Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 558
Filtrar
1.
Org Lett ; 26(20): 4302-4307, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38728049

RESUMO

A plant used in an Indonesian traditional herbal medicine as a diabetes treatment and known locally as "Jampu Salo" was collected on Sulawesi Island, Indonesia. It was identified as Syzygium oblanceolatum (C. B. Rob.) Merr. (Myrtaceae) and found for the first time in Sulawesi; it was previously reported only in the eastern Philippines and Borneo. A phytochemical study of S. oblanceolatum led to the isolation of three unprecedented meroterpenoids, syzygioblanes A-C (1-3, respectively). These compounds might be biosynthesized through [4+2] cycloaddition of various germacrane-based cyclic sesquiterpenoids with the flavone desmethoxymatteucinol to form a spiro skeleton. The unique and complex structures were elucidated by microcrystal electron diffraction analysis in addition to general analytical techniques such as high-resolution mass spectrometry, various nuclear magnetic resonance methods, and infrared spectroscopy. Synchrotron X-ray diffraction and calculations of electronic circular dichroism spectra helped to determine the absolute configurations. The newly isolated compounds exhibited collateral sensitivity to more strongly inhibit the growth of a multidrug resistant tumor cell line compared to a chemosensitive tumor cell line.


Assuntos
Sesquiterpenos , Syzygium , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Syzygium/química , Estrutura Molecular , Indonésia , Humanos , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/isolamento & purificação , Medicina Tradicional , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650159

RESUMO

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Assuntos
Anti-Inflamatórios , Antioxidantes , Asma , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Glutationa Peroxidase , Glutationa , Interleucina-4 , Pulmão , Malondialdeído , Extratos Vegetais , Ratos Wistar , Syzygium , Animais , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Syzygium/química , Masculino , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar/química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Interleucina-4/metabolismo , Interleucina-4/sangue , Malondialdeído/metabolismo , Ovalbumina , Catalase/metabolismo , Ratos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Água/química
3.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474510

RESUMO

The use of natural compounds to prevent and treat infective diseases is increasing its importance, especially in the case of multidrug-resistant (MDR) microorganisms-mediated infections. The drug resistance phenomenon is today a global problem, so it is important to have available substances able to counteract MDR infections. Syzygium aromaticum (L.) Merr. & L.M. Perry (commonly called clove) is a spice characterized by several biological properties. Clove essential oil (EO) consists of numerous active molecules, being eugenol as the principal component; however, other compounds that synergize with each other are responsible for the biological properties of the EO. S. aromaticum is traditionally used for bowel and stomach disorders, cold and flu, oral hygiene, tooth decay, and for its analgesic action. Its EO has shown antioxidant, antimicrobial, anti-inflammatory, neuro-protective, anti-stress, anticancer, and anti-nociceptive activities. This review aims to investigate the role of E. S. aromaticum EO in the counteraction of MDR microorganisms responsible for human disorders, diseases, or infections, such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi, Candida albicans, Giardia lamblia, Streptococcus mutans, Porphyromonas gingivalis, and Klebsiella pneumoniae. This study might orient clinical researchers on future therapeutic uses of S. aromaticum EO in the prevention and treatment of infectious diseases.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Syzygium , Humanos , Óleo de Cravo , Eugenol
4.
PLoS One ; 19(3): e0298986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551975

RESUMO

Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1ß. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1ß, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.


Assuntos
Doença de Parkinson , Syzygium , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Paraquat/toxicidade , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Syzygium/química , Acetilcolinesterase/metabolismo , China , Fator de Necrose Tumoral alfa/metabolismo , Roedores , Etnicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Fenóis/farmacologia , Flavonoides/farmacologia , RNA Mensageiro/metabolismo , Estresse Oxidativo
5.
Int J Biol Macromol ; 263(Pt 1): 130297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382781

RESUMO

In this study, we have successfully produced a corn starch-based composite film through the casting method, formulated with clove essential oil nanoemulsion (NCEO) and corn starch. The physical and chemical changes of the composite films were investigated at various concentrations (10 %, 20 % and 40 %) of NCEO. Furthermore, the non-contact preservation effects of the composite films on bread during 15-day storage were also examined in this study. As the concentration of NCEO increased, the composite films presented a gradual thinning, roughening, and yellowing in appearance. Following this, the water content, water vapor permeability rate, and elongation at break of the films decreased, while their hydrophobicity, tensile strength, antioxidant and antimicrobial activity increased accordingly. Through FT-IR, X-ray diffraction and thermal gravimetric analysis, it was demonstrated that NCEO has strong compatibility with corn starch. Additionally, the indices' analysis indicated that utilizing the composite film incorporating 40 % NCEO can significantly boost the shelf life and quality of bread. Moreover, it was revealed that application of the non-contact treatment with composite film could potentially contribute certain preservation effects towards bread. In light of these findings, the composite film with non-contact treatment exhibits potential as an effective, safe, and sustainable preservation technique for grain products.


Assuntos
Óleos Voláteis , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleo de Cravo/farmacologia , Óleo de Cravo/química , Amido/química , Espectroscopia de Infravermelho com Transformada de Fourier , Pão , Permeabilidade , Embalagem de Alimentos
6.
Int J Biol Macromol ; 263(Pt 1): 130286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382795

RESUMO

This study evaluated the physicochemical and antioxidant properties of clove essential oil (0, 0.2, 0.4, 0.6, 0.8, 1.0 % v/v) nanoemulsion (CEON) loaded chitosan-based films. With the increasing concentrations of the CEON, the thickness, b* and ΔE values of the films increased significantly (P < 0.05), while L* and light transmission dropped noticeably (P < 0.05). The hydrogen bonds formed between the CEON and chitosan could be demonstrated through Fourier-transform infrared spectra, indicating their good compatibility and intermolecular interactions. Furthermore, the added CEON considerably reduced the crystallinity and resulted in a porous structure of the films, as observed through X-ray diffraction plots and scanning electron microscopy images, respectively. This eventually led to a drop in both tensile strength and moisture content of the films. Moreover, the antioxidant properties were significantly enhanced (P < 0.05) with the increase in the amount of clove essential oil (CEO) due to the encapsulation of CEO by the nanoemulsion. Films containing 0.6 % CEO had higher elongation at break, higher water contact angle, lower water solubility, lower water vapor permeability, and lower oxygen permeability than the other films; therefore, such films are promising for application in meat preservation.


Assuntos
Quitosana , Óleos Voláteis , Syzygium , Quitosana/química , Óleos Voláteis/farmacologia , Óleo de Cravo/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Syzygium/química , Espectroscopia de Infravermelho com Transformada de Fourier , Permeabilidade , Embalagem de Alimentos/métodos , Vapor
7.
Int J Biol Macromol ; 260(Pt 1): 129469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242415

RESUMO

This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.


Assuntos
Anti-Infecciosos , Mananas , Nanopartículas , Óleos Voláteis , Syzygium , Celulose/química , Óleos Voláteis/farmacologia , Óleo de Cravo/farmacologia , Pectinas , Anti-Infecciosos/farmacologia , Nanopartículas/química
8.
Food Chem ; 440: 138245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159320

RESUMO

This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.


Assuntos
Óleos Voláteis , Syzygium , Óleo de Cravo/química , Óleos Voláteis/química , Proteínas de Soja/química , Álcool de Polivinil/química , Syzygium/química , Emulsões/química , Amiloide , Espectroscopia de Infravermelho com Transformada de Fourier , Embalagem de Alimentos/métodos
9.
J Ethnopharmacol ; 322: 117573, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110133

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM: This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS: Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS: SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION: Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Syzygium , Humanos , NF-kappa B/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fibronectinas , Fator A de Crescimento do Endotélio Vascular , Reação de Maillard , Interleucina-6 , Células HEK293 , Fator de Necrose Tumoral alfa
10.
J Physiol Pharmacol ; 74(5)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38085521

RESUMO

Clove plant (Syzygium aromaticum) is one of the Myrtaceae family. It's a common flavor in food and the traditional medicine. The study's objective was to ascertain whether the clove bud aqueous extract (CAE) and CAE + nanosilver have any biological effects on immune cells and HT-29 colon cancer cell line. Nanosilver was produced through green synthesis approach using CAE. Produced nanosilver was characterized via electron microscope (scanning, SEM) and ultraviolet-visible spectroscopy. CAE and CAE + nanosilver were examined for their active biomolecules using FTIR analysis, p53 contents using real-time PCR, apoptosis and cell cycle arrest power on HT-29 cancer cell line via flow cytometerty and immunomodulatory potential utilizing MTT assay. Results cleared that a spherical nanosilver with a diameter range of 53 nm was formed by CAE. There were several active biomolecules in CAE and CAE + nanosilver. CAE and CAE + nanosilver increased the p53 protein expression and apoptotic cell number in HT-29 colon cancer cells. CAE and CAE + nanosilver could arrest HT-29 cells at the phase G2/M. CAE and CAE + nanosilver stimulated quiescent and PHA-pre-treated splenic cells at higher concentrations, and CAE suppressed quiescent splenic cell when diluted. In conclusion, the safe edible Syzygium aromaticum plant can be utilized to make anti-tumor agent, essentially for colon tumor. As Syzygium aromaticum plant could stimulate immune cells, it can be used as immune-stimulatory agent that can help fight tumor and tumor development.


Assuntos
Neoplasias do Colo , Nanopartículas Metálicas , Syzygium , Humanos , Prata/farmacologia , Prata/química , Syzygium/química , Proteína Supressora de Tumor p53 , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Sci Rep ; 13(1): 18846, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914748

RESUMO

Recently, interest has increased in using bio-additives, herbs, and their extracts as feed additives because of their potential role in improving chick's health and productivity, especially during stress. Thus, our aim in this study is to examine whether nutritional supplementation (probiotics and clove essential oils) will help mitigate the negative effect of heat stress on the bird by modifying the microbial content, boosting immunity, oxidative status, metabolic, and growth. In this study, three hundred one-day-old broiler chicks (Ross 308) were fed the following experimental diet: (CON) basal diet (control diet); (CEO) CON with clove essential oils (300 mg/kg); (PRO) CON with probiotics (2 g/kg); (PC) CON with probiotics and clove essential oils. Our results showed a significant improvement (P < 0.05) in body weight gain, feed conversion ratio, nutrient digestibility, and digestive enzymes activities in broilers fed on PC, CEO, and PRO compared to the control group. Moreover, a significant decrease was recorded in the abdominal fat content and an increase in the relative weight of bursa of Fabricius, and higher antibody levels against Newcastle disease virus, as well as, there was an increase (P < 0.05) in interleukin 10 (IL-10) in all treated groups. Meanwhile, there was a decrease in tumor necrosis factor-α (TNF-α) in all supplemented groups compared with the control group. Serum triglycerides, cholesterol, low-density lipoprotein concentrations, and alanine aminotransferase activities were significantly lower in the treated groups. Superoxide dismutase and glutathione peroxidase levels were elevated (P < 0.05) and the malondialdehyde level value significantly decreased in all supplemented groups. The treated groups enhanced the ileum structure by increasing Lactobacillus, decreasing E. coli, and improving the morphometrically (P < 0.05). This study strongly suggests that clove essential oil and probiotic mixture can be used as a feed supplement to reduce the effects of heat stress by improving the growth performance and enhancing immuno-antioxidant status, ileum morphometric, as well as modifying the microbial community structure of the ileum of broilers.


Assuntos
Microbiota , Óleos Voláteis , Probióticos , Syzygium , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Escherichia coli/metabolismo , Suplementos Nutricionais , Probióticos/farmacologia , Dieta/veterinária , Íleo/metabolismo , Resposta ao Choque Térmico , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
12.
Chem Biodivers ; 20(12): e202300823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917799

RESUMO

Myrtaceae is one of the most diverse and abundant botanical families, exhibiting wide diversity in the chemical composition of essential oils (EOs). EOs have various biotechnological applications such as controlling the populations of organisms that negatively impact humans. This study aimed to extract EOs from Myrtaceae species, chemically characterize them, and evaluate their larvicidal and fungicidal effects. EOs were extracted from the leaves of Eugenia brasiliensis, Eugenia uniflora, Psidium cattleyanum, Psidium guajava, and Syzygium cumini by hydrodistillation for 3 h and characterized by chromatographic analysis. Larvaes of Aedes aegypti and colonies of Fusarium oxysporum were subjected to increasing EO concentrations to determine the larvicidal and fungicidal potential. The EOs of Eugenia and Psidium species are primarily composed of sesquiterpenes (>80 %), whereas S. cumini EO is rich in monoterpenes (more than 60 %). The Eugenia species had similar amounts of oxygenated monoterpenes, which may explain their higher larvicidal potential compared to other species, with CL50 of 86.68 and 147.46 PPM, respectively. In addition to these two study species, S. cumini showed a high inhibition of fungal growth, with more than 65 % inhibition. We demonstrated that the actions of five EOs from Myrtaceae with different biological activities are associated with chemical diversity.


Assuntos
Aedes , Eugenia , Inseticidas , Myrtaceae , Óleos Voláteis , Psidium , Syzygium , Humanos , Animais , Óleos Voláteis/química , Syzygium/química , Psidium/química , Folhas de Planta/química , Monoterpenos/análise , Inseticidas/química , Larva
13.
Asian Pac J Cancer Prev ; 24(10): 3403-3409, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898844

RESUMO

BACKGROUND: Candida krusei is the cause of the fungal infection candidiasis, which has a high mortality rate. Intrinsic resistance to fluconazole can cause the failure of Krusei candidiasis treatment. Therefore, it is necessary to find alternative drugs to eliminate the fungus. Extracts of Syzygium aromaticum and Alpinia purpurata have been proven to be alternative solutions for treating Candida krusei resistance. OBJECTIVE: This study aims to explore the active compounds Syzygium aromaticum and Alpinia purpurata as treatments against Candida krusei through bioactivity tests, molecular modeling, and toxicity tests. METHODS: Determination of antifungal activity with the agar well diffusion and microbroth dilution method. Molecular modeling was conducted using the following software: Marvin Sketch, LigandScout  4.4.5, AutoDock ver 4.2.6, PyMOL, LigPlus, MOE ver 2008. RESULT: Bioactivity test results of the two natural extracts against C. krusei ATCC 6258, it was found that the S. aromaticum and A. purpurata extracts have MIC50 values of 0.031 µg/mL and 1.435x105 µg/mL. The molecular modeling found that the compounds Benzotriazole, 1-(4-methyl-3-nitrobenzoyl)-, 1,3,4-Eugenol Acetate, Stigmasta-5,22-dien-3-ol, acetate (3 beta)- and Farnesyl acetate from the two natural extracts, interacts with the active site of the enzyme lanosterol-14-α-demethylase with a binding energy of -8.91, -6.04, -13.53, and -7.15 kcal/mol. The oral acute toxicity test of S. aromaticum and A. purpurata extracts proved that the LD50 was >6000 mg/kg BW and >8000 mg/kg BW. The acute dermal toxicity test of the two extracts showed that the LD50 was >6000 mg/kg BW. CONCLUSION: S. aromaticum and A. purpurata extracts have been proven to be alternative solutions for treating Candida krusei resistance.


Assuntos
Alpinia , Candidíase , Syzygium , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Syzygium/química , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Testes de Toxicidade , Acetatos
14.
BMC Microbiol ; 23(1): 262, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723460

RESUMO

BACKGROUND: Shiga toxin-producing E. coli (STEC) is a major cause of foodborne diseases accompanied by several clinical illnesses in humans. This research aimed to isolate, identify, and combat STEC using novel alternative treatments, researchers have lately investigated using plant extract to produce nanoparticles in an environmentally acceptable way. At various gamma-ray doses, gamma irradiation is used to optimize the conditions for the biogenically synthesized silver nanoparticles (Ag NPs) using an aqueous extract of clove as a reducing and stabilizing agent. METHODS: On a specific medium, 120 vegetable samples were screened to isolate STEC and molecularly identified using real-time PCR. Moreover, the antibacterial and antibiofilm activities of biogenically synthesized Ag NPs against the isolated STEC were examined. RESULTS: Twenty-five out of 120 samples of eight types of fresh vegetables tested positive for E. coli, as confirmed by 16S rRNA, of which three were positive for the presence of Stx-coding genes, and six were partially hemolytic. Seven antibiotic disks were used to determine antibiotic susceptibility; the results indicated that isolate STX2EC had the highest antibiotic resistance. The results demonstrated that Ag NPs were highly effective against the STEC isolates, particularly the isolate with the highest drug resistance, with inhibition zones recorded as 19 mm for STX2EC, 11 mm for STX1EC1, and 10 mm for STX1EC2 at a concentration of 108 µg/mL. MICs of the isolates STX1EC1, and STX1EC2 were 13.5 µg/mL whereas it was detected as 6.75 µg/mL for STX2EC. The percentages of biofilm inhibition for STX1EC2, STX1EC1, and STX2EC, were 78.7%, 76.9%, and 71.19%, respectively. CONCLUSION: These findings suggest that the biogenic Ag NPs can be utilized as a new promising antibacterial agent to combat biofouling on surfaces.


Assuntos
Nanopartículas Metálicas , Escherichia coli Shiga Toxigênica , Syzygium , Humanos , Escherichia coli Shiga Toxigênica/genética , Verduras , Prata/farmacologia , Raios gama , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia
15.
Chem Biodivers ; 20(9): e202300479, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37667613

RESUMO

Leaves of jamun collected as agro by-produce during the cultivation of jamun is traditionally used as ayurvedic medicine to treat diabetes, gall bladder stones and other ailments. Most of the beneficial effects of jamun leaves are associated with phytochemicals found in jamun leaves such as gallic acid, tannins, mallic acid, flavonoids, essential oils, jambolin, ellagic acid, jambosine, antimellin and betulinic acid. Jamun possess curative activities like anticancer, antidiabetic, antifertility, anti-inflammatory, antidiarrheal, antimicrobial, antinociceptive, antioxidant, antiradiation, chemotherapeutic, and gastroprotective. The main goal of this review article is to provide information on the nutritional content, phytochemical composition and health promoting properties of jamun leaves. The review of literature based on the phytochemical composition and health promoting benefits of the jamun leaves, suggests that leaves can be used as potential constituent in the formulation of pharmacological drugs. From the review literature it is found that clinical, in-vivo, in-vitro studies are still required to check the health promoting effects of jamun leaves extracts on humans.


Assuntos
Syzygium , Humanos , Antioxidantes/farmacologia , Ácido Betulínico , Flavonoides , Ácido Gálico
16.
Plant Biotechnol J ; 21(11): 2307-2321, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37626478

RESUMO

Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Flores , Etilenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Int J Biol Macromol ; 249: 126091, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37543269

RESUMO

In this study, the formation of clove essential oil loaded chitosan nanocapsules (CEO/CS-NCs) was achieved by the ionotropic gelation technology. The spherical shape and core-shell structure of CEO/CS-NCs were characterized by SEM, TEM, and FT-IR. CEO/CS-NCs have a reasonable encapsulation efficiency rate of 39 % and an average size of 253.63 nm. The simulated release of CEO/CS-NCs in a citric acid buffer solution shows that the nano-encapsulation technology could control the sustained release of clove essential oil (CEO). The shelf life of untreated blueberries at room temperature is only about 3 days, while CEO/CS-NCs combined with low-temperature storage can extend the shelf life to about 12 days. The quality characteristic of blueberries, including fruit firmness and moisture content, were effectively maintained, and the rotting rate of blueberries was significantly reduced with CEO/CS-NCs. As a natural preservative, CEO/CS-NCs have a good antioxidant activity close to the commercial antioxidant butylated hydroxytoluene (BHT) and a high antibacterial activity against pathogenic bacteria (PB) isolated from naturally occurring blueberries. Therefore, this study not only gives a theoretical basis for the development of CEO as a commercial preservative but also provides a practical solution to solve the protection challenge of preserving blueberries.


Assuntos
Mirtilos Azuis (Planta) , Quitosana , Nanocápsulas , Nanopartículas , Óleos Voláteis , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Syzygium/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Óleo de Cravo/farmacologia , Óleo de Cravo/química , Antioxidantes/farmacologia , Antioxidantes/química
18.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570781

RESUMO

In the current study, clove oil nanoemulsion (CL-nanoemulsion) and emulsion (CL-emulsion) were prepared through an ecofriendly method. The prepared CL-nanoemulsion and CL-emulsion were characterized using dynamic light scattering (DLS) and a transmission electron microscope (TEM), where results illustrated that CL-nanoemulsion droplets were approximately 32.67 nm in size and spherical in shape, while CL-nanoemulsion droplets were approximately 225.8 nm with a spherical shape. The antibacterial activity of CL-nanoemulsion and CL-emulsion was carried out using a microbroth dilution method. Results revealed that the preferred CL-nanoemulsion had minimal MIC values between 0.31 and 5 mg/mL. The antibiofilm efficacy of CL-nanoemulsion against S. aureus significantly decreased the development of biofilm compared with CL-emulsion. Furthermore, results illustrated that CL-nanoemulsion showed antifungal activity significantly higher than CL-emulsion. Moreover, the prepared CL-nanoemulsion exhibited outstanding antifungal efficiency toward Candida albicans, Cryptococcus neoformans, Aspergillus brasiliensis, A. flavus, and A. fumigatus where MICs were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL, respectively. Additionally, the prepared CL-nanoemulsion was analyzed for its antineoplastic effects through a modified MTT assay for evaluating apoptotic and cytotoxic effects using HepG2 and MCF-7 cell lines. MCF-7 breast cancer cells showed the lowest IC50 values (3.4-fold) in CL-nanoemulsion relative to that of CL-emulsion. Thus, CL-nanoemulsion induces apoptosis in breast cancer cells by inducing caspase-8 and -9 activity and suppressing VEGFR-2. In conclusion, the prepared CL-nanoemulsion had antibacterial, antifungal, and antibiofilm as well as anticancer properties, which can be used in different biomedical applications after extensive studies in vivo.


Assuntos
Antibacterianos , Antifúngicos , Antineoplásicos , Biofilmes , Óleos Voláteis , Syzygium , Biofilmes/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Emulsões , Syzygium/química , Difusão Dinâmica da Luz , Microscopia Eletrônica de Transmissão , Células Hep G2 , Células MCF-7 , Humanos , Apoptose , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas , Nanoestruturas/química , Staphylococcus aureus/efeitos dos fármacos , Fungos/efeitos dos fármacos
19.
Daru ; 31(2): 183-192, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37639147

RESUMO

BACKGROUND: Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES: This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS: The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS: CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION: Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.


Assuntos
Ansiolíticos , Óleos Voláteis , Syzygium , Animais , Óleo de Cravo/farmacologia , Óleo de Cravo/metabolismo , Óleos Voláteis/farmacologia , Peixe-Zebra , Syzygium/metabolismo , Ansiolíticos/farmacologia , Ansiolíticos/metabolismo , Eugenol/farmacologia , Eugenol/metabolismo
20.
Biomed Pharmacother ; 165: 115221, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517291

RESUMO

BACKGROUND: Dichloromethane extract of Cleistocalyx nervosum var. paniala seeds exhibited an anticarcinogenicity against chemically-induced the early stages of carcinogenesis in rats. This study aimed to identify anticarcinogenic compounds from C. nervosum seed extract (CSE). METHODS: Salmonella mutation assay was performed to determine mutagenicity and antimutagenicity of partially purified and purified compounds of CSE. The anticarcinogenic enzyme-inducing activity was measured in Hepa1c1c7. Moreover, the anticancer potency was examined on various human cancer cell lines. The anticarcinogenicity of DMC was investigated using dual-organ carcinogenicity model. The number of preneoplastic lesions was evaluated in the liver and colon. The inhibitory mechanisms of DMC on liver- and colorectal carcinogenesis were investigated. RESULTS: Six partially purified fractions (MK1 - MK6) and purified compounds, including 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) and hariganetin, were obtained from CSE. Among these fractions, MK4 and DMC presented the greatest antimutagenicity against indirect mutagens in bacterial model. Moreover, MK5 possessed an effective anticarcinogenic enzyme inducer in Hepa1c1c7. The MK4, DMC and CSE showed greater anticancer activity on all cell lines and exhibited the most effective toxicity on colon cancer cells. Furthermore, DMC inhibited the formation of colonic preneoplastic lesions in carcinogens-treated rats. It reduced PCNA-positive cells and frequency of BCAC in rat colon. DMC also enhanced the detoxifying enzyme, GST, in rat livers. CONCLUSIONS: DMC obtained from CSE may be a promising cancer chemopreventive compound of colorectal cancer process in rats. It could increase detoxifying enzymes and suppress the cell proliferation process resulting in prevention of post-initiation stage of colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais , Syzygium , Humanos , Ratos , Animais , Dietilnitrosamina , 1,2-Dimetilidrazina/toxicidade , Sementes , Carcinogênese , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA