Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858674

RESUMO

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Assuntos
Angelica , Reguladores de Crescimento de Plantas , Técnicas de Embriogênese Somática de Plantas , Protoplastos , Angelica/embriologia , Reguladores de Crescimento de Plantas/farmacologia , Técnicas de Embriogênese Somática de Plantas/métodos , Protoplastos/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos
2.
Methods Mol Biol ; 2527: 183-201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951192

RESUMO

The thin cell layer (TCL) culture system was initially reported in relation to the model plant Nicotiana tabacum, giving rise to 47 years of continuous application and investigation on micropropagation and plant breeding of over 100 plant species or hybrids. The small sizes of the tissue sections (100 µm to 1-2 mm in thickness), its classification into transverse TCL (tTCL) or longitudinal TCL (lTCL) categories, and the interaction between the cultured cells and the culture medium are the main drivers of its efficacy in tens of plants for the induction of somatic embryogenesis, relative to the conventional in-vitro culture system. Furthermore, it promotes higher productivity and reduced time in the proliferation of cultures, which is key for the differentiation of cells and plant tissues. This chapter describes the main characteristics of the TCL sections, and the interaction between cells under in-vitro culture. In addition, it highlights the latest findings reporting the success of TCL in ornamental, herbaceous, woody, and recalcitrant plants. In most cases, studies on the use of TCL in combination with techniques such as bioreactors, histology, genetic transformation, and fidelity analysis, provide indisputable evidence that highlights the importance of this technique in plant biotechnology. Finally, the perspectives on TCL use are described, underlining the advantages and constraints of the technique for its continued use and future application.


Assuntos
Desenvolvimento Embrionário , Melhoramento Vegetal , Meios de Cultura , Técnicas de Embriogênese Somática de Plantas/métodos , Plantas , Nicotiana/genética
3.
Plant Cell Rep ; 41(9): 1875-1893, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35776139

RESUMO

KEY MESSAGE: Cell markers of somatic embryogenesis initiation from leaf tissues in oil palm involve the participation of procambial cells, DNA demethylation, and auxin accumulation. Low callogenesis and genotype-dependent response have been mentioned in the development of somatic embryogenesis protocols of Elaeis oleifera × E. guineensis elite hybrids, which requires more detailed investigations of the process. Thus, the initial cellular responses of immature leaves of adult genotypes of this hybrid were investigated for the first time, emphasizing histological, epigenetic, and endogenous auxin changes. Leaf segments from two genotypes, one responsive to somatic embryogenesis (B351733) and another non-responsive (B352933), were inoculated in Murashige and Skoog medium with 450 µM of 4-amino-3, 5, 6-trichloropicolinic acid. For anatomical analysis, samples of both genotypes were collected at 0, 20, 90, and 105 days of cultivation. Samples of both genotypes were also taken at different cultivation periods to analyze DNA methylation status (% 5-mC-5 methylcytosine) via ELISA test. Immunolocalization assays were performed with anti-indole-3-acetic acid and anti-5-methyl-deoxycytosine antibodies from samples of hybrid B351733. We distinguished two groups of cells reactive to the induction of embryogenic callogenesis, parenchymatous sheath cells, and procambial cells; however, only the latter are directly involved with the formation of calluses. The data obtained indicate that the formation of calluses in hybrid B351733 is related to DNA hypomethylation, while the non-responsiveness of leaf explants in hybrid B352932 is related to DNA hypermethylation. The in situ immunolocalization enabled the identification of initial markers of the callogenic process, such as IAA accumulation and hypomethylation. Identifying these events brings the possibility of establishing strategies for efficient manipulation of somatic embryogenesis protocols in palm trees.


Assuntos
Desmetilação do DNA , Técnicas de Embriogênese Somática de Plantas , DNA , Desenvolvimento Embrionário , Genótipo , Ácidos Indolacéticos , Técnicas de Embriogênese Somática de Plantas/métodos
4.
Methods Mol Biol ; 2288: 293-305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270019

RESUMO

Haploids are plants with gametophytic chromosome number, which upon chromosome duplication results in production of doubled haploids (DHs). There are several methods to obtain haploids and DHs, of which in vitro anther culture is the most effective and widely used method in tobacco. The production of haploids and DHs through androgenesis allows for a single-step development of complete homozygous lines from heterozygous genotypes, shortening the time required to produce homozygous genotypes in comparison to the conventional breeding scheme. The DH development process comprises two main steps: induction of androgenesis and duplication of the haploid genome. The critical stages of DH protocol in tobacco are determining the bud stage for anther culture, pretreatment, anther culture media, detection and identification of haploids, and chromosome doubling. Here we present an efficient anther culture protocol to get haploids and DHs in flue-cured virginia (FCV) tobacco. This optimized protocol can be used as a potential tool for generation of haploids and DHs for genetic improvement of tobacco.


Assuntos
Flores/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , Meios de Cultura , Flores/genética , Haploidia , Pólen/genética , Pólen/crescimento & desenvolvimento , Nicotiana/genética
5.
Mol Biol Rep ; 47(9): 6621-6633, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803508

RESUMO

Purple coneflower (Echinacea purpurea (L.) Moench) is a widely used medicinal and ornamental plant. In the present study, the callus embryogenesis was examined using benzyl adenine (BA) at three levels (3, 4, 5 mg L-1), 1-Naphthalene acetic acid (NAA) at three levels (0.1, 0.2 and 0.5 mg L-1) with or without activated charcoal (1 g L-1), coconut milk (50 ml L-1) and casein hydrolysate (50 mg L-1) in the MS (Murashige and Skoog 1962) medium. The embryogenesis indirectly occurred with the production of callus. The calli were observed in three forms: undifferentiated, embryogenic and organogenic. The embryogenic calli were dark green and coherent with a faster growth rate. The highest embryogenesis (100%) and embryonic regeneration (plantlet production) were obtained in the combined BA + NAA treatments with the activated charcoal, coconut milk and casein hydrolysate. However, the combined treatments of growth regulators failed to produce somatic embryos without the use of coconut milk and casein hydrolysate. The maximum amount of protein, peroxidase and catalase activity of embryogenic calli (2.02, 1.79 and 6.62ΔOD/Min/mg.protein, respectively), and highest percentage of acclimatization success (29.3% of plants) were obtained in the combined treatment of 5 mg L-1 BA + 0.5 mg L-1 NAA + activated charcoal + coconut milk + casein hydrolysate. The highest amount of chlorophyll content (33.3 SPAD value) and growth characteristics of acclimatized plantlets were observed in the media containing 3 mg L-1 BA + 0.1 and 0.2 mg L-1 NAA + 1 g. L-1 combined activated charcoal, coconut milk, casein hydrolysate. The histological studies confirmed the somatic embryogenesis in purple coneflower. Generally, it was found that the somatic embryogenesis of E. purpurea occurs at high levels of BA and low levels of NAA with the addition of coconut milk and casein hydrolysate.


Assuntos
Antioxidantes/farmacologia , Echinacea/química , Echinacea/embriologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Técnicas de Embriogênese Somática de Plantas/métodos , Adenina/análogos & derivados , Adenina/farmacologia , Caseínas/farmacologia , Carvão Vegetal/farmacologia , Cocos/química , Meios de Cultura , Echinacea/enzimologia , Ácidos Naftalenoacéticos/farmacologia , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/embriologia , Organoides/crescimento & desenvolvimento , Brotos de Planta/embriologia , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química
6.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661801

RESUMO

Oil palm (Elaeis guineensis, Jacq.) is a prominent vegetable-oil-yielding crop. Cultivating high-yielding oil palm with improved traits is a pre-requisite to meet the increasing demands of palm oil consumption. However, tissue culture and biotechnological approaches can resolve these concerns. Over the past three decades, significant research has been carried out to develop tissue culture and genetic transformation protocols for oil palm. Somatic embryogenesis is an efficient platform for the micropropagation of oil palm on a large scale. In addition, various genetic transformation techniques, including microprojectile bombardment, Agrobacterium tumefaciens mediated, Polyethylene glycol mediated mediated, and DNA microinjection, have been developed by optimizing various parameters for the efficient genetic transformation of oil palm. This review mainly emphasizes the methods established for in vitro propagation and genetic transformation of oil palm. Finally, we propose the application of the genome editing tool CRISPR/Cas9 to improve the various traits in this oil yielding crop.


Assuntos
Arecaceae/crescimento & desenvolvimento , Arecaceae/genética , Transformação Genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arecaceae/embriologia , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Microinjeções/métodos , Óleo de Palmeira/economia , Técnicas de Embriogênese Somática de Plantas/métodos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Protoplastos/citologia , Protoplastos/efeitos dos fármacos , Técnicas de Cultura de Tecidos
7.
Methods Mol Biol ; 1815: 215-226, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981124

RESUMO

Most cultivated bananas (Musa spp.) are polyploids, and their fruits are seedless and propagated exclusively vegetatively; however, they can also be cloned by micropropagation techniques, viz., direct organogenesis (DO) or somatic embryogenesis (SE). Banana indirect SE (ISE), with an embryogenic callus phase, is possible using young male or female flowers as direct explant depending on the genotype or shoot tips (scalps). For the False Horn Plantain, cv. Curraré (AAB, plantain subgroup), which has a degenerating male bud, female flowers are used to regenerate plants through ISE. Here, a protocol for increasing the number of initial explant material from a single mother plant and its embryogenic response is described. For those purposes, hands with young female buds are in vitro proliferated in the presence of 1 µM indole-3-acetic acid and 2.5 µM thidiazuron. Friable embryogenic cultures, here called ISE-2, obtained from the new proliferative secondary female bud clusters are initiated on medium containing auxins. Embryogenic suspensions are then established from the ISE-2 cultures. Regeneration of plants is achieved from embryogenic suspensions after plating on semisolid medium free of plant growth regulators; greenhouse acclimatized plantlets are ready for banana farming. This study demonstrates that proliferative female buds are a proper choice for ISE.


Assuntos
Musa/citologia , Musa/embriologia , Técnicas de Embriogênese Somática de Plantas/métodos , Proliferação de Células , Meios de Cultura/química , Desinfecção , Germinação , Raízes de Plantas/crescimento & desenvolvimento
8.
Methods Mol Biol ; 1815: 227-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981125

RESUMO

Theobroma cacao L. is a tropical tree originating in the Amazon, where it grows naturally in the shade of tropical rainforests. Cacao sub-products, such as butter and powder, are produced as principal components of chocolate and contain important nutritional compounds such as polyphenols and flavonoids. However, bean production is decreasing because plantations are antiquated and unproductive. Cacao propagation has been traditionally performed through classical propagation methods, such as grafting or rooted cuttings, but those methods are not sufficient to obtain large quantities of planting material with the desired genetic quality and optimal plant health. In the search for solutions to this problem, somatic embryogenesis (SE) is a vegetative method used for cacao propagation that has the potential to be explored. SE is a type of clonal propagation by which totipotent cells in the somatic tissue can develop into embryos and subsequently convert into plants.This method offers significant technological advantages because it is possible to obtain a large quantity of disease-free planting material with good agronomic characteristics and genetic stability. In T. cacao, tow techniques of in vitro micropropagation have been reported as direct and indirect SE. Indirect SE requires the additional step of cell dedifferentiation, unlike direct SE, which does not require this step. Here, we report a protocol using direct and indirect SE techniques using two types of culture methodologies-solid and liquid culture media.


Assuntos
Cacau/embriologia , Técnicas de Embriogênese Somática de Plantas/métodos , Aclimatação/fisiologia , Meios de Cultura , Flores/embriologia , Germinação
9.
An. acad. bras. ciênc ; 90(1): 385-400, Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886879

RESUMO

ABSTRACT The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).


Assuntos
Brotos de Planta/fisiologia , Carica/embriologia , Carica/fisiologia , Técnicas de Embriogênese Somática de Plantas/métodos , Ácidos Indolacéticos/análise , Reguladores de Crescimento de Plantas/farmacologia , Microscopia Eletrônica de Varredura , Ácido Abscísico/farmacologia , Brotos de Planta/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Germinação/efeitos dos fármacos , Germinação/fisiologia , Meios de Cultura , Carica/anatomia & histologia , Carica/efeitos dos fármacos
10.
Protoplasma ; 255(1): 285-295, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28871411

RESUMO

Large-scale propagation of oil palm (Elaeis guineensis, Jacq.) is difficult due to its single apical meristem. Thus, obtaining plants is mainly through seed germination, and a long growing period is required before oil production is possible. An alternative to large-scale seedling production is indirect somatic embryogenesis. The aim of this study was to analyze the somatic embryogenesis process in oil palm (E. guineensis Jacq.) with amino acids and low concentrations of auxins. The Tenera hybrid was analyzed by cytochemical and ultrastructural methods and was used to regenerate oil palm plants. First, calli were induced in MS culture media supplemented with 2,4-D and picloram. Two types of calli were obtained, characterized by beige or translucent color. Beige calli had embryogenic characteristics, such as large nuclei with prominent nucleoli, and they were multiplied for 8 months in MM culture (half strength MS, 1 mg L-1 2,4-D, 2 mg L-1 2iP, 1 mg L-1 IBA, 250 mg L-1 citric acid, 10 mg L-1 cysteine, 100 mg L-1 inositol, 1 mg L-1 thiamine, 1 mg L-1 pyridoxine, 1 mg L-1 nicotinic acid, 1 mg L-1 glycine, 200 mg L-1 malt extract, and 100 mg L-1 casein hydrolysate). After multiplication, the MCB culture medium (half strength MS, supplemented with 0.25 mg L-1 NAA, 2 mg L-1 BAP, MM vitamins and 200 mg L-1 malt extract, and 100 mg L-1 casein hydrolysate) was the most efficient for embryo formation, showing meristematic centers with totipotent cells in histochemical analyses. The somatic embryos were developed and germinated in MG medium (half strength MS, 0.45 mg L-1 IAA, 0.25 mg L-1 BAP, and MM vitamins), transplanted into polyethylene tubes containing pine bark substrates, and acclimatized in a greenhouse, achieving a 97% survival rate. The use of picloram for callus induction and somatic embryogenesis is advantageous and multiplication in MM medium is an important step for increasing cell mass. The calli with light beige color and nodular structures have meristematic cells with dense cytoplasm and totipotential features that later give rise to protoderm, procambium, and ground meristem during the globular, cordiform, and torpedo embryogenesis phases. In MCB medium, the concentration of vitamins and amino acids are crucial for somatic embryogenesis.


Assuntos
Ácidos Indolacéticos/metabolismo , Óleo de Palmeira/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Diferenciação Celular
11.
Methods Mol Biol ; 1637: 63-75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755336

RESUMO

Date palm tolerates salinity, drought, and high temperatures. Arid and semiarid zones, especially the Middle East region, need a huge number of date palms for cultivation. To meet this demand, tissue culture techniques have great potential for mass production of plantlets, especially using the indirect embryogenesis technique; any improvement of these techniques is a worthy objective. Low levels of salinity can enhance growth and development of tolerant plants. A low level of seawater, a natural source of salinity, reduces the time required for micropropagation processes of date palm cv. Malkaby when added to MS medium. Medium containing seawater at 500 ppm total dissolved solid (TDS) (12.2 mL/L) improves callus proliferation, whereas 1500 ppm (36.59 mL/L) enhances plant regeneration including multiplication of secondary embryos, embryo germination, and rooting.


Assuntos
Phoeniceae/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Água do Mar/química , Meios de Cultura/química , Germinação , Brotos de Planta/crescimento & desenvolvimento , Regeneração , Técnicas de Cultura de Tecidos
12.
Plant Sci ; 253: 98-106, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27969001

RESUMO

Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized.


Assuntos
Ácido Abscísico/administração & dosagem , Glutationa/administração & dosagem , Técnicas de Embriogênese Somática de Plantas/métodos , Traqueófitas/embriologia , Traqueófitas/efeitos dos fármacos , Traqueófitas/metabolismo
13.
Sci Rep ; 6: 23050, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26973288

RESUMO

Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Oryza/embriologia , Oryza/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Análise por Conglomerados , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Oryza/classificação , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Especificidade da Espécie , Fatores de Tempo , Técnicas de Cultura de Tecidos/métodos
14.
Tsitol Genet ; 49(5): 38-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26638495

RESUMO

This work is the first to our knowledge to describe the successful attempt of Agrobacterium rhizogenes-mediated transformation of topinambour in order to obtain the transgenic H. tuberosus plants, callus and "hairy" root cultures. The plasmid vectors contained the sequence of interferon gene fused with Nicotiana plumbagenifolia L. calreticulin apoplast targeting signal driven by 35S CaMV promoter or root-specific Mll promoter. Nearly 75% isolated Ri-root lines and callus cultures were proved (by PCR analysis) to contain HuINFa-2b transgene. We also managed to obtain H. tuberosus transgenic plants through somatic embryogenesis on the transgenic "hairy" root culture. The obtained transgenic H. tuberosus cultures exhibited high-level antiviral activity that ranged from 2000 to 54500 IU/g FW that makes this crop considered a promising source of recombinant interferon alpha 2b protein.


Assuntos
Agrobacterium tumefaciens/genética , Antivirais/isolamento & purificação , Helianthus/genética , Fatores Imunológicos/biossíntese , Interferon-alfa/biossíntese , Plantas Geneticamente Modificadas , Animais , Antivirais/farmacologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Helianthus/metabolismo , Helianthus/microbiologia , Humanos , Fatores Imunológicos/genética , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Interferon alfa-2 , Interferon-alfa/genética , Interferon-alfa/isolamento & purificação , Interferon-alfa/farmacologia , Masculino , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Técnicas de Embriogênese Somática de Plantas/métodos , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Suínos , Testículo/efeitos dos fármacos , Testículo/imunologia , Testículo/virologia , Técnicas de Cultura de Tecidos , Nicotiana/química , Nicotiana/genética , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Vírus da Estomatite Vesicular Indiana/crescimento & desenvolvimento
15.
Plant Cell Rep ; 34(5): 671-704, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26046143

RESUMO

Dendrobium is one of the largest and most important (ornamentally and medicinally) orchid genera. Tissue culture is now an established method for the effective propagation of members of this genus. This review provides a detailed overview of the Dendrobium micropropagation literature. Through a chronological analysis, aspects such as explant, basal medium, plant growth regulators, culture conditions and final organogenic outcome are chronicled in detail. This review will allow Dendrobium specialists to use the information that has been documented to establish, more efficiently, protocols for their own germplasm and to improve in vitro culture conditions based on the optimized parameters detailed in this review. Not only will this expand the use for mass propagation, but will also allow for the conservation of important germplasm. Information on the in vitro responses of Dendrobium for developing efficient protocols for breeding techniques based on tissue culture, such as polyploidization, somatic hybridization, isolation of mutants and somaclonal variants and for synthetic seed and bioreactor technology, or for genetic transformation, is discussed in this review. This is the first such review on this genus and represents half a decade of literature dedicated to Dendrobium micropropagation.


Assuntos
Dendrobium/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Reatores Biológicos , Meios de Cultura , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
16.
Tree Physiol ; 35(2): 209-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25716878

RESUMO

A major barrier to the commercialization of somatic embryogenesis technology in loblolly pine (Pinus taeda L.) is recalcitrance of some high-value crosses to initiate embryogenic tissue (ET) and continue early-stage somatic embryo growth. Developing initiation and multiplication media that resemble the seed environment has been shown to decrease this recalcitrance. Glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid and dehydroascorbate analyses were performed weekly throughout the sequence of seed development for female gametophyte and zygotic embryo tissues to determine physiological concentrations. Major differences in stage-specific oxidation-reduction (redox) agents were observed. A simple bioassay was used to evaluate potential growth-promotion of natural and inorganic redox agents added to early-stage somatic embryo growth medium. Compounds showing statistically significant increases in early-stage embryo growth were then tested for the ability to increase initiation of loblolly pine. Low-cost reducing agents sodium dithionite and sodium thiosulfate increased ET initiation for loblolly pine and Douglas fir (Mirb) Franco. Germination medium supplementation with GSSG increased somatic embryo germination. Early-stage somatic embryos grown on medium with or without sodium thiosulfate did not differ in GSH or GSSG content, suggesting that sodium thiosulfate-mediated growth stimulation does not involve GSH or GSSG. We have developed information demonstrating that alteration of the redox environment in vitro can improve ET initiation, early-stage embryo development and somatic embryo germination in loblolly pine.


Assuntos
Germinação , Dissulfeto de Glutationa/farmacologia , Óvulo Vegetal/efeitos dos fármacos , Pinus/efeitos dos fármacos , Técnicas de Embriogênese Somática de Plantas/métodos , Sementes/efeitos dos fármacos , Tiossulfatos/farmacologia , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Germinação/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/farmacologia , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Oxirredução , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Pseudotsuga/efeitos dos fármacos , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
17.
Protoplasma ; 252(1): 89-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24893588

RESUMO

In the present study, polyembryoids of oil palm (Elaeis guineensis Jacq.) were cryopreserved with successful revival of 68 % for the first time using the droplet vitrification technique. Excised polyembryoids (3-5-mm diameter) from 3-month-old in vitro cultures were pre-cultured for 12 h in liquid Murashige and Skoog medium supplemented with 0.5 M sucrose. The polyembryoids were osmoprotected in loading solution [10% (w/v) dimethyl sulphoxide (DMSO) plus 0.7 M sucrose] for 30 min at room temperature and then placed on aluminium strips where they were individually drenched in chilled droplets of vitrification solution (PVS2) [30% (w/v) glycerol plus 15% (w/v) ethylene glycol (EG) plus 15% (w/v) DMSO plus 0.4 M sucrose] for 10 min. The aluminium strips were enclosed in cryovials which were then plunged quickly into liquid nitrogen and kept there for 1 h. The polyembryoids were then thawed and unloaded (using 1.2 M sucrose solution) with subsequent transfer to regeneration medium and stored in zero irradiance. Following for 10 days of storage, polyembryoids were cultured under 16 h photoperiod of 50 µmol m(-2) s(-1) photosynthetic photon flux density, at 23 ± 1 °C. Post-thaw growth recovery of 68% was recorded within 2 weeks of culture, and new shoot development was observed at 4 weeks of growth. Scanning electron microscopy revealed that successful regeneration of cryopreserved polyembryoids was related to maintenance of cellular integrity, presumably through PVS2 exposure for 10 min. The present study demonstrated that cryopreservation by droplet vitrification enhanced the regeneration percentages of oil palm in comparison with the conventional vitrification method previously reported.


Assuntos
Criopreservação/métodos , Microscopia Eletrônica de Varredura/métodos , Óleos de Plantas/química , Técnicas de Embriogênese Somática de Plantas/métodos , Óleo de Palmeira , Vitrificação
18.
Biol Res ; 47: 37, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25288129

RESUMO

BACKGROUND: The aim of the present work was to examine the role of UV-C irradiation on the production of secondary metabolites (total phenolic, total flavanols, total flavonols, catechin, ferulic acid and trans-resveratrol in phenolic compounds and α-, ß-, γ- δ-tocopherols) in callus cultures. Studies on the effects of UV-C treatment on callus culture are seldom and generally focused on UV-B. However UV-C radiation play an important role in accumule secondary metabolites. RESULTS: In this study, callus cultures from Öküzgözü grape cultivar were initiated from leaf petiole explants. Calli formed after 6 weeks on the medium supplemented with 0.5 mg L-1 benzylaminopurine (BA), 0.5 mg L-1 indole acetic acid (IAA) on B5 media. Callus tissues were exposed to UV-C irradiation at 10, 20 and 30 cm distances from the UV source for 5 and 10 minutes and samples were collected at hours 0, 24 and 48. CONCLUSIONS: The greatest total phenolic content (155.14 mg 100 g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. 24 h and 48 h incubation times, 30 cm and 5 min were the most appropriate combination of UV-C application in total flavanol content. Maximum total flavonol content (7.12 mg 100 g-1) was obtained on 0 h, 5 min and 20 cm combination. The highest (+)- catechin accumulation (8.89 mg g-1) was found in calli with 10 min UV-C application from 30 cm distance and sampled after 48 h. Ferulic acid content increased 6 fold in Öküzgözü callus cultures (31.37 µg g-1) compared to the control group. The greatest trans-resveratrol content (8.43 µg g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. The highest α-tocopherol concentration was found in calli exposed to UV-C for 10 min from 30 cm distance and sampled after 24 h. As a conclusion, it was showed that UV-C radiation had remarkable promoting effects on the accumulation of secondary metabolites in the calli of Öküzgözü grape cultivar.


Assuntos
Produtos Agrícolas/efeitos da radiação , Folhas de Planta/efeitos da radiação , Técnicas de Embriogênese Somática de Plantas/métodos , Metabolismo Secundário/efeitos da radiação , Raios Ultravioleta , Vitis/efeitos da radiação , Catequina/análise , Cromatografia , Ácidos Cumáricos/análise , Produtos Agrícolas/fisiologia , Flavonoides/análise , Flavonóis/análise , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Resveratrol , Metabolismo Secundário/fisiologia , Estilbenos/análise , Tocoferóis/análise , Vitis/química , Vitis/metabolismo
19.
Biol Res ; 47: 47, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25288352

RESUMO

BACKGROUND: Plant secondary metabolites are possess several biological activities such as anti-mutagenic, anti-carcinogenic, anti-aging, etc. Cell suspension culture is one of the most effective systems to produce secondary metabolites. It is possible to increase the phenolic compounds and tocopherols by using cell suspensions. Studies on tocopherols production by cell suspension cultures are seldom and generally focused on seed oil plants. Although fresh grape, grape seed, pomace and grape seed oil had tocopherols, with our best knowledge, there is no research on tocopherol accumulation in the grape cell suspension cultures. In this study, it was aimed to determine the effects of cadmium chloride treatments on secondary metabolite production in cell suspension cultures of grapevine. Cell suspensions initiated from callus belonging to petiole tissue was used as a plant material. Cadmium chloride was applied to cell suspension cultures in different concentration (1.0 mM and 1.5 mM) to enhance secondary metabolite (total phenolics, total flavanols, total flavonols, trans-resveratrol, and α-, ß-, γ- δ-tocopherols) production. Cells were harvested at two days intervals until the 6th day of cultures. Amounts of total phenolics, total flavanols and total flavonols; trans-resveratrol and tocopherols (α-, ß-, γ- and δ-tocopherols) and dry cell weights were determined in the harvested cells. RESULTS: Phenolic contents were significantly affected by the sampling time and cadmium concentrations. The highest values of total phenolic (168.82 mg/100 g), total flavanol (15.94 mg/100 g), total flavonol (14.73 mg/100 g) and trans-resveratrol (490.76 µg/100 g) were found in cells treated with 1.0 mM CdCl2 and harvested at day 2. Contents of tocopherols in the cells cultured in the presence of 1.0 mM CdCl2 gradually increased during the culture period and the highest values of α, ß and γ tocopherols (145.61, 25.52 and 18.56 µg/100 g) were detected in the cell cultures collected at day 6. CONCLUSIONS: As a conclusion, secondary metabolite contents were increased by cadmium chloride application and sampling time, while dry cell weights was reduced by cadmium chloride treatments.


Assuntos
Cloreto de Cádmio/farmacologia , Cultura Primária de Células/métodos , Metabolismo Secundário/efeitos dos fármacos , Vitis/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/análise , Flavonóis/análise , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Resveratrol , Estilbenos/análise , Tocoferóis/análise , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
20.
J Proteomics ; 104: 112-27, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24675181

RESUMO

In the present study we have identified and characterized the proteins expressed during different developmental stages of Elaeis guineensis calli obtained from zygotic embryos. We were interested in the possible proteomic changes that would occur during the acquisition of somatic embryogenesis and therefore samples were collected from zygotic embryos (E1), swollen explants 14days (E2) in induction medium, primary callus (E3), and pro-embryogenic callus (E4). The samples were grinded in liquid nitrogen, followed by total protein extraction using phenol and extraction buffer. Proteins were analyzed by two-dimensional electrophoresis (2-DE) and the differentially expressed protein spots were analyzed by MALDI-TOF mass spectrometry (MS and MS/MS). Interestingly, we have identified proteins, which can be used as potential candidates for future studies aiming at the development of biomarkers for embryogenesis acquisition and for the different stages leading to pro-embryogenic callus formation such as type IIIa membrane protein cp-wap13, fructokinase and PR proteins. The results obtained shed some light on the biochemical events involved in the process of somatic embryogenesis of E. guineensis obtained from zygotic embryos. The use of stage-specific protein markers can help monitor cell differentiation and contribute to improve the protocols for successfully cloning the species. BIOLOGICAL SIGNIFICANCE: Understanding the fate and dynamics of cells and tissues during callus formation is essential to understand totipotency and the mechanisms involved during acquisition of somatic embryogenesis (SE). In this study we have investigated the early stages of somatic embryogenesis induction in oil palm and have identified potential markers as well as proteins potentially involved in embryogenic competence acquisition. The use of these proteins can help improve tissue culture protocols in order to increase regeneration rates. This article is part of a Special Issue entitled: Environmental and structural proteomics.


Assuntos
Arecaceae/embriologia , Arecaceae/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas/métodos , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA