Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.626
Filtrar
1.
Mikrochim Acta ; 191(6): 328, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743383

RESUMO

The instant screening of patients with a tendency towards developing Alzheimer's disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.


Assuntos
Doença de Alzheimer , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Proteínas tau , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Aptâmeros de Nucleotídeos/química , Proteínas tau/sangue , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Fosforilação , Biomarcadores/sangue
2.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691765

RESUMO

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Carbono , Técnicas Eletroquímicas , Ferro , Medições Luminescentes , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Carbono/química , Ferro/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção
3.
Sensors (Basel) ; 24(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733011

RESUMO

Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Neoplasias/diagnóstico , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Nanotecnologia/tendências , Nanotecnologia/métodos , Nanotecnologia/instrumentação , Microfluídica/métodos , Microfluídica/instrumentação , Microfluídica/tendências
4.
J Nanobiotechnology ; 22(1): 274, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773614

RESUMO

Small extracellular vesicle-derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based electrode modified with a Zr-MOF-rGO-Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Limite de Detecção , Estruturas Metalorgânicas , MicroRNAs , Papel , Estruturas Metalorgânicas/química , Vesículas Extracelulares/química , Humanos , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Grafite/química , Ouro/química , DNA/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Técnicas Eletroquímicas/métodos , Eletrodos , Zircônio/química
5.
Anal Chim Acta ; 1307: 342641, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719418

RESUMO

The article details a groundbreaking platform for detecting microRNAs (miRNAs), crucial biomolecules involved in gene regulation and linked to various diseases. This innovative platform combines the CRISPR-Cas13a system's precise ability to specifically target and cleave RNA molecules with the amplification capabilities of the hybridization chain reaction (HCR). HCR aids in signal enhancement by creating branched DNA structures. Additionally, the platform employs electrochemiluminescence (ECL) for detection, noted for its high sensitivity and low background noise, making it particularly effective. A key application of this technology is in the detection of miR-17, a biomarker associated with multiple cancer types. It exhibits remarkable detection capabilities, characterized by low detection limits (14.38 aM) and high specificity. Furthermore, the platform's ability to distinguish between similar miRNA sequences and accurately quantify miR-17 in cell lysates underscores its significant potential in clinical and biomedical fields. This combination of precise targeting, signal amplification, and sensitive detection positions the platform as a powerful tool for miRNA analysis in medical diagnostics and research.


Assuntos
Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Hibridização de Ácido Nucleico , MicroRNAs/análise , MicroRNAs/genética , Humanos , Sistemas CRISPR-Cas/genética , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
6.
Biosens Bioelectron ; 258: 116351, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705074

RESUMO

Multifunctional single-atom catalysts (SACs) have been extensively investigated as outstanding signal amplifiers in bioanalysis field. Herein, a type of Fe single-atom catalysts with Fe-nitrogen coordination sites in nitrogen-doped carbon (Fe-N/C SACs) was synthesized and demonstrated to possess both catalase and peroxidase-like activity. Utilizing Fe-N/C SACs as dual signal amplifier, an efficient bipolar electrode (BPE)-based electrochemiluminescence (ECL) immunoassay was presented for determination of prostate-specific antigen (PSA). The cathode pole of the BPE-ECL platform modified with Fe-N/C SACs is served as the sensing side and luminol at the anode as signal output side. Fe-N/C SACs could catalyze decomposition of H2O2 via their high catalase-like activity and then increase the Faraday current, which can boost the ECL of luminol due to the electroneutrality in a closed BPE system. Meanwhile, in the presence of the target, glucose oxidase (GOx)-Au NPs-Ab2 was introduced through specific immunoreaction, which catalyzes the formation of H2O2. Subsequently, Fe-N/C SACs with peroxidase-like activity catalyze the reaction of H2O2 and 4-chloro-1-naphthol (4-CN) to generate insoluble precipitates, which hinders electron transfer and then inhibits the ECL at the anode. Thus, dual signal amplification of Fe-N/C SACs was achieved by increasing the initial ECL and inhibiting the ECL in the presence of target. The assay exhibits sensitive detection of PSA linearly from 1.0 pg/mL to 100 ng/mL with a detection limit of 0.62 pg/mL. The work demonstrated a new ECL enhancement strategy of SACs via BPE system and expands the application of SACs in bioanalysis field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Ferro , Limite de Detecção , Medições Luminescentes , Luminol , Antígeno Prostático Específico , Catálise , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Humanos , Luminol/química , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/sangue , Ferro/química , Glucose Oxidase/química , Imunoensaio/métodos , Ouro/química , Peroxidase/química , Nanopartículas Metálicas/química , Nitrogênio/química , Carbono/química , Naftóis
7.
Biosens Bioelectron ; 258: 116356, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705073

RESUMO

In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.


Assuntos
Técnicas Biossensoriais , Európio , Glioblastoma , Ouro , Estruturas Metalorgânicas , MicroRNAs , MicroRNAs/análise , Glioblastoma/diagnóstico , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Európio/química , Limite de Detecção , Medições Luminescentes/métodos , Ligantes , Técnicas Eletroquímicas/métodos , Neoplasias Encefálicas/diagnóstico , Ácidos Ftálicos/química , Nanopartículas Metálicas/química , Cobre/química
8.
Biosens Bioelectron ; 258: 116348, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710143

RESUMO

Therapeutic drug monitoring (TDM) serves as a potent tool for adjusting drug concentration within a reasonable range. However, continuous monitoring of anticancer drugs in-vivo presents a significant challenge. Herein, we propose a needle-in-needle electrochemical sensor based on an acupuncture needle electrode, capable of monitoring the anticancer drug etoposide in the peritoneal cavity of living rats. The acupuncture needle was modified with Au nanoparticles and etoposide-templated molecularly imprinted polymer (MIP), resulting in high sensitivity and selectivity in the electrochemical detection of etoposide. The modified acupuncture needle (0.16 mm diameter) was anchored inside a syringe needle (1.40 mm diameter), allowing the outer syringe needle to protect the modified materials of the inner acupuncture needle during skin piercing. Due to the unique needle-in-needle design, high stability was obtained during in-vivo etoposide monitoring. Connecting to a smartphone-controlled portable electrochemical workstation, the needle-in-needle sensor offers great convenience in point-of-care TDM. Moreover, the electrode materials on the acupuncture needle were carefully characterized and optimized. Under the optimized conditions, low detection limits and wide linear range were achieved. This work provides new insights into acupuncture needle electrochemical sensors and further expands the feasibility for real-time and in-vivo detection.


Assuntos
Técnicas Biossensoriais , Monitoramento de Medicamentos , Etoposídeo , Ouro , Agulhas , Etoposídeo/análise , Etoposídeo/administração & dosagem , Animais , Ratos , Técnicas Biossensoriais/instrumentação , Ouro/química , Monitoramento de Medicamentos/instrumentação , Técnicas Eletroquímicas/métodos , Antineoplásicos/análise , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Nanopartículas Metálicas/química , Polímeros Molecularmente Impressos/química , Limite de Detecção , Eletrodos , Ratos Sprague-Dawley , Desenho de Equipamento
9.
Biosens Bioelectron ; 258: 116372, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735081

RESUMO

Epithelial-mesenchymal transition (EMT) promotes tumor cell infiltration and metastasis. Tracking the progression of EMT could potentially indicate early cancer metastasis. A key characteristic of EMT is the dynamic alteration in the molecular levels of E-cadherin and N-cadherin. Traditional assays have limited sensitivity and multiplexing capabilities, relying heavily on cell lysis. Here, we developed a multiplex electrochemical biosensor to concurrently track the upregulation of N-cadherin expression and reduction of E-cadherin in breast cancer cells undergoing EMT. Small-sized gold nanoparticles (Au NPs) tagged with redox probes (thionin or amino ferrocene) and bound to two types of antibodies were used as distinguishable signal tags. These tags specifically recognized E-cadherin and N-cadherin proteins on the tumor cell surface without cross-reactivity. The diphenylalanine dipeptide (FF)/chitosan (CS)/Au NPs (FF-CS@Au) composites with high surface area and good biocompatibility were used as the sensing platforms for efficiently fixing cells and recording the dynamic changes in electrochemical signals of surface proteins. The electrochemical immunosensor allowed for simultaneous monitoring of E- and N-cadherins on breast cancer cell surfaces in a single run, enabling tracking of the EMT dynamic process for up to 60 h. Furthermore, the electrochemical detection results are consistent with Western blot analysis, confirming the reliability of the methodology. This present work provides an effective, rapid, and low-cost approach for tracking the EMT process, as well as valuable insights into early tumor metastasis.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Técnicas Eletroquímicas , Transição Epitelial-Mesenquimal , Ouro , Nanopartículas Metálicas , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/patologia , Ouro/química , Feminino , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Caderinas , Linhagem Celular Tumoral , Imunoensaio/métodos , Quitosana/química
10.
ACS Nano ; 18(20): 12781-12794, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38733343

RESUMO

Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.


Assuntos
DNA Tumoral Circulante , Eletrodos , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Biópsia Líquida , Amplificação de Genes , Nanopartículas de Magnetita/química , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Ouro/química , Propriedades de Superfície , Técnicas Eletroquímicas/métodos , Reação em Cadeia da Polimerase , Feminino
11.
Sci Rep ; 14(1): 10450, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714678

RESUMO

We present an advanced electrochemical immunosensor designed to detect the vascular endothelial growth factor (VEGF) precisely. The sensor is constructed on a modified porous gold electrode through a fabrication process involving the deposition of silver and gold on an FTO substrate. Employing thermal annealing and a de-alloying process, the silver is eliminated from the electrode, producing a reproducible porous gold substrate. Utilizing a well-defined protocol, we immobilize the heavy-chain (VHH) antibody against VEGF on the gold substrate, facilitating VEGF detection through various electrochemical methods. Remarkably, this immunosensor performs well, featuring an impressive detection limit of 0.05 pg/mL and an extensive linear range from 0.1 pg/mL to 0.1 µg/mL. This emphasizes it's to measure biomarkers across a wide concentration spectrum precisely. The robust fabrication methodology in this research underscores its potential for widespread application, offering enhanced precision, reproducibility, and remarkable detection capabilities for the developed immunosensor.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Ouro , Fator A de Crescimento do Endotélio Vascular , Ouro/química , Humanos , Biomarcadores Tumorais/análise , Fator A de Crescimento do Endotélio Vascular/análise , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Nanopartículas Metálicas/química , Nanoestruturas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Detecção Precoce de Câncer/métodos , Reprodutibilidade dos Testes , Neoplasias/diagnóstico
12.
Anal Chim Acta ; 1307: 342627, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719406

RESUMO

BACKGROUND: Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS) molecule involved in cell metabolism regulation, transcriptional regulation, and cytoskeleton remodeling. Real-time monitoring of H2O2 levels in live cells is of great significance for disease prevention and diagnosis. RESULTS: We utilized carbon cloth (CC) as the substrate material and employed a single-atom catalysis strategy to prepare a flexible self-supported sensing platform for the real-time detection of H2O2 secreted by live cells. By adjusting the coordination structure of single-atom sites through P and S doping, a cobalt single-atom nanoenzyme Co-NC/PS with excellent peroxidase-like activity was obtained. Furthermore, we explored the enzyme kinetics and possible catalytic mechanism of Co-NC/PS. Due to the excellent flexibility, high conductivity, strong adsorption performance of carbon cloth, and the introduction of non-metallic atom-doped active sites, the developed Co-NC/PS@CC exhibited ideal sensing performance. Experimental results showed that the linear response range for H2O2 was 1-17328 µM, with a detection limit (LOD) of 0.1687 µM. Additionally, the sensor demonstrated good reproducibility, repeatability, anti-interference, and stability. SIGNIFICANCE: The Co-NC/PS@CC prepared in this study has been successfully applied for detecting H2O2 secreted by MCF-7 live cells, expanding the application of single-atom nanoenzymes in live cell biosensing, with significant implications for health monitoring and clinical diagnostics.


Assuntos
Cobalto , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Cobalto/química , Humanos , Técnicas Eletroquímicas/métodos , Células MCF-7 , Carbono/química , Limite de Detecção , Técnicas Biossensoriais/métodos
13.
Anal Chim Acta ; 1307: 342645, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719410

RESUMO

Electrochemical biosensors with high sensitivity can detect low concentrations of biomarkers, but their practical detection applications in complex biological environments such as human serum and sweat are severely limited by the biofouling. Herein, a conductive hydrogel based on bovine serum albumin (BSA) and conductive carbon black (CCB) was prepared for the construction of an antifouling biosensor. The BSA hydrogel (BSAG) was doped with CCB, and the prepared composite hydrogel exhibited good conductivity originated from the CCB and antifouling capability owing to the BSA hydrogel. An antifouling biosensor for the sensitive detection of cortisol was fabricated by drop-coating the conductive hydrogel onto a poly(3,4-ethylenedioxythiophene) (PEDOT) modified electrode and further immobilizing the cortisol aptamer. The constructed biosensor showed a linear range of 100 pg mL-1 - 10 µg mL-1 and a limit of detection of 26.0 pg mL-1 for the detection of cortisol, and it was capable of assaying cortisol accurately in complex human serum. This strategy of preparing antifouling and conductive hydrogels provides an effective way to develop robust electrochemical biosensors for biomarker detection in complex biological media.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Hidrocortisona , Hidrogéis , Soroalbumina Bovina , Fuligem , Humanos , Técnicas Biossensoriais/métodos , Soroalbumina Bovina/química , Hidrocortisona/sangue , Hidrocortisona/análise , Fuligem/química , Técnicas Eletroquímicas/métodos , Hidrogéis/química , Bovinos , Incrustação Biológica/prevenção & controle , Limite de Detecção , Animais , Eletrodos , Aptâmeros de Nucleotídeos/química , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes
14.
Anal Chim Acta ; 1307: 342630, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719407

RESUMO

BACKGROUND: MicroRNAs, as oncogenes or tumor suppressors, enable to up or down-regulate gene expression during tumorigenesis. The detection of miRNAs with high sensitivity is crucial for the early diagnosis of cancer. Inspired by biological ion channels, artificial nanochannels are considered as an excellent biosensing platform with relatively high sensitivity and stability. The current nanochannel biosensors are mainly based on homogeneous membranes, and their monotonous structure and functionality limit its further development. Therefore, it is necessary to develop a heterostructured nanochannel with high ionic current rectification to achieve highly sensitive miRNA detection. RESULTS: In this work, an asymmetric heterostructured nanochannel constructed from dendrimer-gold nanoparticles network and anodic aluminum oxide are designed through an interfacial super-assembly method, which can regulate ion transport and achieve sensitive detection of target miRNA. The symmetry breaking is demonstrated to endow the heterostructured nanochannels with an outstanding ionic current rectification performance. Arising from the change of surface charges in the nanochannels triggered by DNA cascade signal amplification in solution, the proposed heterogeneous nanochannels exhibits excellent DNA-regulated ionic current response. Relying on the nucleic acid's hybridization and configuration transformation, the target miRNA-122 associated with liver cancer can be indirectly quantified with a detection limit of 1 fM and a wide dynamic range from 1 fM to 10 pM. The correlation fitting coefficient R2 of the calibration curve can reach to 0.996. The experimental results show that the method has a good recovery rate (98%-105 %) in synthetic samples. SIGNIFICANCE: This study reveals how the surface charge density of nanochannels regulate the ionic current response in the heterostructured nanochannels. The designed heterogeneous nanochannels not only possess high ionic current rectification property, but also enable to induce superior transport performance by the variation of surface chemistry. The proposed biosensor is promising for applications in early diagnosis of cancers, life science research, and single-entity electrochemical detection.


Assuntos
Óxido de Alumínio , Técnicas Biossensoriais , Dendrímeros , Ouro , MicroRNAs , MicroRNAs/análise , Ouro/química , Dendrímeros/química , Óxido de Alumínio/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Nanoestruturas/química
15.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692247

RESUMO

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Análise de Alimentos , Limite de Detecção , Molibdênio , Nitritos , Molibdênio/química , Técnicas Biossensoriais/instrumentação , Nitritos/análise , Análise de Alimentos/instrumentação , Humanos , Dimetilpolisiloxanos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Contaminação de Alimentos/análise
16.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709403

RESUMO

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Células Neoplásicas Circulantes , Paládio , Células Neoplásicas Circulantes/patologia , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Ouro/química , DNA/química , Técnicas Biossensoriais/métodos , Paládio/química
17.
Sci Rep ; 14(1): 11217, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755208

RESUMO

Our preliminary investigation has identified the potential of serum fucosylated extracellular vesicles (EVs) miR-4732-5p in the early diagnosis of lung adenocarcinoma (LUAD) by a fucose-captured strategy utilizing lentil lectin (LCA)-magnetic beads and subsequent screening of high throughput sequencing and validation of real-time quantitative polymerase chain reaction (RT-qPCR). Considering the relatively complicated procedure, expensive equipment, and stringent laboratory condition, we have constructed an electrochemical biosensor assay for the detection of miR-4732-5p. miR-4732-5p is extremely low in serum, down to the fM level, so it needs to be detected by highly sensitive electrochemical methods based on the Mg2+-dependent DNAzyme splitting nucleic acid lock (NAL) cycle and hybridization chain reaction (HCR) signal amplification. In this study, signal amplification is achieved through the dual amplification reactions using NAL cycle in combination with HCR. In addition, hybridized DNA strands bind to a large number of methylene blue (MB) molecules to enhance signaling. Based on the above strategy, we further enhance our signal amplification strategies to improve detection sensitivity and accuracy. The implementation of this assay proceeded as follows: initially, miR-4732-5p was combined with NAL, and then Mg2+-dependent DNAzyme splitted NAL to release auxiliary DNA (S1) strands, which were subsequently captured by the immobilized capture probe DNA (C1) strands on the electrode surface. Following this, abundant quantities of DNA1 (H1) and DNA2 (H2) tandems were generated by HCR, and S1 strands then hybridized with the H1 and H2 tandems through base complementary pairing. Finally, MB was bonded to the H1 and H2 tandems through π-π stacking interaction, leading to the generation of a signal current upon the detection of a potential capable of inducing a redox change of MB by the electrode. Furthermore, we evaluated the performance of our developed electrochemical biosensor assay. The results demonstrated that our assay is a reliable approach, characterized by its high sensitivity (with a detection limit of 2.6 × 10-17 M), excellent specificity, good accuracy, reproducibility, and stability. Additionally, it is cost-effective, requires simple operation, and is portable, making it suitable for the detection of serum fucosylated extracellular vesicles miR-4732-5p. Ultimately, this development has the potential to enhance the diagnostic efficiency for patients with early-stage LUAD.


Assuntos
Adenocarcinoma de Pulmão , Técnicas Biossensoriais , Técnicas Eletroquímicas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/sangue , Técnicas Biossensoriais/métodos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Técnicas Eletroquímicas/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer/métodos , Feminino , Masculino , Pessoa de Meia-Idade
18.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621341

RESUMO

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno B7-H1 , Técnicas Biossensoriais , Doxorrubicina , Técnicas Eletroquímicas , Exossomos , Neoplasias Pulmonares , Humanos , Técnicas Biossensoriais/métodos , Exossomos/química , Técnicas Eletroquímicas/métodos , Neoplasias Pulmonares/química , Aptâmeros de Nucleotídeos/química , Doxorrubicina/química , DNA/química , Azul de Metileno/química , Nanosferas/química , Quadruplex G
19.
J Hazard Mater ; 470: 134216, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581877

RESUMO

In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.


Assuntos
Benzimidazóis , Carbamatos , Agulhas , Neonicotinoides , Praguicidas , Animais , Neonicotinoides/análise , Praguicidas/análise , Atrazina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Monitoramento Ambiental/métodos , Camundongos , Folhas de Planta/química , Luz , Hidrogéis/química , Pele/química
20.
Anal Methods ; 16(18): 2857-2868, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38639051

RESUMO

The pentavalent arsenic compound roxarsone (RSN) is used as a feed additive in poultry for rapid growth, eventually ending up in poultry litter. Poultry litter contains chicken manure, which plays a vital role as an affordable fertilizer by providing rich nutrients to agricultural land. Consequently, the extensive use of poultry droppings serves as a conduit for the spread of toxic forms of arsenic in the soil and surface water. RSN can be easily oxidized to release highly carcinogenic As(III) and As(IV) species. Thus, investigations were conducted for the sensitive detection of RSN electrochemically by developing a sensor material based on lanthanum manganese oxide (LMO) and functionalized carbon nanofibers (f-CNFs). The successfully synthesised LMO/f-CNF composite was confirmed by chemical, compositional, and morphological studies. The electrochemical activity of the prepared composite material was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results confirmed that LMO/f-CNF showed enhanced electrocatalytic activity and improved current response with a good linear range (0.01-0.78 µM and 2.08-497 µM, respectively), exhibiting a low limit of detection (LOD) of 0.004 µM with a high sensitivity of 13.24 µA µM-1 cm-2 towards the detection of RSN. The noteworthy features of LMO/f-CNF composite with its superior electrochemical performance enabled reliable reproducibility, exceptional stability and reliable practical application in the analysis of tap water and food sample, affording a recovery range of 86.1-98.87%.


Assuntos
Compostos de Cálcio , Técnicas Eletroquímicas , Lantânio , Nanofibras , Óxidos , Roxarsona , Titânio , Nanofibras/química , Lantânio/química , Óxidos/química , Técnicas Eletroquímicas/métodos , Roxarsona/química , Roxarsona/análise , Titânio/química , Compostos de Cálcio/química , Poluentes Químicos da Água/análise , Carbono/química , Limite de Detecção , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Animais , Compostos de Manganês/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA