Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
J Pept Sci ; 30(4): e3555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220145

RESUMO

Newer solid-phase peptide synthesis and release strategies enable the production of short peptides with high purity, allowing direct screening for desired bioactivity without prior chromatographic purification. However, the maximum number of peptides that can currently be synthesized per microplate reactor is 96, allowing the parallel synthesis of 384 peptides in modern devices that have space for 4 microplate reactors. To synthesize larger numbers of peptides, we modified a commercially available peptide synthesizer to enable the production of peptides in 384-well plates, which allows the synthesis of 1,536 peptides in one run (4 × 384 peptides). We report new hardware components and customized software that allowed for the synthesis of 1,536 short peptides in good quantity (average > 0.5 µmol), at high concentration (average > 10 mM), and decent purity without purification (average > 80%). The high-throughput peptide synthesis, which we developed with peptide drug development in mind, may be widely used for peptide library synthesis and screening, antibody epitope scanning, epitope mimetic development, or protease/kinase substrate screening.


Assuntos
Técnicas de Química Combinatória , Técnicas de Síntese em Fase Sólida , Técnicas de Química Combinatória/métodos , Biblioteca de Peptídeos , Peptídeos/química , Epitopos
2.
Org Biomol Chem ; 21(40): 8112-8116, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37772608

RESUMO

New somatostatin analogs are highly desirable for diagnosing and treating neuroendocrine tumors (NETs). Here we describe the solid-phase synthesis of a new octreotate (TATE) analog where the disulfide bond is replaced with a tryptathionine (Ttn) staple as part of an effort to prototyping a one-bead-one-compound (OBOC) library of Ttn-stapled peptides. Library design provides the potential for on- and off-bead screening. To validate our method, we labelled Ttn-TATE with a fluorescent dye to demonstrate binding to soluble somatostatin receptor subtype-2 and staining of Ar42J rat prostate cancer cells. By exploring this staple in the context of a ligand of known affinity, this method paves the way for an OBOC library construction of bioactive octreotate analogs and, more broadly speaking, tryptathionine-staped peptide macrocycles.


Assuntos
Técnicas de Química Combinatória , Técnicas de Síntese em Fase Sólida , Masculino , Animais , Técnicas de Química Combinatória/métodos , Peptídeos/química , Biblioteca de Peptídeos
3.
Nano Lett ; 22(20): 8076-8085, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135098

RESUMO

Nanomaterials (NMs) inevitably adsorb proteins in blood and form "protein corona" upon intravenous administration as drug carriers, potentially changing the biological properties and intended functions. Inspired by anti-adhesion properties of natural proteins, herein, we employed the one-bead one-compound (OBOC) combinatorial peptide library method to screen anti-adhesion peptides (AAPs) against proteins. The library beads displaying random peptides were screened with three fluorescent-labeled plasma proteins. The nonfluorescence beads, presumed to have anti-adhesion property against the proteins, were isolated for sequence determination. These identified AAPs were coated on gold nanorods (GNRs), enabling significant extension of the blood circulating half-life of these GNRs in mice to 37.8 h, much longer than that (26.6 h) of PEG-coated GNRs. In addition, such AAP coating was found to alter the biodistribution profile of GNRs in mice. The bioinspired screening strategy and resulting peptides show great potential for enhancing the delivery efficiency and targeting ability of NMs.


Assuntos
Nanoestruturas , Biblioteca de Peptídeos , Camundongos , Animais , Técnicas de Química Combinatória/métodos , Distribuição Tecidual , Peptídeos/farmacologia , Peptídeos/química , Proteínas Sanguíneas , Administração Intravenosa , Ouro , Portadores de Fármacos
4.
Chembiochem ; 23(12): e202200152, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35362647

RESUMO

We report a quantitative proteomics data analysis pipeline, which coupled to protein-directed dynamic combinatorial chemistry (DDC) experiments, enables the rapid discovery and direct characterization of protein-protein interaction (PPI) modulators. A low-affinity PD-1 binder was incubated with a library of >100 D-peptides under thiol-exchange favoring conditions, in the presence of the target protein PD-1, and we determined the S-linked dimeric species that resulted, amplified in the protein samples versus the controls. We chemically synthesized the target dimer candidates and validated them by thermophoresis binding and protein-protein interaction assays. The results provide a proof-of-concept for using this strategy in the high-throughput search of improved drug-like peptide binders that block therapeutically relevant protein-protein interactions.


Assuntos
Biblioteca de Peptídeos , Proteômica , Técnicas de Química Combinatória/métodos , Inibidores de Checkpoint Imunológico , Peptídeos/química , Receptor de Morte Celular Programada 1 , Proteínas , Proteômica/métodos
5.
Chemistry ; 28(36): e202200454, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35394670

RESUMO

An efficient strategy for the synthesis of large libraries of conformationally defined peptides is reported, using dynamic combinatorial chemistry as a tool to graft amino acid side chains on a well-ordered 3D (3-dimension) peptide backbone. Combining rationally designed scaffolds with combinatorial side chains selection represents an alternative method to access peptide libraries for structures that are not genetically encodable. This method would allow a breakthrough for the discovery of protein mimetic for unconventional targets for which little is known.


Assuntos
Aminoácidos , Biblioteca de Peptídeos , Técnicas de Química Combinatória/métodos , Peptídeos/química , Proteínas
6.
Nat Commun ; 12(1): 4494, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301935

RESUMO

Self-assembling peptides have shown tremendous potential in the fields of material sciences, nanoscience, and medicine. Because of the vast combinatorial space of even short peptides, identification of self-assembling sequences remains a challenge. Herein, we develop an experimental method to rapidly screen a huge array of peptide sequences for self-assembling property, using the one-bead one-compound (OBOC) combinatorial library method. In this approach, peptides on beads are N-terminally capped with nitro-1,2,3-benzoxadiazole, a hydrophobicity-sensitive fluorescence molecule. Beads displaying self-assembling peptides would fluoresce under aqueous environment. Using this approach, we identify eight pentapeptides, all of which are able to self-assemble into nanoparticles or nanofibers. Some of them are able to interact with and are taken up efficiently by HeLa cells. Intracellular distribution varied among these non-toxic peptidic nanoparticles. This simple screening strategy has enabled rapid identification of self-assembling peptides suitable for the development of nanostructures for various biomedical and material applications.


Assuntos
Nanofibras/química , Nanoestruturas/química , Biblioteca de Peptídeos , Peptídeos/química , Dicroísmo Circular , Técnicas de Química Combinatória/métodos , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanofibras/ultraestrutura , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Nat Protoc ; 16(2): 561-578, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33473197

RESUMO

Solid-phase synthesis represents the methodological showcase for technological advances such as split-and-pool combinatorial chemistry and the automated synthesis of peptides, nucleic acids and polysaccharides. These strategies involve iterative coupling cycles that do not generate functional diversity besides that incorporated by the amino acids, nucleosides and monosaccharide building blocks. In sharp contrast, multicomponent reactions (MCRs) are traditionally used to generate both skeletal and appendage diversity in short, batchwise procedures. On-resin MCRs have traditionally been employed for the construction of heterocycle and peptidomimetic libraries, but that scenario has changed recently, and today the focus is more on the solid-phase derivatization of peptides and oligonucleotides. This review presents relevant experimental details and addresses the synthetic scope of such on-resin multicomponent protocols employed to accomplish specific biopolymer covalent modifications that are practically inviable by traditional solution-phase methodologies. Recommendations are provided to facilitate the implementation of solid-supported protocols and avoid possible pitfalls associated with the selection of the polymeric resin, the solvent and the order and amount of the reagents employed. We describe procedures comprising the multicomponent lipidation, biotinylation and labeling of both termini and the side chains, as well as the use of MCRs in the traceless on-resin synthesis of ligated and cyclic peptides. Solid-phase protocols for the assembly of α-helical and parallel ß-sheet peptides as well as hybrid peptide-peptoid and peptide-peptide nucleic acid architectures are described. Finally, the solid-supported multicomponent derivatization of DNA oligonucleotides is illustrated as part of the DNA-encoded library technology relying on MCR-derived heterocyclic compounds.


Assuntos
Biopolímeros/química , Técnicas de Química Combinatória/métodos , Técnicas de Síntese em Fase Sólida/métodos , Aminas , Aminoácidos , Biopolímeros/biossíntese , Biotinilação , DNA , Compostos Heterocíclicos , Oligonucleotídeos , Peptídeos/síntese química , Peptídeos Cíclicos , Resinas Sintéticas/química
8.
Methods Mol Biol ; 2175: 65-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32681484

RESUMO

During the last decade, genome sequence databases of many species have been more and more completed so that it has become possible to further develop a recently established technique of FISH (Fluorescence In Situ Hybridization) called COMBO-FISH (COMBinatorial Oligo FISH). In contrast to standard FISH techniques, COMBO-FISH makes use of a bioinformatic search in sequence databases for probe design, so that it can be done for any species so far sequenced. In the original approach, oligonucleotide stretches of typical lengths of 15-30 nucleotides were selected in such a way that they only co-localize at the given genome target. Typical probe sets of about 20-40 stretches were used to label about 50-250 kb specifically. The probes of different lengths can be composed of purines and pyrimidines, but were often restricted to homo-purine or homo-pyrimidine probe sets because of the experimental advantage of using a protocol omitting denaturation of the target strand and triple strand binding of the probes. This allows for a better conservation of the 3D folding and arrangement of the genome. With an improved, rigorous genome sequence database analysis and sequence search according to statistical frequency and uniqueness, a novel family of probes repetitively binding to characteristic genome features like SINEs (Short Interspersed Nuclear Elements, e.g., ALU elements), LINEs (Long Interspersed Nuclear Elements, e.g., L1), or centromeres has been developed. These probes can be synthesized commercially as DNA or PNA probes with high purity and labeled by fluorescent dye molecules. Here, new protocols are described for purine-pyrimidine probes omitting heat treatment for denaturation of the target so that oligonucleotide labeling can also be combined with immune-staining by specific antibodies. If the dyes linked to the oligonucleotide stretches undergo reversible photo-bleaching (laser-induced slow blinking), the labeled cell nuclei can be further subjected to super-resolution localization microscopy for complex chromatin architecture research.


Assuntos
Elementos Alu/genética , Técnicas de Química Combinatória/métodos , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , Ácidos Nucleicos Peptídicos/genética , Linhagem Celular Tumoral , Cromatina/genética , Bases de Dados de Ácidos Nucleicos , Genoma , Humanos , Processamento de Imagem Assistida por Computador , Nanoestruturas/química , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos
9.
Viruses ; 11(9)2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454976

RESUMO

Low performance of actively targeted nanomedicines required revision of the traditional drug targeting paradigm and stimulated the development of novel phage-programmed, self-navigating drug delivery vehicles. In the proposed smart vehicles, targeting peptides, selected from phage libraries using traditional principles of affinity selection, are substituted for phage proteins discovered through combinatorial avidity selection. Here, we substantiate the potential of combinatorial avidity selection using landscape phage in the discovery of Short Linear Motifs (SLiMs) and their partner domains. We proved an algorithm for analysis of phage populations evolved through multistage screening of landscape phage libraries against the MDA-MB-231 breast cancer cell line. The suggested combinatorial avidity selection model proposes a multistage accumulation of Elementary Binding Units (EBU), or Core Motifs (CorMs), in landscape phage fusion peptides, serving as evolutionary initiators for formation of SLiMs. Combinatorial selection has the potential to harness directed molecular evolution to create novel smart materials with diverse novel, emergent properties.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Técnicas de Química Combinatória/métodos , Evolução Molecular Direcionada , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/análise , Bacteriófagos/metabolismo , Linhagem Celular Tumoral , Humanos , Nanomedicina , Biblioteca de Peptídeos , Peptídeos/química
10.
Methods Enzymol ; 623: 67-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239058

RESUMO

The ever-growing number of RNA species that are recognized as having a role in human disease is driving a demand for novel molecular probes and therapeutics. Producing sequence-selective RNA-binding molecules remains a substantial challenge, however. One approach that has been successful in producing molecules with high affinity and specificity for disease-relevant RNAs is the use of dynamic combinatorial chemistry, a fragment-based method in which fragments combine reversibly in the presence of the target. We describe methods for the design, synthesis, and screening of dynamic combinatorial libraries targeting RNA.


Assuntos
Técnicas de Química Combinatória/métodos , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Técnicas de Química Combinatória/economia , Descoberta de Drogas , Humanos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Peptidomiméticos/síntese química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , RNA/química , Bibliotecas de Moléculas Pequenas/síntese química , Técnicas de Síntese em Fase Sólida/economia , Técnicas de Síntese em Fase Sólida/métodos , Fatores de Tempo
11.
Molecules ; 24(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083395

RESUMO

The United States is currently experiencing an opioid crisis, with more than 47,000 deaths in 2017 due to opioid overdoses. Current approaches for opioid identification and quantification in body fluids include immunoassays and chromatographic methods (e.g., LC-MS, GC-MS), which require expensive instrumentation and extensive sample preparation. Our aim was to develop a portable point-of-care device that can be used for the instant detection of opioids in body fluids. Here, we reported the development of a morphine-sensitive fluorescence-based sensor chip to sensitively detect morphine in the blood using a homogeneous immunoassay without any washing steps. Morphine-sensitive illuminating peptides were identified using a high throughput one-bead one-compound (OBOC) combinatorial peptide library approach. The OBOC libraries contain a large number of random peptides with a molecular rotor dye, malachite green (MG), that are coupled to the amino group on the side chain of lysine at different positions of the peptides. The OBOC libraries were then screened for fluorescent activation under a confocal microscope, using an anti-morphine monoclonal antibody as the screening probe, in the presence and absence of free morphine. Using this novel three-step fluorescent screening assay, we were able to identify the peptide-beads that fluoresce in the presence of an anti-morphine antibody, but lost fluorescence when the free morphine was present. After the positive beads were decoded using automatic Edman microsequencing, the morphine-sensitive illuminating peptides were then synthesized in soluble form, functionalized with an azido group, and immobilized onto microfabricated PEG-array spots on a glass slide. The sensor chip was then evaluated for the detection of morphine in plasma. We demonstrated that this proof-of-concept platform can be used to develop fluorescence-based sensors against morphine. More importantly, this technology can also be applied to the discovery of other novel illuminating peptidic sensors for the detection of illicit drugs and cancer biomarkers in body fluids.


Assuntos
Analgésicos Opioides/análise , Analgésicos Opioides/sangue , Líquidos Corporais/química , Técnicas de Química Combinatória/métodos , Morfina/análise , Morfina/sangue , Peptídeos/química , Cromatografia Líquida , Ensaios de Triagem em Larga Escala , Humanos , Biblioteca de Peptídeos
12.
J Control Release ; 302: 63-78, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30930215

RESUMO

The delivery of anticancer drugs is hampered by tumor vessels with abnormal structure and function, which requires that vessel normalization be mediated by pharmaceutics. The current strategies for vessel normalization focus on direct modulation of endothelial cells (ECs), which frequently affect vessels in normal tissues. Modulating EC-supporting cells, such as pericytes (PCs), is a new direction. Here, we produced a fusion protein, Z-TNFα, by fusing the platelet-derived growth factor receptor ß (PDGFRß)- antagonistic affibody ZPDGFRß to tumor necrosis factor α (TNFα). Owing to the affinity of fused ZPDGFRß for PDGFRß, Z-TNFα binds PDGFRß+ PCs but not PDGFRß- ECs. Low-dose (1 µg/mouse) Z-TNFα treatment remodeled the tumor vessels, thus reducing vessel permeability and increasing vessel perfusion. As a result, the Z-TNFα treatment improved the delivery of doxorubicin (DOX) and enhanced its antitumor effect, indicating that Z-TNFα induced normalization of tumor vessels. Mechanically, the tumor vessel normalization mediated by Z-TNFα might be attributed to the reduction of vascular endothelial growth factor (VEGF) secretion by PCs and the elevated expression of intercellular cell adhesion molecule-1 (ICAM-1) in PCs, which might suppress the proliferation and migration of ECs and simultaneously trigger interaction between perivascular macrophages and PCs. These results demonstrated that tumor-associated PCs could be considered novel target cells for vessel normalization, and Z-TNFα might be developed as a potential tool for antitumor combination therapy.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Pericitos/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Proteínas Recombinantes de Fusão/química , Fator de Necrose Tumoral alfa/química , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Técnicas de Química Combinatória/métodos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neoplasias Experimentais , Inibidores de Proteínas Quinases/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular
13.
Inorg Chem ; 58(6): 3895-3909, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30793900

RESUMO

Combinatorial synthesis can be applied for developing a library of compounds that can be rapidly screened for biological activity. Here, we report the application of microwave-assisted combinatorial chemistry for the synthesis of 80 rhenium(I) tricarbonyl complexes bearing diimine ligands. This library was evaluated for anticancer activity in three different cancer cell lines, enabling the identification of three lead compounds with cancer cell growth-inhibitory activities of less than 10 µM. These three lead structures, Re-9B, Re-9C, and Re-9D, were synthesized independently and fully characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and X-ray crystallography. The most potent of these three complexes, Re-9D, was further explored to understand its mechanism of action. Complex Re-9D is equally effective in both wild-type and cisplatin-resistant A2780 ovarian cancer cells, indicating that it circumvents cisplatin resistance. This compound was also shown to possess promising activity against ovarian cancer tumor spheroids. Additionally, flow cytometry showed that Re-9D does not induce cell cycle arrest or flipping of phosphatidylserine to the outer cell membrane. Analysis of the morphological changes of cancer cells treated with Re-9D revealed that this compound gives rise to rapid plasma membrane rupture. Collectively, these data suggest that Re-9D induces necrosis in cancer cells. To assess the in vivo biodistribution and stability of this compound, a radioactive 99mTc analogue of Re-9D, 99mTc-9D(H2O), was synthesized and administered to naïve BALB/c mice. Results of these studies indicate that 99mTc-9D(H2O) exhibits high metabolic stability and a distinct biodistribution profile. This research demonstrates that combinatorial synthesis is an effective approach for the development of new rhenium anticancer agents with advantageous biological properties.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Necrose/induzido quimicamente , Rênio/química , Rênio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Combinatória/métodos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacocinética , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Rênio/farmacocinética , Distribuição Tecidual
14.
Mol Pharm ; 16(2): 914-920, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30601666

RESUMO

miR-155 plays key promoting roles in several cancers and emerges as an important anticancer therapeutic target. However, the discovery of small molecules that target RNAs is challenging. Peptidomimetics have been shown to be a rich source for discovering novel ligands to regulate cellular proteins. However, the potential of using peptidomimetics for RNA targeting is relatively unexplored. To this end, we designed and synthesized members of a novel 320 000 compound macrocyclic peptidomimetic library. An affinity-based screening protocol led to the identification of a pre-miR-155 binder that inhibits oncogenic miR-155 maturation in vitro and in cell and induces cancer cell apoptosis. The results of this investigation demonstrate that macrocyclic peptidomimetics could serve as a new scaffold for RNA targeting.


Assuntos
MicroRNAs/metabolismo , Peptidomiméticos/metabolismo , Apoptose , Western Blotting , Linhagem Celular , Técnicas de Química Combinatória/métodos , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Células MCF-7 , Peptidomiméticos/química
15.
Molecules ; 24(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654483

RESUMO

The current translation of peptides identified through the one-bead one-compound (OBOC) technology into positron emission tomography (PET) imaging agents is a slow process, with a major delay between ligand identification and subsequent lead optimization. This work aims to streamline the development process of 18F-peptide based PET imaging agents to target the integrin αvß6. By directly identify αvß6⁻targeting peptides from a 9-mer 4-fluorobenzoyl peptide library using the on-bead two-color (OBTC) cell-screening assay, a total of 185 peptide beads were identified and 5 beads sequenced for further evaluation. The lead peptide 1 (VGDLTYLKK(FB), IC50 = 0.45 ± 0.06 µM, 25% stable in serum at 1 h) was further modified at the N-, C-, and bi-termini. C-terminal PEGylation increased the metabolic stability (>95% stable), but decreased binding affinity (IC50 = 3.7 ± 1 µM) was noted. C-terminal extension (1i, VGDLTYLKK(FB)KVART) significantly increased binding affinity for integrin αvß6 (IC50 = 0.021 ± 0.002 µM), binding selectivity for αvß6-expressing cells (3.1 ± 0.8:1), and the serum stability (>99% stable). Our results demonstrate the challenges in optimizing OBOC-derived peptides, indicate both termini of 1 are sensitive to modifications, and show that further modification of 1 is necessary to demonstrate utility as an 18F-peptide imaging agent.


Assuntos
Antígenos de Neoplasias/metabolismo , Técnicas de Química Combinatória/métodos , Radioisótopos de Flúor/química , Integrinas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Linhagem Celular , Humanos , Integrinas/química , Imagem Molecular , Biblioteca de Peptídeos , Peptídeos/química , Tomografia por Emissão de Pósitrons
16.
Mini Rev Med Chem ; 19(7): 599-608, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30058486

RESUMO

BACKGROUND: The indolo[2,3-b]quinoline framework is often found in various natural products displaying a range of pharmacological activities. This is an attractive template for the design and discovery of potential drugs especially for the identification of new anticancer agents. METHODS: The synthesis of 6-substituted indolo[2,3-b]quinolones was undertaken and carried out using a ultrasound assisted method involving two sequential C-N bond forming reactions between 3-(2- bromophenyl)-2-chloroquinoline and amines in a single pot in the presence of Pd(OAc)2 and a ligand (S)-BINAP. All the synthesized compounds were tested in vitro against two cancer cell lines e.g. MCF7 and HepG2 along with non-cancerous HEK293 cell lines. RESULTS: Two of these compounds showed promising and selective growth inhibition of MCF7 cell lines and one induced significant apoptosis in cancer (MCF7) cells. CONCLUSION: Compounds based on indolo[2,3-b]quinolone framework may be useful for the identification of new cytotoxic agents thereby potential cure for breast cancer.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Técnicas de Química Combinatória/métodos , Indóis/síntese química , Indóis/farmacologia , Quinolinas/síntese química , Quinolinas/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Células Hep G2 , Humanos , Indóis/química , Células MCF-7 , Neoplasias/tratamento farmacológico , Paládio/química , Quinolinas/química , Ondas Ultrassônicas
17.
ACS Comb Sci ; 21(1): 6-10, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30521316

RESUMO

In this Research Article, a novel inkjet printing technique, micro impact printing (MI printing), is applied for the first time to combinatorial peptide microarray synthesis on amine functionalized microdisc arrays through standard Fmoc chemistry. MI printing shows great advantages in combinatorial peptide microarray synthesis compared with other printing techniques, including (1) a disposable cartridge; (2) a small spot size (80 µm) increases array density; (3) minimal loading volume (0.6 µL) and dead volume (<0.1 µL), reduce chemical waste; and (4) multiplexibility of 5 channels/cartridge and capacity of multiple cartridges. Using this synthesis platform, a tetrapeptide library with 625 permutations was constructed and then applied for the screening of ligands targeting α4ß1 integrin on Jurkat cells.


Assuntos
Técnicas de Química Combinatória/métodos , Peptídeos/síntese química , Aminas/química , Humanos , Integrina alfa4beta1/metabolismo , Células Jurkat , Técnicas Analíticas Microfluídicas/métodos , Biblioteca de Peptídeos , Impressão Tridimensional , Análise Serial de Proteínas/métodos , Propriedades de Superfície
18.
J Med Chem ; 62(2): 762-773, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30525583

RESUMO

Dynamic combinatorial chemistry (DCC) has emerged as a promising strategy for template-driven selection of high-affinity ligands for biological targets from equilibrating combinatorial libraries. However, only a few examples using disulfide-exchange-based DCC are reported for nucleic acid targets. Herein, we have demonstrated that gold-coated magnetic nanoparticle-conjugated DNA targets can be used as templates for dynamic selection of ligands from an imine-based combinatorial library. The implementation of DCC using DNA nanotemplates enables efficient identification of the lead compounds, from the dynamic combinatorial library via magnetic decantation. It further allows quick separation of DNA nanotemplates for reuse in DCC reactions. The identified lead compound exhibits significant quadruplex versus duplex DNA selectivity and suppresses promoter activity of c-MYC gene that contains G-quadruplex DNA forming sequence in the upstream promoter region. Further cellular experiments indicated that the lead compound is able to permeate into cell nuclei and trigger a DNA damage response in cancer cells.


Assuntos
Técnicas de Química Combinatória/métodos , DNA/química , Quadruplex G , Ligantes , Nanopartículas Metálicas/química , Aldeídos/química , Aminas/química , Aminas/metabolismo , Aminas/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Ouro/química , Humanos , Microscopia Confocal , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética
19.
Nat Protoc ; 13(10): 2348-2361, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250290

RESUMO

Hypochlorous acid (HOCl) is a critical member of the reactive oxygen species (ROS) produced by immune cells to fight infections. On the other hand, HOCl in homeostasis causes oxidative damage to biomolecules and is linked to many diseases, including inflammatory, neurodegenerative, and cardiovascular diseases. Herein, we detail a procedure for the preparation of a boron-dipyrromethene (BODIPY)-derived fluorescent probe for HOCl (BClO) and its application as an imaging reagent in living cells. BClO is synthesized in one pot through a four-step procedure that is nearly the same as that for conventional BODIPY dye preparation, except for the ratio of starting materials. BClO has an extremely rapid response (saturated within seconds) and is ultrasensitive to HOCl. The detection limit of BClO reaches the subnanomolar range, which is the highest HOCl sensitivity to date. Taking advantage of the ultrasensitive character of BClO, we have previously demonstrated its ability to detect endogenous HOCl generated by macrophages and shown that it can also be used to discriminate cancer cell lines (which show high HOCl production) from non-cancer cell lines (which show low HOCl production). The protocol requires ~2 d for probe synthesis and up to ~18 h for fluorescence imaging and flow cytometry assays.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Microscopia Confocal/métodos , Imagem Óptica/métodos , Animais , Compostos de Boro/síntese química , Células COS , Chlorocebus aethiops , Técnicas de Química Combinatória/métodos , Citometria de Fluxo/métodos , Corantes Fluorescentes/síntese química , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Células RAW 264.7
20.
Chem Asian J ; 13(19): 2854-2867, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-29917331

RESUMO

Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self-assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic "thermal tag" with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily-selective probes against two clinically important epigenetic enzymes: FTO (7; IC50 =2.6 µm) and ALKBH3 (8; IC50 =3.7 µm). To date, this is the first report of a subfamily-selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Técnicas de Química Combinatória/métodos , Inibidores Enzimáticos/química , Oxirredutases O-Desmetilantes/antagonistas & inibidores , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/química , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 5 da RNA Desmetilase/antagonistas & inibidores , Homólogo AlkB 5 da RNA Desmetilase/química , Homólogo AlkB 5 da RNA Desmetilase/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Catálise , Fluorometria/métodos , Humanos , Hidrazonas/química , Cinética , Ligantes , Estrutura Molecular , Oxirredutases O-Desmetilantes/química , Oxirredutases O-Desmetilantes/genética , Peptídeos/química , Peptídeos/genética , Desnaturação Proteica , Engenharia de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA