Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.263
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(6): 328, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743383

RESUMO

The instant screening of patients with a tendency towards developing Alzheimer's disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.


Assuntos
Doença de Alzheimer , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Aptâmeros de Nucleotídeos/química , Proteínas tau/sangue , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Fosforilação , Biomarcadores/sangue
2.
Sci Rep ; 14(1): 10450, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714678

RESUMO

We present an advanced electrochemical immunosensor designed to detect the vascular endothelial growth factor (VEGF) precisely. The sensor is constructed on a modified porous gold electrode through a fabrication process involving the deposition of silver and gold on an FTO substrate. Employing thermal annealing and a de-alloying process, the silver is eliminated from the electrode, producing a reproducible porous gold substrate. Utilizing a well-defined protocol, we immobilize the heavy-chain (VHH) antibody against VEGF on the gold substrate, facilitating VEGF detection through various electrochemical methods. Remarkably, this immunosensor performs well, featuring an impressive detection limit of 0.05 pg/mL and an extensive linear range from 0.1 pg/mL to 0.1 µg/mL. This emphasizes it's to measure biomarkers across a wide concentration spectrum precisely. The robust fabrication methodology in this research underscores its potential for widespread application, offering enhanced precision, reproducibility, and remarkable detection capabilities for the developed immunosensor.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Ouro , Fator A de Crescimento do Endotélio Vascular , Ouro/química , Humanos , Biomarcadores Tumorais/análise , Fator A de Crescimento do Endotélio Vascular/análise , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Nanopartículas Metálicas/química , Nanoestruturas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Detecção Precoce de Câncer/métodos , Reprodutibilidade dos Testes , Neoplasias/diagnóstico
3.
Anal Chim Acta ; 1307: 342627, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719406

RESUMO

BACKGROUND: Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS) molecule involved in cell metabolism regulation, transcriptional regulation, and cytoskeleton remodeling. Real-time monitoring of H2O2 levels in live cells is of great significance for disease prevention and diagnosis. RESULTS: We utilized carbon cloth (CC) as the substrate material and employed a single-atom catalysis strategy to prepare a flexible self-supported sensing platform for the real-time detection of H2O2 secreted by live cells. By adjusting the coordination structure of single-atom sites through P and S doping, a cobalt single-atom nanoenzyme Co-NC/PS with excellent peroxidase-like activity was obtained. Furthermore, we explored the enzyme kinetics and possible catalytic mechanism of Co-NC/PS. Due to the excellent flexibility, high conductivity, strong adsorption performance of carbon cloth, and the introduction of non-metallic atom-doped active sites, the developed Co-NC/PS@CC exhibited ideal sensing performance. Experimental results showed that the linear response range for H2O2 was 1-17328 µM, with a detection limit (LOD) of 0.1687 µM. Additionally, the sensor demonstrated good reproducibility, repeatability, anti-interference, and stability. SIGNIFICANCE: The Co-NC/PS@CC prepared in this study has been successfully applied for detecting H2O2 secreted by MCF-7 live cells, expanding the application of single-atom nanoenzymes in live cell biosensing, with significant implications for health monitoring and clinical diagnostics.


Assuntos
Cobalto , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Cobalto/química , Humanos , Técnicas Eletroquímicas/métodos , Células MCF-7 , Carbono/química , Limite de Detecção , Técnicas Biossensoriais/métodos
4.
Anal Chim Acta ; 1307: 342645, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719410

RESUMO

Electrochemical biosensors with high sensitivity can detect low concentrations of biomarkers, but their practical detection applications in complex biological environments such as human serum and sweat are severely limited by the biofouling. Herein, a conductive hydrogel based on bovine serum albumin (BSA) and conductive carbon black (CCB) was prepared for the construction of an antifouling biosensor. The BSA hydrogel (BSAG) was doped with CCB, and the prepared composite hydrogel exhibited good conductivity originated from the CCB and antifouling capability owing to the BSA hydrogel. An antifouling biosensor for the sensitive detection of cortisol was fabricated by drop-coating the conductive hydrogel onto a poly(3,4-ethylenedioxythiophene) (PEDOT) modified electrode and further immobilizing the cortisol aptamer. The constructed biosensor showed a linear range of 100 pg mL-1 - 10 µg mL-1 and a limit of detection of 26.0 pg mL-1 for the detection of cortisol, and it was capable of assaying cortisol accurately in complex human serum. This strategy of preparing antifouling and conductive hydrogels provides an effective way to develop robust electrochemical biosensors for biomarker detection in complex biological media.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Hidrocortisona , Hidrogéis , Soroalbumina Bovina , Fuligem , Humanos , Técnicas Biossensoriais/métodos , Soroalbumina Bovina/química , Hidrocortisona/sangue , Hidrocortisona/análise , Fuligem/química , Técnicas Eletroquímicas/métodos , Hidrogéis/química , Bovinos , Incrustação Biológica/prevenção & controle , Limite de Detecção , Animais , Eletrodos , Aptâmeros de Nucleotídeos/química , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes
5.
Anal Chim Acta ; 1307: 342630, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719407

RESUMO

BACKGROUND: MicroRNAs, as oncogenes or tumor suppressors, enable to up or down-regulate gene expression during tumorigenesis. The detection of miRNAs with high sensitivity is crucial for the early diagnosis of cancer. Inspired by biological ion channels, artificial nanochannels are considered as an excellent biosensing platform with relatively high sensitivity and stability. The current nanochannel biosensors are mainly based on homogeneous membranes, and their monotonous structure and functionality limit its further development. Therefore, it is necessary to develop a heterostructured nanochannel with high ionic current rectification to achieve highly sensitive miRNA detection. RESULTS: In this work, an asymmetric heterostructured nanochannel constructed from dendrimer-gold nanoparticles network and anodic aluminum oxide are designed through an interfacial super-assembly method, which can regulate ion transport and achieve sensitive detection of target miRNA. The symmetry breaking is demonstrated to endow the heterostructured nanochannels with an outstanding ionic current rectification performance. Arising from the change of surface charges in the nanochannels triggered by DNA cascade signal amplification in solution, the proposed heterogeneous nanochannels exhibits excellent DNA-regulated ionic current response. Relying on the nucleic acid's hybridization and configuration transformation, the target miRNA-122 associated with liver cancer can be indirectly quantified with a detection limit of 1 fM and a wide dynamic range from 1 fM to 10 pM. The correlation fitting coefficient R2 of the calibration curve can reach to 0.996. The experimental results show that the method has a good recovery rate (98%-105 %) in synthetic samples. SIGNIFICANCE: This study reveals how the surface charge density of nanochannels regulate the ionic current response in the heterostructured nanochannels. The designed heterogeneous nanochannels not only possess high ionic current rectification property, but also enable to induce superior transport performance by the variation of surface chemistry. The proposed biosensor is promising for applications in early diagnosis of cancers, life science research, and single-entity electrochemical detection.


Assuntos
Óxido de Alumínio , Técnicas Biossensoriais , Dendrímeros , Ouro , MicroRNAs , MicroRNAs/análise , Ouro/química , Dendrímeros/química , Óxido de Alumínio/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Nanoestruturas/química
6.
Anal Chim Acta ; 1307: 342641, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719418

RESUMO

The article details a groundbreaking platform for detecting microRNAs (miRNAs), crucial biomolecules involved in gene regulation and linked to various diseases. This innovative platform combines the CRISPR-Cas13a system's precise ability to specifically target and cleave RNA molecules with the amplification capabilities of the hybridization chain reaction (HCR). HCR aids in signal enhancement by creating branched DNA structures. Additionally, the platform employs electrochemiluminescence (ECL) for detection, noted for its high sensitivity and low background noise, making it particularly effective. A key application of this technology is in the detection of miR-17, a biomarker associated with multiple cancer types. It exhibits remarkable detection capabilities, characterized by low detection limits (14.38 aM) and high specificity. Furthermore, the platform's ability to distinguish between similar miRNA sequences and accurately quantify miR-17 in cell lysates underscores its significant potential in clinical and biomedical fields. This combination of precise targeting, signal amplification, and sensitive detection positions the platform as a powerful tool for miRNA analysis in medical diagnostics and research.


Assuntos
Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Hibridização de Ácido Nucleico , MicroRNAs/análise , MicroRNAs/genética , Humanos , Sistemas CRISPR-Cas/genética , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
7.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709403

RESUMO

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Células Neoplásicas Circulantes , Paládio , Células Neoplásicas Circulantes/patologia , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Ouro/química , DNA/química , Técnicas Biossensoriais/métodos , Paládio/química
8.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692247

RESUMO

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Análise de Alimentos , Limite de Detecção , Molibdênio , Nitritos , Molibdênio/química , Técnicas Biossensoriais/instrumentação , Nitritos/análise , Análise de Alimentos/instrumentação , Humanos , Dimetilpolisiloxanos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Contaminação de Alimentos/análise
9.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692786

RESUMO

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Assuntos
Compostos de Cádmio , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Antígeno Prostático Específico , Pontos Quânticos , Sulfetos , Pontos Quânticos/química , Compostos de Cádmio/química , Sulfetos/química , Humanos , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/sangue , Estruturas Metalorgânicas/química , Ouro/química , Cério/química , Técnicas Biossensoriais , Processos Fotoquímicos , Limite de Detecção , Eletrodos , Medições Luminescentes
10.
Sensors (Basel) ; 24(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733011

RESUMO

Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Neoplasias/diagnóstico , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Nanotecnologia/tendências , Nanotecnologia/métodos , Nanotecnologia/instrumentação , Microfluídica/métodos , Microfluídica/instrumentação , Microfluídica/tendências
11.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691765

RESUMO

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Carbono , Técnicas Eletroquímicas , Ferro , Medições Luminescentes , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Carbono/química , Ferro/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção
12.
Colloids Surf B Biointerfaces ; 238: 113901, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608466

RESUMO

Increased glycine concentrations are associated with altered metabolism of cancer cells and is reflected in the bodily fluids of the brain cancer patients. Various studies have been conducted in past to detect glycine as an imaging biomarker via NMR Spectroscopy tools. However, the use is limited because of the low concentration and different in vivo detection due to overlapping of peaks with myo-inositol in same spectral position. Alongside, little is known about the electrochemical potential of Glycine as a biomarker for brain cancer. The prime impetus of this study was to check the feasibility of glycine as non-invasive biomarker for brain cancer. A divergent approach to detect glycine "non-enzymatically" via unique chitosan lecithin nanocomposite has been utilised during this study. The electrochemical inactivity at provided potential that prevented glycine to get oxidized or reduced without mediator was compensated utilising the chitosan-lecithin nanocomposite. Thus, a redox mediator (Prussian blue) was used for high sensitivity and indirect detection of glycine. The chitosan nanoparticles-lecithin nanocomposite is used as a matrix. The electrochemical analysis of the onco-metabolomic biomarker (glycine) utilizing cyclic voltammetry in glycine spiked multi-Purpose artificial urine was performed to check distribution of glycine over physiological range of glycine. A wide linear range of response varying over the physiological range from 7 to 240 µM with a LOD 8.5 µM was obtained, showing potential of detection in biological samples. We have further evaluated our results via simulating the interaction of mediator and matrix with Glycine by HOMO-LUMO band fluctuations.


Assuntos
Técnicas Biossensoriais , Quitosana , Técnicas Eletroquímicas , Glicina , Lecitinas , Nanocompostos , Glicina/química , Quitosana/química , Nanocompostos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Lecitinas/química , Tamanho da Partícula
13.
Chemosphere ; 357: 141961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615954

RESUMO

Microplastics (MPs) poses a significant threat to ecosystems and human health, demanding immediate attention. The reported research work offers an effective and low cost method towards the detection of toxic MPs. In this study, hydrophobic cerium oxide nanoparticles (CeO2 NPs) are synthesized and applied as promising electrode material for the detection of two different types of MPs, i.e. polyethylene (PE) and polypropylene (PP). Through electrochemical analyses, such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV), hydrophobic CeO2 NPs modified glassy carbon electrode (GCE) based sensor demonstrated remarkable sensitivity of ∼0.0343 AmLmg-1cm-2 and detection limit of ∼0.226 mgmL-1, with promising correlation coefficient (R2) towards the detection of PE (∼27-32 µm). Furthermore, hydrophobic CeO2 NPs modified GCE exhibited promising stability and reproducibility towards PE (∼27-32 µm), suggesting the promising potential of hydrophobic CeO2 NPs as electrode materials for an electrochemical microplastics detection.


Assuntos
Cério , Monitoramento Ambiental , Interações Hidrofóbicas e Hidrofílicas , Microplásticos , Poluentes Químicos da Água , Cério/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Monitoramento Ambiental/métodos , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Polietileno/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Polipropilenos/química , Limite de Detecção
14.
Anal Chem ; 96(18): 7172-7178, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38650072

RESUMO

Achieving sensitive detection and accurate identification of cancer cells is vital for diagnosing and treating the disease. Here, we developed a logic signal amplification system using DNA tetrahedron-mediated three-dimensional (3D) DNA nanonetworks for sensitive electrochemiluminescence (ECL) detection and subtype identification of cancer cells. Specially designed hairpins were integrated into DNA tetrahedral nanostructures (DTNs) to perform a catalytic hairpin assembly (CHA) reaction in the presence of target microRNA, forming hyperbranched 3D nanonetworks. Benefiting from the "spatial confinement effect," the DNA tetrahedron-mediated catalytic hairpin assembly (DTCHA) reaction displayed significantly faster kinetics and greater cycle conversion efficiency than traditional CHA. The resulting 3D nanonetworks could load a large amount of Ru(phen)32+, significantly enhancing its ECL signal, and exhibit detection limits for both miR-21 and miR-141 at the femtomolar level. The biosensor based on modular logic gates facilitated the distinction and quantification of cancer cells and normal cells based on miR-21 levels, combined with miR-141 levels, to further identify different subtypes of breast cancer cells. Overall, this study provides potential applications in miRNA-related clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Humanos , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , DNA/química , Nanoestruturas/química , Limite de Detecção , Linhagem Celular Tumoral , Neoplasias da Mama/diagnóstico , Células MCF-7
15.
Anal Chem ; 96(18): 6930-6939, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652001

RESUMO

Circulating tumor DNA (ctDNA) holds great promise as a noninvasive biomarker for cancer diagnosis, treatment, and prognosis. However, the accurate and specific quantification of low-abundance ctDNA in serum remains a significant challenge. This study introduced, for the first time, a novel exponential amplification reaction (EXPAR)-assisted CRISPR/Cas12a-mediated ratiometric dual-signal electrochemical biosensor for ultrasensitive and reliable detection of ctDNA. To implement the dual-signal strategy, a signal unit (ssDNA-MB@Fc/UiO-66-NH2) was prepared, consisting of methylene blue-modified ssDNA as the biogate to encapsulate ferrocene signal molecules within UiO-66-NH2 nanocarriers. The presence of target ctDNA KRAS triggered EXPAR amplification, generating numerous activators for Cas12a activation, resulting in the cleavage of ssDNA-P fully complementary to the ssDNA-MB biogate. Due to the inability to form a rigid structure dsDNA (ssDNA-MB/ssDNA-P), the separation of ssDNA-MB biogate from the UiO-66-NH2 surface was hindered by electrostatic interactions. Consequently, the supernatant collected after centrifugation exhibited either no or only a weak presence of Fc and MB signal molecules. Conversely, in the absence of the target ctDNA, the ssDNA-MB biogate was open, leading to the leakage of Fc signal molecules. This clever ratiometric strategy with Cas12a as the "connector", reflecting the concentration of ctDNA KRAS based on the ratio of the current intensities of the two electroactive signal molecules, enhanced detection sensitivity by at least 60-300 times compared to single-signal strategies. Moreover, this strategy demonstrated satisfactory performance in ctDNA detection in complex human serum, highlighting its potential for cancer diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Tumoral Circulante , Técnicas Eletroquímicas , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Sistemas CRISPR-Cas/genética , DNA de Cadeia Simples/química , Limite de Detecção , Endodesoxirribonucleases/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Associadas a CRISPR/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
16.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599073

RESUMO

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metalocenos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Humanos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nitrilas/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Nanoestruturas/química , Compostos Ferrosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
17.
J Hazard Mater ; 470: 134216, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581877

RESUMO

In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.


Assuntos
Benzimidazóis , Carbamatos , Agulhas , Neonicotinoides , Praguicidas , Animais , Neonicotinoides/análise , Praguicidas/análise , Atrazina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Monitoramento Ambiental/métodos , Camundongos , Folhas de Planta/química , Luz , Hidrogéis/química , Pele/química
18.
Int J Biol Macromol ; 267(Pt 2): 131509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608978

RESUMO

Giardia intestinalis is one of the most widespread intestinal parasites and is considered a major cause of epidemic or sporadic diarrhea worldwide. In this study, we aimed to develop a rapid aptameric diagnostic technique for G. intestinalis infection. First, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process generated DNA aptamers specific to a recombinant protein of the parasite's trophozoite. Ten selection rounds were performed; each round, the DNA library was incubated with the target protein conjugated to Sepharose beads. Then, the unbound sequences were removed by washing and the specific sequences were eluted and amplified by Polymerase Chain Reaction (PCR). Two aptamers were selected, and the dissociation constants (Kd), were determined as 2.45 and 16.95 nM, showed their high affinity for the G. intestinalis trophozoite protein. Subsequently, the aptamer sequence T1, which exhibited better affinity, was employed to develop a label-free electrochemical biosensor. A thiolated aptamer was covalently immobilized onto a gold screen-printed electrode (SPGE), and the binding of the targeted protein was monitored using square wave voltammetry (SWV). The developed aptasensor enabled accurate detection of the G. intestinalis recombinant protein within the range of 0.1 pg/mL to 100 ng/mL, with an excellent sensitivity (LOD of 0.35 pg/mL). Moreover, selectivity studies showed a negligible cross-reactivity toward other proteins such as bovine serum albumin, globulin, and G. intestinalis cyst protein.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Giardia lamblia , Proteínas de Protozoários , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnica de Seleção de Aptâmeros/métodos , Técnicas Eletroquímicas/métodos , Proteínas de Protozoários/química , DNA de Cadeia Simples/química , Giardíase/diagnóstico , Giardíase/parasitologia
19.
Analyst ; 149(9): 2655-2663, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563222

RESUMO

Current healthcare trends have seen an increased emphasis on the move towards personalised precision medicine to tailor treatments to the individual and their response to diseases and disease therapies. This highlighting a transition from traditional "one size fits all" to a more nuanced approach. Despite advancements in fundamental knowledge to facilitate personalised prevision approaches, lack of resources to implement such plans remains one of the largest hurdles to overcome. Monitoring of drug therapies is one key aspect that could aid in the evolution of precision medicine alongside the development of drugs and targeted treatment systems. This contribution illustrates the potential of square wave voltammetry (SWV) as a proof-of-concept for monitoring of circulating blood concentrations of treatment therapies within artificial urine, using leucovorin calcium (LV) as a model cancer therapy drug. A low cost, easy-to-use and portable sensor has been developed and successfully employed for the detection of LV over the linear range 0.5-30 µM which represents the therapeutically relevant concentrations for LV within artificial urine without any prior sample preparation required with a limit of detection of 2.63 µM and initial investigations into saliva and serum as biological matrices. The developed sensor describe herein exhibits a proof-of-concept for the engagement of such electrochemical sensors as point-of-care devices, where the sensors ease of use and removal of time-consuming and complex sample preparation methods will ultimately increase its usability by physicians, widening the avenues where electrochemical sensors could be employed.


Assuntos
Técnicas Eletroquímicas , Leucovorina , Limite de Detecção , Humanos , Técnicas Eletroquímicas/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Saliva/química , Eletrodos
20.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621341

RESUMO

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno B7-H1 , Técnicas Biossensoriais , Doxorrubicina , Técnicas Eletroquímicas , Exossomos , Neoplasias Pulmonares , Humanos , Técnicas Biossensoriais/métodos , Exossomos/química , Técnicas Eletroquímicas/métodos , Neoplasias Pulmonares/química , Aptâmeros de Nucleotídeos/química , Doxorrubicina/química , DNA/química , Azul de Metileno/química , Nanosferas/química , Quadruplex G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA