Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254102

RESUMO

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Assuntos
Benzamidas , Carcinoma Epitelial do Ovário , Adesão Celular , Histona Desacetilase 1 , Histona Desacetilase 2 , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Feminino , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Anticorpos Monoclonais , Carcinoma Epitelial do Ovário/metabolismo , Epitélio , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilase 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Proteômica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilase 2/metabolismo , Adesão Celular/genética
2.
Sci Rep ; 13(1): 22368, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102166

RESUMO

The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium. Bone marrow-derived macrophages lacking expression of Tln1 did not exhibit a cell-autonomous phenotype; there was no impaired proinflammatory gene expression, nitric oxide production, phagocytic ability, or surface expression of CD11b, CD86, or major histocompatibility complex II in response to C. rodentium. Thus, we demonstrate that talin-1 plays a role in the manifestation of infectious colitis by increasing mucosal macrophages, with an effect that is independent of macrophage activation.


Assuntos
Colite , Infecções por Enterobacteriaceae , Animais , Camundongos , Citrobacter rodentium , Colite/genética , Colite/prevenção & controle , Colo/patologia , Células Endoteliais/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Talina/genética , Talina/metabolismo
3.
Cell Mol Biol Lett ; 28(1): 56, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460977

RESUMO

BACKGROUND: Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVß5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS: The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS: We show that KANK1 is not a part of the CMSC associated with integrin αVß5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION: We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.


Assuntos
Melanoma , Talina , Humanos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/genética , Integrinas/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Isoformas de Proteínas/metabolismo , Talina/genética , Talina/química , Talina/metabolismo , Linhagem Celular Tumoral/metabolismo
4.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37083041

RESUMO

Focal adhesions are composed of transmembrane integrins, linking the extracellular matrix to the actomyosin cytoskeleton, via cytoplasmic proteins. Adhesion depends on the activation of integrins. Talin and kindlin proteins are intracellular activators of integrins that bind to ß-integrin cytoplasmic tails. Integrin activation and clustering through extracellular ligands guide the organization of adhesion complexes. However, the roles of talin and kindlin in this process are poorly understood. To determine the contribution of talin, kindlin, lipids and actomyosin in integrin clustering, we used a biomimetic in vitro system, made of giant unilamellar vesicles, containing transmembrane integrins (herein αIIbß3), with purified talin (talin-1), kindlin (kindlin-2, also known as FERMT2) and actomyosin. Here, we show that talin and kindlin individually have the ability to cluster integrins. Talin and kindlin synergize to induce the formation of larger integrin clusters containing the three proteins. Comparison of protein density reveals that kindlin increases talin and integrin density, whereas talin does not affect kindlin and integrin density. Finally, kindlin increases integrin-talin-actomyosin coupling. Our study unambiguously demonstrates how kindlin and talin cooperate to induce integrin clustering, which is a major parameter for cell adhesion.


Assuntos
Integrinas , Talina , Integrinas/metabolismo , Talina/genética , Talina/metabolismo , Actomiosina , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Adesão Celular
5.
Arterioscler Thromb Vasc Biol ; 43(6): 1015-1030, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051931

RESUMO

BACKGROUND: AGK (acylglycerol kinase) was first identified as a mitochondrial transmembrane protein that exhibits a lipid kinase function. Recent studies have established that AGK promotes cancer growth and metastasis, enhances glycolytic metabolism and function fitness of CD8+ T cells, or regulates megakaryocyte differentiation. However, the role of AGK in platelet activation and arterial thrombosis remains to be elaborated. METHODS: We performed hematologic analysis using automated hematology analyzer and investigated platelets morphology by transmission electron microscope. We explored the role of AGK in platelet activation and arterial thrombosis utilizing transgenic mice, platelet functional experiments in vitro, and thrombosis models in vivo. We revealed the regulation effect of AGK on Talin-1 by coimmunoprecipitation, mass spectrometry, immunofluorescence, and Western blot. We tested the role of AGK on lipid synthesis of phosphatidic acid/lysophosphatidic acid and thrombin generation by specific Elisa kits. RESULTS: In this study, we found that AGK depletion or AGK mutation had no effect on the platelet average volumes, the platelet microstructures, or the expression levels of the major platelet membrane receptors. However, AGK deficiency or AGK mutation conspicuously decreased multiple aspects of platelet activation, including agonists-induced platelet aggregation, granules secretion, JON/A binding, spreading on Fg (fibrinogen), and clot retraction. AGK deficiency or AGK mutation also obviously delayed arterial thrombus formation but had no effect on tail bleeding time and platelet procoagulant function. Mechanistic investigation revealed that AGK may promote Talin-1Ser425 phosphorylation and affect the αIIbß3-mediated bidirectional signaling pathway. However, AGK does not affect lipid synthesis of phosphatidic acid/lysophosphatidic acid in platelets. CONCLUSIONS: AGK, through its kinase activity, potentiates platelet activation and arterial thrombosis by promoting Talin-1 Ser425 phosphorylation and affecting the αIIbß3-mediated bidirectional signaling pathway.


Assuntos
Talina , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Camundongos Transgênicos , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais , Talina/genética , Talina/metabolismo , Talina/farmacologia , Trombose/patologia
6.
BMC Cancer ; 23(1): 302, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013489

RESUMO

BACKGROUND: Talin-1 as a component of multi-protein adhesion complexes plays a role in tumor formation and migration in various malignancies. This study investigated Talin-1 in protein levels as a potential prognosis biomarker in skin tumors. METHODS: Talin-1 was evaluated in 106 skin cancer (33 melanomas and 73 non-melanomas skin cancer (NMSC)) and 11 normal skin formalin-fixed paraffin-embedded (FFPE) tissue samples using immunohistochemical technique on tissue microarrays (TMAs). The association between the expression of Talin-1 and clinicopathological parameters, as well as survival outcomes, were assessed. RESULTS: Our findings from data minings through bioinformatics tools indicated dysregulation of Talin-1 in mRNA levels for skin cancer samples. In addition, there was a statistically significant difference in Talin-1 expression in terms of intensity of staining, percentage of positive tumor cells, and H-score in melanoma tissues compared to NMSC (P = 0.001, P < 0.001, and P < 0.001, respectively). Moreover, high cytoplasmic expression of Talin-1 was found to be associated with significantly advanced stages (P = 0.024), lymphovascular invasion (P = 0.023), and recurrence (P = 0.006) in melanoma cancer tissues. Our results on NMSC showed a statistically significant association between high intensity of staining and the poor differentiation (P = 0.044). No significant associations were observed between Talin-1 expression levels and survival outcomes of melanoma and NMSC patients. CONCLUSION: Our observations showed that higher expression of Talin1 in protein level may be significantly associated with more aggressive tumor behavior and advanced disease in patients with skin cancer. However, further studies are required to find the mechanism of action of Talin-1 in skin cancers.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Talina/genética , Neoplasias Cutâneas/patologia , Melanoma/patologia , Processos Neoplásicos , Prognóstico , Melanoma Maligno Cutâneo
7.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880935

RESUMO

Talin-1 is the core mechanosensitive adapter protein linking integrins to the cytoskeleton. The TLN1 gene is comprised of 57 exons that encode the 2,541 amino acid TLN1 protein. TLN1 was previously considered to be expressed as a single isoform. However, through differential pre-mRNA splicing analysis, we discovered a cancer-enriched, non-annotated 51-nucleotide exon in TLN1 between exons 17 and 18, which we refer to as exon 17b. TLN1 is comprised of an N-terminal FERM domain, linked to 13 force-dependent switch domains, R1-R13. Inclusion of exon 17b introduces an in-frame insertion of 17 amino acids immediately after Gln665 in the region between R1 and R2 which lowers the force required to open the R1-R2 switches potentially altering downstream mechanotransduction. Biochemical analysis of this isoform revealed enhanced vinculin binding, and cells expressing this variant show altered adhesion dynamics and motility. Finally, we showed that the TGF-ß/SMAD3 signaling pathway regulates this isoform switch. Future studies will need to consider the balance of these two TLN1 isoforms.


Assuntos
Neoplasias , Talina , Humanos , Talina/genética , Mecanotransdução Celular , Éxons/genética , Proteínas Adaptadoras de Transdução de Sinal
8.
Cell Death Dis ; 14(1): 73, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717550

RESUMO

Dissemination of high-grade serous ovarian cancer (HG-SOC) in the omentum and intercalation into a mesothelial cell (MC) monolayer depends on functional α5ß1 integrin (Intα5ß1) activity. Although the binding of Intα5ß1 to fibronectin drives these processes, other molecular mechanisms linked to integrin inside-out signaling might support metastatic dissemination. Here, we report a novel interactive signaling that contributes to Intα5ß1 activation and accelerates tumor cells toward invasive disease, involving the protein ß-arrestin1 (ß-arr1) and the activation of the endothelin A receptor (ETAR) by endothelin-1 (ET-1). As demonstrated in primary HG-SOC cells and SOC cell lines, ET-1 increased Intß1 and downstream FAK/paxillin activation. Mechanistically, ß-arr1 directly interacts with talin1 and Intß1, promoting talin1 phosphorylation and its recruitment to Intß1, thus fueling integrin inside-out activation. In 3D spheroids and organotypic models mimicking the omentum, ETAR/ß-arr1-driven Intα5ß1 signaling promotes the survival of cell clusters, with mesothelium-intercalation capacity and invasive behavior. The treatment with the antagonist of ETAR, Ambrisentan (AMB), and of Intα5ß1, ATN161, inhibits ET-1-driven Intα5ß1 activity in vitro, and tumor cell adhesion and spreading to intraperitoneal organs and Intß1 activity in vivo. As a prognostic factor, high EDNRA/ITGB1 expression correlates with poor HG-SOC clinical outcomes. These findings highlight a new role of ETAR/ß-arr1 operating an inside-out integrin activation to modulate the metastatic process and suggest that in the new integrin-targeting programs might be considered that ETAR/ß-arr1 regulates Intα5ß1 functional pathway.


Assuntos
Integrina alfa5beta1 , Neoplasias Ovarianas , Receptor de Endotelina A , Talina , beta-Arrestina 1 , Feminino , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Endotelina-1/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Integrina alfa5beta1/metabolismo , Talina/genética , Talina/metabolismo
9.
Cancer Biomark ; 35(3): 269-292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245369

RESUMO

METHODS: Talin-1 protein was demonstrated as a potential prognostic marker in renal cell carcinoma (RCC) using bioinformatics analysis. We, therefore, examined the protein expression levels and prognostic significance of Talin-1 with a clinical follow-up in a total of 269 tissue specimens from three important subtypes of RCC and 30 adjacent normal samples using immunohistochemistry. Then, we used combined analysis with B7-H3 to investigate higher prognostic values. RESULTS: The results showed that high membranous and cytoplasmic expression of Talin-1 was significantly associated with advanced nucleolar grade, microvascular invasion, histological tumor necrosis, and invasion to Gerota's fascia in clear cell RCC (ccRCC). In addition, high membranous and cytoplasmic expression of Talin-1 was found to be associated with significantly poorer disease-specific survival (DSS) and progression-free survival (PFS). Moreover, increased cytoplasmic expression of Talin-1High/B7-H3High compared to the other phenotypes was associated with tumor aggressiveness and progression of the disease, and predicted a worse clinical outcome, which may be an effective biomarker to identify ccRCC patients at high risk of recurrence and metastasis. CONCLUSIONS: Collectively, these observations indicate that Talin-1 is an important molecule involved in the spread and progression of ccRCC when expressed particularly in the cytoplasm and may serve as a novel prognostic biomarker in this subtype. Furthermore, a combined analysis of Talin-1/B7-H3 indicated an effective biomarker to predict the progression of disease and prognosis in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Prognóstico , Talina/genética
10.
Anticancer Res ; 42(10): 4715-4725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36192016

RESUMO

BACKGROUND/AIM: Liver cancer is the third-most lethal cancer worldwide. Abnormal expression of microRNAs (miRNAs) modulates gene expression to exert oncogenic or tumor-suppressive effects in liver cancer. However, the biological role of miR-1303 in the progression of liver cancer and its regulatory mechanism has not been elucidated. MATERIALS AND METHODS: The expression levels of miR-1303 were measured in liver-cancer tissues of patients and cell lines by RT-qPCR. Huh-7 and HepG2 liver-cancer cells were co-transfected by TLN1 and miR-1303 constructs. Cell viability was measured by the CCk-8 assay and colony-formation assay. Flow cytometry was used to measure cell apoptosis. Cell migration and invasion were determined by wound-healing and transwell-chamber assays. RT-PCR and western-blotting were used to determine miR-1303 inhibitor-associated marker expression, such as Bax, cleaved-caspase-3 and cleaved-caspase-9. RESULTS: miR-1303 expression was strongly up-regulated in liver-cancer tissues and cells. Knockdown of miR-1303 attenuated cell proliferation, migration and invasion, and induced apoptosis in liver-cancer cells. Talin 1 (TLN1) and miR-1303 expression were negatively correlated, possibly by miR-1303 targeting the TLN1 gene. TLN1 expression enhanced the efficacy of an miR-1303 inhibitor to reduce liver-cancer cell proliferation and invasion. CONCLUSION: miR-1303 plays an important role in liver cancer, which is inhibited by TLN1 expression.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Talina , Apoptose/genética , Caspase 3/metabolismo , Caspase 9/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Talina/genética , Talina/metabolismo , Proteína X Associada a bcl-2/metabolismo
11.
BMC Cancer ; 22(1): 1027, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175877

RESUMO

The protein Talin1 encoded by the TLN1 gene is a focal adhesion-related protein that binds to various cytoskeletal proteins and plays an important role in cell adhesion and movement. Recent studies have shown that it is overexpressed in prostate cancer, liver cancer, and oral squamous cell carcinoma, and is closely related to tumor progression and metastasis. This study integrated bioinformatics and functional analysis to reveal the prognosis and potential functions of TLN1 in AML. The results showed that the expression level of TLN1 was abnormally increased in AML and localized in the cell membrane and cytoplasm, and TLN1 is a significant prognostic indicator of overall survival (OS). Enrichment analysis of related genes showed that TLN1 is related to neutrophil mediated immunity, neutrophil activation and may regulate important signal pathways in hematological tumors including tyrosine kinase receptor, FLT3 and PIK3/AKT. The PPI network shows that TLN1 and MYH9 may be involved in the process of AML tumors together with PIP5K1C, ROCK1, S100A4, MY01A and WAC. Immune infiltration analysis explains that TLN1 is associated with multiple immune cells and may be an important immune marker in AML. Furthermore, molecular biology experiments confirmed that TLN1 is related to the proliferation, differentiation and cycle of AML cells. Silencing TLN1 can inhibit the proliferation of AML cells and promote differentiation through the Talin1/P-AKT/CREB signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Leucemia Mieloide Aguda , Neoplasias Bucais , Proliferação de Células/genética , Proteínas do Citoesqueleto , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases , Talina/genética , Talina/metabolismo , Quinases Associadas a rho
12.
Curr Biol ; 32(2): R79-R81, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35077693

RESUMO

Hypoxia drives cancer metastasis and induces cancer cells to switch from collective to amoeboid migration. A new study identifies a molecular pathway in which hypoxia stimulates calpain-2-mediated cleavage of talin-1, resulting in a reduction of integrin ß1 activity and the promotion of blebbing amoeboid cancer cell migration and metastasis.


Assuntos
Neoplasias , Talina , Biologia , Movimento Celular , Humanos , Hipóxia , Talina/genética , Talina/metabolismo
13.
Curr Biol ; 32(2): 412-427.e8, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34883047

RESUMO

Hypoxia, through hypoxia inducible factor (HIF), drives cancer cell invasion and metastatic progression in various cancer types. In epithelial cancer, hypoxia induces the transition to amoeboid cancer cell dissemination, yet the molecular mechanisms, relevance for metastasis, and effective intervention to combat hypoxia-induced amoeboid reprogramming remain unclear. Here, we identify calpain-2 as a key regulator and anti-metastasis target of hypoxia-induced transition from collective to amoeboid dissemination of breast and head and neck (HN) carcinoma cells. Hypoxia-induced amoeboid dissemination occurred through low extracellular matrix (ECM)-adhesive, predominantly bleb-based amoeboid movement, which was maintained by a low-oxidative and -glycolytic energy metabolism ("eco-mode"). Hypoxia induced calpain-2-mediated amoeboid conversion by deactivating ß1 integrins through enzymatic cleavage of the focal adhesion adaptor protein talin-1. Consequently, targeted downregulation or pharmacological inhibition of calpain-2 restored talin-1 integrity and ß1 integrin engagement and reverted amoeboid to elongated phenotypes under hypoxia. Calpain-2 activity was required for hypoxia-induced amoeboid conversion in the orthotopic mouse dermis and upregulated in invasive HN tumor xenografts in vivo, and attenuation of calpain activity prevented hypoxia-induced metastasis to the lungs. This identifies the calpain-2/talin-1/ß1 integrin axis as a druggable mechanosignaling program that conserves energy yet enables metastatic dissemination that can be reverted by interfering with calpain activity.


Assuntos
Calpaína , Neoplasias de Cabeça e Pescoço , Animais , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Humanos , Hipóxia , Integrina beta1/genética , Camundongos , Metástase Neoplásica , Talina/genética , Talina/metabolismo
14.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34264272

RESUMO

Talin is a mechanosensitive adapter protein that couples integrins to the cytoskeleton. Talin rod domain-containing protein 1 (TLNRD1) shares 22% homology with the talin R7R8 rod domains, and is highly conserved throughout vertebrate evolution, although little is known about its function. Here we show that TLNRD1 is an α-helical protein structurally homologous to talin R7R8. Like talin R7R8, TLNRD1 binds F-actin, but because it forms a novel antiparallel dimer, it also bundles F-actin. In addition, it binds the same LD motif-containing proteins, RIAM and KANK, as talin R7R8. In cells, TLNRD1 localizes to actin bundles as well as to filopodia. Increasing TLNRD1 expression enhances filopodia formation and cell migration on 2D substrates, while TLNRD1 down-regulation has the opposite effect. Together, our results suggest that TLNRD1 has retained the diverse interactions of talin R7R8, but has developed distinct functionality as an actin-bundling protein that promotes filopodia assembly.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Chaperonas Moleculares/metabolismo , Pseudópodes/metabolismo , Talina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Clonagem Molecular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Pseudópodes/ultraestrutura , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Talina/genética
15.
Reprod Biol Endocrinol ; 19(1): 70, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990206

RESUMO

Adenomyosis (ADS) is an estrogen-dependent gynecological disease with unspecified etiopathogenesis. Local hyperestrogenism may serve a key role in contributing to the origin of ADS. Talin1 is mostly identified to be overexpressed and involved in the progression of numerous human carcinomas through mediating cell proliferation, adhesion and motility. Whether Talin1 exerts an oncogenic role in the pathogenesis of ADS and puts an extra impact on the efficacy of estrogen, no relevant data are available yet. Here we demonstrated that the adenomyotic eutopic and ectopic endometrial stromal cells (ADS_Eu_ESC and ADS_Ec_ESC) treated with ß-estradiol (ß-E2) presented stronger proliferative and pro-angiogenetic capacities, accompanied by increased expression of PCNA, Ki67, VEGFB and ANGPTL4 proteins. Meanwhile, these promoting effects were partially abrogated by Fulvestrant (ICI 182780, an estrogen-receptor antagonist). Aberrantly upregulation of Talin1 mRNA and protein level was observed in ADS endometrial specimens and stromal cells. Through performing functional experiments in vitro, we further determined that merely overexpression of Talin1 (OV-Talin1) also enhanced ADS stromal cell proliferation and pro-angiogenesis, while the most pronounced facilitating effects were found in the co-intervention group of OV-Talin1 plus ß-E2 treatment. Results from the xenograft nude mice model showed that the hypodermic endometrial lesions from co-intervention group had the highest mean weight and volume, compared with that of individual OV-Talin1 or ß-E2 treatment. The expression levels of PCNA, Ki67, VEGFB and ANGPTL4 in the lesions were correspondingly elevated the most in the co-intervention group. Our findings unveiled that overexpressed Talin1 might cooperate withß-E2 in stimulating ADS endometrial stromal cell proliferation and neovascularization, synergistically promoting the growth and survival of ectopic lesions. These results may be beneficial to provide a new insight for clarifying the pathogenesis of ADS.


Assuntos
Adenomiose/fisiopatologia , Endométrio/patologia , Células Estromais/fisiologia , Talina/fisiologia , Adenocarcinoma , Adenomiose/genética , Adenomiose/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Neoplasias do Endométrio , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Miométrio/patologia , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Organismos Livres de Patógenos Específicos , Células Estromais/efeitos dos fármacos , Talina/biossíntese , Talina/genética , Regulação para Cima
16.
J Biol Chem ; 296: 100675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865854

RESUMO

Interaction of talin with the cytoplasmic tails of integrin ß triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin KO mice, loss of talin interaction with platelet integrin αIIbß3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVß3 affects angiogenesis. In normal cells, talin is autoinhibited and localized in the cytoplasm. Here, we used an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (Arabidopsis cryptochrome 2 fused to the N terminus of talin; N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]) responsive to 450 nm (blue) light was inserted into Chinese hamster ovary cells and endothelial cells also expressing αIIbß3 or αVß3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of Arabidopsis cryptochrome 2-talin to the N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]-decorated plasma membrane. This resulted in ß3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Ras-related protein 1 (Rap1)-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated ß3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in ß3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Células Endoteliais/metabolismo , Optogenética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Camundongos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Ligação Proteica , Talina/genética , Proteínas rap1 de Ligação ao GTP/genética
17.
Reprod Biol Endocrinol ; 19(1): 42, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750407

RESUMO

BACKGROUND: Endometriosis is a disease that involves active cell invasion and migration. Talin-1 can promote cell invasion, migration and adhension in various cancer cells, but its role in endometriosis has not been investigated. This study was to investigate the expression level of Talin-1 in endometriosis and the role of Talin-1 in the proliferation, adhesion, migration, and invasion of human endometrial stromal cells (ESCs). METHODS: Ectopic and eutopic endometrial tissues were collected from women with endometriosis, and the control endometrial tissues were obtained from patients without endometriosis. The expression level of Talin-1 was detected in each sample using quantitative real-time polymerase chain reaction and immunohistochemistry. The expression of Talin-1 was inhibited using RNA interference in ESCs, and its proliferation, apoptosis, adhesion, migration, and invasion capacity were analyzed. Western blotting was performed to detect the expression of related molecules after the downregulation of Talin-1. RESULTS: The results showed that the mRNA and protein expression of Talin-1 were significantly increased in the ectopic endometrium and eutopic endometrial tissues compared with the controls. The knockdown of Talin-1 did not affect the proliferation and apoptosis of ESCs. The results indicated that the downexpression of Talin-1 inhibited the adhesion, invasion, and migration of ESCs. In addition, the expressions of N-cadherin, MMP-2, and integrin ß3 were significantly lower after the deregulation of Talin-1, whereas the levels of E-cadherin were significantly increased. CONCLUSIONS: The expression of Talin-1 was increased in the ectopic and eutopic endometrial tissues compared with the control endometrium. The downregulation of Talin-1 inhibited the adhesion, invasion, and migration of ESCs.


Assuntos
Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Talina/biossíntese , Proliferação de Células/fisiologia , Células Cultivadas , Endometriose/cirurgia , Endométrio/cirurgia , Feminino , Expressão Gênica , Humanos , Talina/genética
18.
Life Sci ; 274: 119332, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711384

RESUMO

AIMS: Blastocyst implantation is mainly depended on the adhesion between cells and cell matrix. Endometrial adhesion plays an important role in establishing embryo implantation, but the underlying mechanisms are remains unclear. Talin1 is a local adhesion complex protein that is necessary for cell adhesion and movement. However, the role and mechanisms of Talin1 in embryo implantation are still unclear. MAIN METHODS: The expression of Talin1 and Integrin αvß3 was measured in the receptive endometrium from the RIF (Recurrent implantation failure) cohort and NC (normal fertile control group) cohort. A JEG-3 trophoblast and endometrial epithelial cell adhesion model and pregnant mouse model were established. The molecular mechanism of Talin1-mediated cell adhesion was explored by RNA sequencing, RT-qPCR, as well as western blotting assays. KEY FINDINGS: Talin1 enhances endometrial cell adhesion by regulating the Ras signaling pathway, and ultimately facilitates embryo implantation. SIGNIFICANCE: This study revealed the molecular mechanisms of regarding the pathogenesis of RIF caused by endometrial receptivity insufficiency. Further pharmacological research on the Ras signaling pathway would be valuable and might provide new therapeutic targets for RIF patients.


Assuntos
Aborto Habitual/patologia , Adesão Celular , Implantação do Embrião , Endométrio/patologia , Talina/metabolismo , Talina/fisiologia , Proteínas ras/metabolismo , Aborto Habitual/genética , Aborto Habitual/metabolismo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos Knockout , Gravidez , Prognóstico , Talina/genética , Proteínas ras/genética
19.
Biomed Res Int ; 2021: 8868700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33728345

RESUMO

Several theories on the origin of adenomyosis (ADS) have been proposed, of which the most widely accepted is the fundamental pathogenic role of uterine eutopic endometrium. Emerging evidence suggests that circular RNAs participate in the multiple tumorgenesis. The vital importance of circular RNA PVT1 (circPVT1) in the pathological progress like malignancies has been well documented. Nevertheless, its underlying correlation with ADS remains elusive yet. The purpose of this study was to investigate the expression pattern, regulatory effect, and internal mechanism of circPVT1 in ADS. qRT-PCR was performed to detect the relative mRNA expression of circPVT1, miR-145, and Talin1 in ADS endometrial tissue and cells. The protein level of Talin1 was measured by Western blot and immunochemistry. Immunofluorescence was used to identify the primary endometrial epithelial and stromal cells. circPVT1 knockdown in vitro was achieved by transfecting with specific lentivirus vector CCK-8, and colony formation assays were utilized to assess cell proliferation; meanwhile, the transwell assay was employed for evaluating cell invasion ability. By conducting bioinformatics, dual-luciferase reporter assay, or RNA immunoprecipitation (RIP) experiment, the interaction between miR-145 and circPVT1 or Talin1 was verified. Rescue experiments further determined the regulatory effect of circPVT1/miR-145/Talin1 axis. We found both circPVT1 and Talin1 were markedly upregulated in ADS endometrial tissue and cells, whereas miR-145 was decreased. Elevated expression of circPVT1 was closely related to the severity of dysmenorrhea, menorrhagia, and uterine enlargement of patients with ADS. Knockdown of circPVT1 inhibited adenomyotic epithelial and stromal cell proliferation and invasion. Further mechanistic experiments revealed that circPVT1 negatively regulated miR-145 through serving as a molecular sponge. And the facilitating effect of circPVT1 was partially reversed by miR-145. Talin1 was demonstrated to be a down target of miR-145 and indirectly affected by circPVT1. Our findings unveiled that enhanced circPVT1 may be involved in the pathogenesis of ADS via stimulating endometrial cell proliferation and invasion. The establishment of circPVT1/miR-145/Talin1 pathway might present a novel therapeutic insight for ADS.


Assuntos
Adenomiose/metabolismo , Proliferação de Células , Endométrio/metabolismo , MicroRNAs/metabolismo , RNA Circular/biossíntese , RNA Longo não Codificante/biossíntese , Transdução de Sinais , Talina/metabolismo , Regulação para Cima , Adenomiose/genética , Adenomiose/patologia , Endométrio/patologia , Feminino , Humanos , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Talina/genética
20.
Sci Rep ; 11(1): 347, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431906

RESUMO

Talin-1 is a key component of the multiprotein adhesion complexes which mediate cell migration, adhesion and integrin signalling and has been linked to cancer in several studies. We analysed talin-1 mutations reported in the Catalogue of Somatic Mutations in Cancer database and developed a bioinformatics pipeline to predict the severity of each mutation. These predictions were then assessed using biochemistry and cell biology experiments. With this approach we were able to identify several talin-1 mutations affecting integrin activity, actin recruitment and Deleted in Liver Cancer 1 localization. We explored potential changes in talin-1 signalling responses by assessing impact on migration, invasion and proliferation. Altogether, this study describes a pipeline approach of experiments for crude characterization of talin-1 mutants in order to evaluate their functional effects and potential pathogenicity. Our findings suggest that cancer related point mutations in talin-1 can affect cell behaviour and so may contribute to cancer progression.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Biologia Computacional , Neoplasias/genética , Neoplasias/patologia , Mutação Puntual , Bases de Dados Genéticas , Humanos , Talina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA