that the vesicles are preserved in the presence of nanoparticles while nanoparticle-lipid interaction leads to formation of mixed aggregates. Fluorescence microscopy reveals that the surfactant decreases the uptake of nanoparticles by up to two orders of magnitude in two models of alveolar epithelial cells, A549 and NCI-H441, irrespective of immersed culture on glass or air-liquid interface culture on transwell. Confocal microscopy corroborates the results by showing nanoparticle-lipid colocalization interacting with the cells. Our work thus supports the idea that pulmonary surfactant plays a protective role against inhaled nanoparticles. The effect of surfactant should therefore be considered in predictive assessment of nanoparticle toxicity or drug nanocarrier uptake. Models based on the one presented in this work may be used for preclinical tests with engineered nanoparticles.


Assuntos
Células Epiteliais Alveolares/metabolismo , Nanopartículas/metabolismo , Surfactantes Pulmonares/farmacologia , Células A549 , Células Epiteliais Alveolares/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Alvéolos Pulmonares/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L949-L956, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32903026

RESUMO

Recent clinical trials have shown improvements in neonatal outcomes after intratracheal administration of a combination of budesonide/surfactant (ITBS) in infants at risk of bronchopulmonary dysplasia. However, the effect of ITBS on lung function and alveolar structure is not known. We aimed to determine the effect of ITBS on lung function, parenchymal structure, and inflammatory cytokine expression in a relevant preterm animal model for bronchopulmonary dysplasia. Premature neonatal rabbits were administered a single dose of ITBS on the day of delivery and exposed to 95% oxygen. Following 7 days of hyperoxia, in vivo forced oscillation and pressure-volume maneuvers were performed to examine pulmonary function. Histological and molecular analysis was performed to assess alveolar and extracellular matrix (ECM) morphology, along with gene expression of connective tissue growth factor (CTGF), IL-8, and CCL-2. ITBS attenuated the functional effect of hyperoxia-induced lung injury and limited the change to respiratory system impedance, measured using the forced oscillation technique. Treatment effects were most obvious in the small airways, with significant effects on small airway resistance and small airway reactance. In addition, ITBS mitigated the decrease in inspiratory capacity and static compliance. ITBS restricted alveolar septal thickening without altering the mean linear intercept and mitigated hyperoxia-induced remodeling of the ECM. These structural changes were associated with improved inspiratory capacity and lung compliance. Gene expression of CTGF, IL-8, and CCL-2 was significantly downregulated in the lung. Treatment with ITBS shortly after delivery attenuated the functional and structural consequences of hyperoxia-induced lung injury to day 7 of life in the preterm rabbit.


Assuntos
Budesonida/farmacologia , Hiperóxia/metabolismo , Lesão Pulmonar/tratamento farmacológico , Tensoativos/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Surfactantes Pulmonares/farmacologia , Coelhos
17.
J Hazard Mater ; 392: 122286, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32086094

RESUMO

Pulmonary surfactant or its components can function as barriers toward nanomaterials (NMs) entering pulmonary systems. However, since pulmonary surfactant mainly consists of lipids, it may be necessary to investigate the effects of co-exposure to NMs and pulmonary surfactant or its components on lipid metabolism and related signaling pathways. Recently we found that multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into lipid-laden foam cells via ER stress pathway. Here this study further investigated the impact of pulmonary surfactant component dipalmitoylphosphatidylcholine (DPPC) on this process. Up to 64 µg/mL hydroxylated or carboxylated MWCNTs induced lipid accumulation and IL-6 release in THP-1 macrophages, accompanying with increased oxidative stress and p-chop proteins (biomarker for ER stress). Incubation with 100 µg/mL DPPC led to MWCNT surface coating but did not significantly alter MWCNT internalization, lipid burden or IL-6 release. However, lipidomics indicated that DPPC altered lipid profliles in MWCNT-exposed cells. DPPC also led to a higher level of de novo lipogenesis regulator FASN in cells exposed to hydroxylated MWCNTs, as well as a higher level of p-chop and scavenger receptor MSR1 in cells exposed to carboxylated MWCNTs. Combined, DPPC did not significantly affect MWCNT-induced lipid accumulation but altered lipid components and ER stress in macrophages.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/farmacologia , Células Espumosas/metabolismo , Macrófagos/efeitos dos fármacos , Nanotubos de Carbono , Surfactantes Pulmonares/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células THP-1
18.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L41-L48, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617728

RESUMO

Mechanical ventilation from birth with normal tidal volumes (VT) causes lung injury and systemic responses in preterm sheep. The addition of budesonide to surfactant therapy decreases these injury markers. Budesonide and surfactant will decrease the injury from injurious VT ventilation in preterm sheep. Lambs at 126 ± 1 day gestational age were ventilated from birth with either: 1) Normal VT [surfactant 200 mg/kg before ventilation, positive end expiratory pressure (PEEP) 5 cmH2O, VT 8 mL/kg] or 2) Injury VT (high pressure, 100% oxygen, no PEEP) for 15 min, then further randomized to surfactant + saline or surfactant + 0.25 mg/kg budesonide with Normal VT for 6 h. Lung function and lung, liver, and brain tissues were evaluated for indicators of injury. Injury VT + saline caused significant injury and systemic responses, and Injury VT + budesonide improved lung physiology. Budesonide decreased lung inflammation and decreased pro-inflammatory cytokine mRNA in the lung, liver, and brain to levels similar to Normal VT + saline. Budesonide was present in plasma within 15 min of treatment in both ventilation groups, and less than 5% of the budesonide remained in the lung at 6 h. mRNA sequencing of liver and periventricular white matter demonstrated multiple pathways altered by both Injury VT and budesonide and the combination exposure. In lambs receiving Injury VT, the addition of budesonide to surfactant improved lung physiology and decreased pro-inflammatory cytokine responses in the lung, liver, and brain to levels similar to lambs receiving Normal VT.


Assuntos
Budesonida/farmacologia , Lesão Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Respiração Artificial/efeitos adversos , Animais , Animais Recém-Nascidos/metabolismo , Citocinas/metabolismo , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Respiração com Pressão Positiva/métodos , Gravidez , Nascimento Prematuro/metabolismo , RNA Mensageiro/metabolismo , Respiração/efeitos dos fármacos , Ovinos , Volume de Ventilação Pulmonar/efeitos dos fármacos
19.
Respir Res ; 20(1): 245, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694668

RESUMO

AIM: In acute respiratory distress syndrome (ARDS) damaged alveolar epithelium, leakage of plasma proteins into the alveolar space and inactivation of pulmonary surfactant lead to respiratory dysfunction. Lung function could potentially be restored with exogenous surfactant therapy, but clinical trials have so far been disappointing. These negative results may be explained by inactivation and/or too low doses of the administered surfactant. Surfactant based on a recombinant surfactant protein C analogue (rSP-C33Leu) is easy to produce and in this study we compared its effects on lung function and inflammation with a commercial surfactant preparation in an adult rabbit model of ARDS. METHODS: ARDS was induced in adult New Zealand rabbits by mild lung-lavages followed by injurious ventilation (VT 20 m/kg body weight) until P/F ratio < 26.7 kPa. The animals were treated with two intratracheal boluses of 2.5 mL/kg of 2% rSP-C33Leu in DPPC/egg PC/POPG, 50:40:10 or poractant alfa (Curosurf®), both surfactants containing 80 mg phospholipids/mL, or air as control. The animals were subsequently ventilated (VT 8-9 m/kg body weight) for an additional 3 h and lung function parameters were recorded. Histological appearance of the lungs, degree of lung oedema and levels of the cytokines TNFα IL-6 and IL-8 in lung homogenates were evaluated. RESULTS: Both surfactant preparations improved lung function vs. the control group and also reduced inflammation scores, production of pro-inflammatory cytokines, and formation of lung oedema to similar degrees. Poractant alfa improved compliance at 1 h, P/F ratio and PaO2 at 1.5 h compared to rSP-C33Leu surfactant. CONCLUSION: This study indicates that treatment of experimental ARDS with synthetic lung surfactant based on rSP-C33Leu improves lung function and attenuates inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Pulmão/efeitos dos fármacos , Fosfolipídeos/farmacologia , Pneumonia/prevenção & controle , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Edema Pulmonar/metabolismo , Edema Pulmonar/fisiopatologia , Edema Pulmonar/prevenção & controle , Coelhos , Proteínas Recombinantes/farmacologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia
20.
Respir Res ; 20(1): 175, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382955

RESUMO

BACKGROUND: The amount of surfactant deposited in the lungs and its overall pulmonary distribution determine the therapeutic outcome of surfactant replacement therapy. Most of the currently available methods to determine the intrapulmonary distribution of surfactant are time-consuming and require surfactant labelling. Our aim was to assess the potential of Mass Spectrometry Imaging (MSI) as a label-free technique to qualitatively and quantitatively evaluate the distribution of surfactant to the premature lamb. METHODS: Twelve preterm lambs (gestational age 126-127d, term ~150d) were allocated in two experimental groups. Seven lambs were treated with an intratracheal bolus of the synthetic surfactant CHF5633 (200 mg/kg) and 5 lambs were managed with mechanical ventilation for 120 min, as controls. The right lung lobes of all lambs were gradually frozen while inflated to 20 cmH2O pressure for lung cryo-sections for MSI analysis. The intensity signals of SP-C analog and SP-B analog, the two synthetic peptides contained in the CHF5633 surfactant, were used to locate, map and quantify the intrapulmonary exogenous surfactant. RESULTS: Surfactant treatment was associated with a significant improvement of the mean arterial oxygenation and lung compliance (p < 0.05). Nevertheless, the physiological response to surfactant treatment was not uniform across all animals. SP-C analog and SP-B analog were successfully imaged and quantified by means of MSI in the peripheral lungs of all surfactant-treated animals. The intensity of the signal was remarkably low in untreated lambs, corresponding to background noise. The signal intensity of SP-B analog in each surfactant-treated animal, which represents the surfactant distributed to the peripheral right lung, correlated well with the physiologic response as assessed by the area under the curves of the individual arterial partial oxygen pressure and dynamic lung compliance curves of the lambs. CONCLUSIONS: Applying MSI, we were able to detect, locate and quantify the amount of exogenous surfactant distributed to the lower right lung of surfactant-treated lambs. The distribution pattern of SP-B analog correlated well with the pulmonary physiological outcomes of the animals. MSI is a valuable label-free technique which is able to simultaneously evaluate qualitative and quantitative drug distribution in the lung.


Assuntos
Pulmão/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Proteína B Associada a Surfactante Pulmonar/análise , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/análise , Proteína C Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/análise , Surfactantes Pulmonares/metabolismo , Animais , Animais Recém-Nascidos , Pulmão/efeitos dos fármacos , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/farmacologia , Fosfatidilcolinas/farmacologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/farmacologia , Ovinos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA