Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999970

RESUMO

Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.


Assuntos
Acetatos , Ciclopentanos , Etilenos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Filogenia , Proteínas de Plantas , Taraxacum , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Taraxacum/genética , Taraxacum/metabolismo , Taraxacum/efeitos dos fármacos , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/farmacologia , Genoma de Planta , Estudo de Associação Genômica Ampla
2.
Environ Pollut ; 354: 124188, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776992

RESUMO

Cadmium is the most prevalent heavy metal pollutant in the environment and can be readily combined with micro/nanoplastics (M/NPs) to change their bioavailability. In the present study, we comprehensively investigated the effect of polystyrene (PS) NPs on dandelion plants grown under Cd stress. Cd exposure significantly inhibited the growth of dandelion seedlings, resulting in a decrease in seedling elongation from 26.47% to 28.83%, a reduction in biomass from 29.76% to 54.14%, and an exacerbation of lipid peroxidation and oxidative stress. The interaction between PS NPs and Cd resulted in the formation of larger aggregates, with the Cd bioavailability reduced by 12.56%. PS NPs affect ion absorption by regulating reactive oxygen production and increasing superoxide dismutase activity, thereby mitigating the adverse effects of Cd. PSCd aggregates induced significant changes in the metabolic profiles of dandelions, affecting various carbohydrates related to alcohols, organic acids, sugar metabolism, and bioactive components related to flavonoids and phenolic acids. Furthermore, based on a structural equation model, exposure to PSCd activated oxidative stress and nutrient absorption, thereby affecting plant growth and Cd accumulation. Overall, our study provides valuable insights into the effects of PS NPs on Cd bioavailability, accumulation, and plant growth, which are crucial for understanding the food safety of medicinal plants in a coexistence environment.


Assuntos
Antioxidantes , Cádmio , Estresse Oxidativo , Poliestirenos , Plântula , Taraxacum , Cádmio/metabolismo , Cádmio/toxicidade , Poliestirenos/toxicidade , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Taraxacum/metabolismo , Taraxacum/efeitos dos fármacos , Taraxacum/crescimento & desenvolvimento , Nanopartículas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
3.
Appl Biochem Biotechnol ; 195(5): 3384-3405, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36595191

RESUMO

Taraxacum officinale play an important role in the prophylaxis and treatment of cardiovascular disease (CVD). Taraxacum officinale is proven as promising antioxidant in earlier studies and one of its constituent "cichoric acid" is shown to have vasorelaxant property. Therefore, present study mainly designed to investigate the cardioprotective effects of Taraxacum officinale against ischemia-reperfusion injury (I/R injury)-induced myocardial dysfunction in rats. This study not only explored the overall cardioprotective potential but also tried to explore its molecular mechanism using pharmacological inhibition via L-NAME and glibenclamide. Pretreatment of methanolic extract of Taraxacum officinale significantly attenuated (p < 0.001) increased levels of lactate dehydrogenase (LDH), creatine kinase (CK), infarct size, and thiobarbituric acid reactive substance (TBARS), while it increased the reduced levels of protein content, glutathione (GSH), and catalase (CAT) activity. Results showed that pretreatment with methanolic extract of Taraxacum officinale provides cardioprotection against I/R induced myocardial dysfunction, at least, may be mediated through the endogenous release of nitric oxide.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão , Taraxacum , Ratos , Animais , Ratos Wistar , Taraxacum/metabolismo , Estresse Oxidativo , Infarto do Miocárdio/tratamento farmacológico , Antioxidantes/farmacologia , Glutationa/metabolismo , L-Lactato Desidrogenase/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233219

RESUMO

Breast cancer is a highly heterogeneous disease that has been clinically divided into three main subtypes: estrogen receptor (ER)- and progesterone receptor (PR)-positive, human epidermal growth factor receptor 2 (HER 2)-positive, and triple-negative breast cancer (TNBC). With its high metastatic potential and resistance to endocrine therapy, HER 2-targeted therapy, and chemotherapy, TNBC represents an enormous clinical challenge. The genus Taraxacum is used to treat breast cancer in traditional medicine. Here, we applied aqueous extracts from two Taraxacum species, T. mongolicum and T. formosanum, to compare their potential antitumor effects against three human breast cancer cell lines: MDA-MB-231 (ER-, PR-, and HER2-), ZR-75-1 (ER+, PR+/-, and HER2-), and MCF-7 (ER+, PR+, and HER2-). Our results show that T. mongolicum exerted cytotoxic effects against MDA-MB-231 cells, including the induction of apoptosis, the reduction of cell proliferation, the disruption of the mitochondrial membrane potential, and/or the downregulation of the oxygen consumption rate. Both T. mongolicum and T. formosanum decreased cell migration and colony formation in the three cell-lines and exerted suppressive effects on MCF-7 cell proliferation based on metabolic activity and BrdU incorporation, but an enhanced proliferation of ZR-75-1 cells based on BrdU incorporation. T. formosanum induced ribotoxic stress in MDA-MB-231and ZR-75-1 cells; T. mongolicum did not. In summary, these findings suggest that T. mongolicum showed greater cytotoxicity against all three tested breast cancer cell lines, especially the TNBC MDA-MB-231 cell line.


Assuntos
Neoplasias da Mama , Taraxacum , Neoplasias de Mama Triplo Negativas , Apoptose , Neoplasias da Mama/metabolismo , Bromodesoxiuridina/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Receptores de Progesterona , Taraxacum/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Chin J Integr Med ; 28(8): 683-692, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34816363

RESUMO

OBJECITVIE: To compare the liver protective activity of fresh/dried dandelion extracts against acetaminophen (APAP)-induced hepatotoxicity. METHODS: Totally 90 Kunming mice were randomly divided into 10 groups according to body weight (9 mice for each group). The mice in the normal control and model (vehicle control) groups were administered sodium carboxymethyl cellulose (CMC-Na, 0.5%) only. Administration groups were pretreated with high and low-dose dry dandelion extract (1,000 or 500 g fresh herb dried and then decocted into 120 mL solution, DDE-H and DDE-L); low-, medium- and high-dose dandelion juice (250, 500, 1,000 g/120 mL, DJ-L, DJ-M, and DJ-H); fresh dandelions evaporation juice water (120 mL, DEJW); dry dandelion extract dissolved by pure water (1 kg/120 mL, DDED-PW); dry dandelion extract dissolved by DEJW (120 g/120 mL, DDED-DEJW) by oral gavage for 7 days at the dosage of 0.5 mL solution/10 g body weight; after that, except normal control group, all other groups were intraperitonealy injected with 350 mg/kg APAP to induce liver injury. Twenty hours after APAP administration, serum and liver tissue were collected and serum alanine aminotransferase (AST), aspartate transaminase (ALT), alkaline phosphatase (AKP), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) activities were quantified by biochemical kits; tumor necrosis factor (TNF-α), interleukin (IL)-2, and IL-1 ß contents in liver tissue were determined by enzyme linked immunosorbent assay kits. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining; TUNEL Assay and Hoechst 33258 staining were applied for cell apoptosis evaluation. The expressions of heme oxygenase-1 (HO-1), nuclear factor erythroid-2-related factor 2 (Nrf-2), caspase-9, B-cell leukemia/lymphoma 2 (Bcl-2), Bax and p-JNK were determined by Western blot analysis. RESULTS: Pretreatment with fresh dandelion juice (FDJ, including DJ-L, DJ-M, DJ-H, DEJW and DDED-DEJW) significantly decreased the levels of serum ALT, AST, AKP, TNF-α and IL-1ß compared with vehicle control group (P<0.05 or P<0.01). Additionally, compared with the vehicle control group, FDJ decreased the levels of hepatic MDA and restored GSH levels and SOD activity in livers (P<0.05 or P<0.01). FDJ inhibited the overexpression of pro-inflammatory factors including cyclooxygenase-2 and inducible nitric oxide synthase in the liver tissues (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that FDJ pretreatment inhibited activation of apoptotic signaling pathways via decreasing of Bax, and caspase-9 and JNK protein expression, and inhibited activation of JNK pathway (P<0.05 or P<0.01). Liver histopathological observation provided further evidence that FDJ pretreatment significantly inhibited APAP-induced hepatocyte necrosis, inflammatory cell infiltration and congestion. CONCLUSIONS: FDJ pretreatment protects against APAP-induced hepatic injury by activating the Nrf-2/HO-1 pathway and inhibition of the intrinsic apoptosis pathway, and the effect of fresh dandelion extracts was superior to dried dandelion extracts in APAP hepatotoxicity model mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Taraxacum , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Alanina Transaminase , Animais , Apoptose , Peso Corporal , Caspase 9/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Diclorodifenil Dicloroetileno/metabolismo , Diclorodifenil Dicloroetileno/farmacologia , Glutationa/metabolismo , Fígado , Camundongos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Superóxido Dismutase/metabolismo , Taraxacum/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Água/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Elife ; 102021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34632981

RESUMO

Gut enzymes can metabolize plant defense compounds and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence feeding preference is largely unknown. We studied the metabolization of taraxinic acid ß-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We have demonstrated that TA-G is rapidly deglucosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha ß-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglucosylation. Using cross-species RNA interference, we have shown that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G-deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense compound. Our work illustrates the multifaceted roles of insect digestive enzymes as mediators of plant-herbivore interactions.


Plants produce certain substances to fend off attackers like plant-feeding insects. To stop these compounds from damaging their own cells, plants often attach sugar molecules to them. When an insect tries to eat the plant, the plant removes the stabilizing sugar, 'activating' the compounds and making them toxic or foul-tasting. Curiously, some insects remove the sugar themselves, but it is unclear what consequences this has, especially for insect behavior. Dandelions, Taraxacum officinale, make high concentrations of a sugar-containing defense compound in their roots called taraxinic acid ß-D-glucopyranosyl ester, or TA-G for short. TA-G deters the larvae of the Maybug ­ a pest also known as the common cockchafer or the doodlebug ­ from eating dandelion roots. When Maybug larvae do eat TA-G, it is found in their systems without its sugar. However, it is unclear whether it is the plant or the larva that removes the sugar. A second open question is how the sugar removal process affects the behavior of the Maybug larvae. Using chemical analysis and genetic manipulation, Huber et al. investigated what happens when Maybug larvae eat TA-G. This revealed that the acidity levels in the larvae's digestive system deactivate the proteins from the dandelion that would normally remove the sugar from TA-G. However, rather than leaving the compound intact, larvae remove the sugar from TA-G themselves. They do this using a digestive enzyme, known as a beta-glucosidase, that cuts through sugar. Removing the sugar from TA-G made the compound less toxic, allowing the larvae to grow bigger, but it also increased TA-G's deterrent effects, making the larvae less likely to eat the roots. Any organism that eats plants, including humans, must deal with chemicals like TA-G in their food. Once inside the body, enzymes can change these chemicals, altering their effects. This happens with many medicines, too. In the future, it might be possible to design compounds that activate only in certain species, or under certain conditions. Further studies in different systems may aid the development of new methods of pest control, or new drug treatments.


Assuntos
Besouros/enzimologia , Glucosídeos/metabolismo , Herbivoria , Proteínas de Insetos/metabolismo , Lactonas/metabolismo , Sesquiterpenos/metabolismo , Taraxacum/metabolismo , beta-Galactosidase/metabolismo , Animais , Besouros/embriologia , Besouros/genética , Digestão , Glucosídeos/toxicidade , Glutationa/metabolismo , Hidrólise , Inativação Metabólica , Proteínas de Insetos/genética , Lactonas/toxicidade , Larva/enzimologia , Larva/genética , Metabolismo Secundário , Sesquiterpenos/toxicidade , Taraxacum/toxicidade , beta-Galactosidase/genética
7.
Carbohydr Polym ; 260: 117796, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712144

RESUMO

The polysaccharide (DRP) was gained from dandelion roots by ultrasonic-assisted enzymatic extraction (UAEE) followed by two-step column purification. Then selenylation of DRP has been accomplished by HNO3-Na2SeO3 method. sDRP-1 and sDRP-2 with the selenium content of 170 ± 1.13 and 710 ± 4.00 µg/g were prepared for further structural characterization and bioactivity determination. DRP, sDRP-1, and sDRP-2 were composed of the same monosaccharides in different molar ratios, and the molecular weights of DRP, sDRP-1 and sDRP-2 were 8700, 7900, and 5600 Da, respectively. Fourier transform infrared (FT-IR) spectra confirmed that DRP, sDRP-1, and sDRP-2 possessed similar functional groups. The results of Congo red test, X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that DRP, sDRP-1, and sDRP-2 had no three helix structure, did not form single crystal, and all belonged to amorphous morphology. sDRP-1 and sDRP-2 possessed greater antioxidant activities in vitro than the native polysaccharide DRP. At the same time, the selenized polysaccharides showed better immunomodulatory ability and could be used as new-type immunoenhancer. The present conclusions provided theoretical basis for the new application of dandelion polysaccharides and the development of dandelion resources.


Assuntos
Antioxidantes/química , Polissacarídeos/química , Selênio/química , Taraxacum/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Peso Molecular , Fagocitose/efeitos dos fármacos , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Células RAW 264.7
8.
Chem Biodivers ; 16(8): e1900250, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250533

RESUMO

Taraxacum kok-saghyz (TKS) is a dandelion species native to Kazakhstan, Uzbekistan and north-west China, considered as a promising alternative source of natural rubber from its roots. The aim of this study was to investigate the possible exploitation of TKS leaves, a rubber byproduct, as a source of phenolic compounds with antioxidant properties for potential applications in forage, nutraceutical and pharmacological fields. Two accessions (TKS016, TKS018) grown under Mediterranean conditions of Sardinia were evaluated at vegetative and flowering stages. The leaves of TKS018 had the highest antioxidant capacity (19.6 mmol trolox equivalent antioxidant capacity 100 g-1 ), total phenolic (106.4 g gallic acid equivalent kg-1 ), tannic phenolics (58.5 g gallic acid equivalent kg-1 ) and total flavonoid contents (22.9 g catechin equivalent kg-1 ). At both phenological stages, TKS016 showed significantly lower values than TKS018 in 1,1-diphenyl-2-picrylhydrazyl (DPPH), total phenolic and tannic phenolics. Six individual molecules were identified, namely chlorogenic, cryptochlorogenic, caffeic, sinapic, chicoric and 3,4-dimethoxycinnamic acids. Chicoric (8.53-10.68 g kg-1 DW) and chlorogenic acids (4.18-7.04 g kg-1 DW) were the most abundant. TKS leaves represent a valuable source of chicoric acid with potential application as antioxidant to be used as herbal medicine and nutrition for production of healthy food/feed.


Assuntos
Antioxidantes/química , Taraxacum/química , Ácidos Cafeicos/química , Ácido Clorogênico/química , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Fenóis/análise , Fenóis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Federação Russa , Succinatos/química , Taraxacum/metabolismo
9.
Mol Biol Rep ; 46(5): 4893-4907, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254243

RESUMO

Exposure to high doses of radiation negatively impacts on human organs. Dandelion (Taraxacum officinale ) L. has been used as a traditional folk. This study was to investigate the effect of dandelion root extract (DRE) on radiation -induced hepatic and testicular tissues injury. Animals were exposed to 8.5 Gy of gamma radiation applied as a shot dose and DRE (200 mg/kg/day), was orally supplemented to rats 14 days before and after irradiation. The results showed that DRE administration attenuated oxidative stress in the liver and testis denoted by a significant reduction in the level of MDA and PCO with a marked elevation in GSH and the activity of SOD, CAT and Gpx. Moreover, DRE administration showed positive modulation in the activity of PNPase, GLDH and GSH-Ts. Additionally, these alterations were associated with a significant decrease in the activity of ALT, AST, ALP, and LDH with a marked increase of AL level. Further, elevated levels of testosterone, LH and inhibin B, as well as StAR and P450scc gene expression and Zn level with a decrease of FSH level were noticed. Also, DRE reduced the level of IL-1ß, TNF-α, and caspase-3. Also administration of DRE significance diminished the histopathological changes in the hepatic and testicular tissues, denoted by a reduction in the necrotic and degenerative changes of hepatocytes or fibrinoid necrosis of congested central vein and improving the seminiferous tubules and interstitial tissue between the tubules of the testis. In conclusion, treatment with DRE pre-irradiation is effective on both liver and testicular tissues of rats. Meanwhile, in the case of post-radiation administration, DRE was more effective on testicular tissue than liver. So we suggest that it is better to use the dandelion before exposure to radiation rather than after it.


Assuntos
Fígado/efeitos dos fármacos , Taraxacum/metabolismo , Testículo/efeitos dos fármacos , Animais , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos da radiação , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas/metabolismo , Radiação Ionizante , Ratos , Ratos Wistar , Testículo/metabolismo
10.
Sci Rep ; 9(1): 5942, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976052

RESUMO

Only very little is known about the resin composition of natural rubber from the dandelion species Taraxacum koksaghyz, thus its full characterization could provide new insights into how the isoprenoid end-products influence the physical properties of natural rubber, and this resin might be a good source of highly diverse triterpenoids. Here, we present a comprehensive analysis of the triterpenoid composition in an acetone extract and identified 13 triterpenes and triterpenoids also including the so far unknown pentacyclic compounds lup-19(21)-en-3-ol (1) and its ketone lup-19(21)-en-3-one (2). We purified single triterpenes from the acetone extract by developing a two-step HPLC system that is adapted to the structural differences of the described triterpenoids. Furthermore, we isolated six different oxidosqualene cyclases (OSCs) and two P450 enzymes, and we functionally characterized TkOSC1 and CYP716A263 in Nicotiana benthamiana and Saccharomyces cerevisiae in detail. TkOSC1 is a multifunctional OSC that was capable of synthesizing at least four of the latex-predominant pentacyclic triterpenes (taraxasterol, α-, ß-amyrin and lup-19(21)-en-3-ol) while CYP716A263 oxidized pentacyclic triterpenes at the C-3 position. The identified enzymes responsible for biosynthesis and modification of pentacyclic triterpenes in T. koksaghyz latex may represent excellent tools for bioengineering approaches to produce pentacyclic triterpenes heterologously.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Transferases Intramoleculares/metabolismo , Látex/metabolismo , Proteínas de Plantas/metabolismo , Taraxacum/metabolismo , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
11.
Chemosphere ; 224: 884-891, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30986894

RESUMO

Comparative accumulation of cadmium (Cd) and nickel (Ni) and the consequences for the metabolism of common weed dandelion (triploid ones of Taraxacum sect. Taraxacum) were studied here for the first time. Cd accumulated more in both shoots and roots (489 and 2486 µg/g DW) than Ni (165 and 858 µg/g DW) after 14 days of exposure and only root Ni content did not increase between 7 and 14 days of exposure. Surprisingly, though Ni was less accumulated than Cd, it had more negative impact on basic physiology (root dry biomass, shoot water content and chlorophyll amount). Ni also evoked more extensive depression of mineral nutrients (K, Ca, Mg, and Mn) in the shoots than Cd while root potassium content was elevated by both metals. Ni suppressed accumulation of total thiols but anatomical changes and ROS formation (detected by fluorescence microscopy of total ROS and lipid peroxidation) were induced more by Cd. Total soluble phenols, major (caftaric and cichoric) and minor (chlorogenic and caffeic) phenolic acids were elevated by both metals and rather increased with prolonged exposure in the shoots (14 versus 7 days). On the contrary, typically depletion of these metabolites was found in the roots after prolonged exposure to Ni, but not to Cd. Data showed distinct toxicity of Cd and Ni in dandelion. More expressive tolerance of dandelion to Cd than to Ni indicates its potential use for the remediation of Cd-contaminated environment.


Assuntos
Cádmio/metabolismo , Níquel/metabolismo , Taraxacum/metabolismo , Biodegradação Ambiental , Cádmio/farmacologia , Cádmio/toxicidade , Hidroxibenzoatos , Peroxidação de Lipídeos , Níquel/farmacologia , Níquel/toxicidade , Nutrientes , Estresse Oxidativo/efeitos dos fármacos , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio
12.
Phytochemistry ; 162: 148-156, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30897352

RESUMO

Chlorogenic acids (CGA; including 5-caffeoylquinic acid and its regio-isomers) in Taraxacum antungense Kitag. have antioxidant and anti-inflammatory properties and exert other pharmacological effects. T. antungense hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (TaHQT)1 and TaHQT2, which belong to the BAHD acyltransferase family, are candidates for synthesizing 5-caffeoylquinic acid and that have not been extensively characterized. In this study, we cloned the TaHQT1 and TaHQT2 genes and analysed the properties of the expressed enzymes both in vitro and in vivo. Quantitative reverse transcription PCR analysis revealed that TaHQT1 was highly expressed in the root, whereas the strongest TaHQT2 expression was observed in T. antungense leaves. In Nicotiana benthamiana leaf cells, TaHQT1 and TaHQT2 were localized at the cell periphery as well as in the cytoplasm and nucleus. The 5-caffeoylquinic acid concentrations in T. antungense calli were reduced by TaHQT1 and TaHQT2 knockdown relative to the control. Conversely, inoculation of T. antungense plants tissues with recombinant TaHQT1 and TaHQT2 increased 5-caffeoylquinic acid levels in situ. These in vitro and in vivo findings demonstrate that both HQTs are involved in regulating 5-caffeoylquinic acid biosynthesis in T. antungense, which can be exploited to increase 5-caffeoylquinic acid production in plants for medicinal or other beneficial purposes.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Quínico/análogos & derivados , Taraxacum/genética , Taraxacum/metabolismo , Aciltransferases/química , Sequência de Aminoácidos , Espaço Intracelular/metabolismo , Cinética , Folhas de Planta/metabolismo , Transporte Proteico , Ácido Quínico/metabolismo , Taraxacum/citologia , Taraxacum/enzimologia
13.
Food Res Int ; 111: 244-255, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007683

RESUMO

Alginate hydrogels are often used for immobilization of plant-derived bioactive compounds by fast and simple ionic gelation technique. However, the structure of alginate gel network is very porous and mostly result with high-diffusion rates of encapsulated compound, what limits its application as delivery vehicle. In order to prevent losses of bioactives and prepare efficient encapsulation systems, the aim of this study was to evaluate a potential of new natural fillers, cocoa powder (CP) and carob (C) for structuring alginate network aimed for encapsulation of aqueous dandelion (Taraxacum officinale L.) leaf extract using ionic gelation. Whey protein isolates served as a standard filler. The influence of different concentrations of gelling medium (2% and 3% calcium chloride) on encapsulation properties of alginate systems was also evaluated. Calcium concentration affected morphological properties (more acceptable when using 3% CaCl2), while textural properties and encapsulation efficiency of polyphenols and retained antioxidant capacity were more influenced by selected delivery materials. Alginate-whey protein isolates beads were scored with the highest loading capacity of polyphenols (>93%), while newly formulated binary mixtures (alginate-cocoa powder and alginate-carob) also enabled highly efficient entrapment of polyphenols (>88%). The slowest release of polyphenols in simulated gastrointestinal fluids were obtained when alginate was combined with CP and C, where system alginate-cocoa powder prepared with lower concentration of calcium chloride (2% CaCl2) enabled the most extended release of total polyphenols and hydroxycinnamic acids. Obtained results strongly justified implementation of new plant-derived functional fillers (cocoa powder and carob) for encapsulation purposes and opened new directions for designing of binary carrier's.


Assuntos
Alginatos/química , Cacau/química , Galactanos/química , Mananas/química , Extratos Vegetais/química , Gomas Vegetais/química , Polifenóis/química , Taraxacum/química , Alginatos/metabolismo , Cacau/metabolismo , Cloreto de Cálcio/química , Cloreto de Cálcio/metabolismo , Galactanos/metabolismo , Géis , Hidrogéis , Mananas/metabolismo , Extratos Vegetais/metabolismo , Gomas Vegetais/metabolismo , Polifenóis/metabolismo , Taraxacum/metabolismo
14.
Plant J ; 93(6): 1045-1061, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377321

RESUMO

Natural rubber biosynthesis occurs on rubber particles, i.e. organelles resembling small lipid droplets localized in the laticifers of latex-containing plant species, such as Hevea brasiliensis and Taraxacum brevicorniculatum. The latter expresses five small rubber particle protein (SRPP) isoforms named TbSRPP1-5, the most abundant proteins in rubber particles. These proteins maintain particle stability and are therefore necessary for rubber biosynthesis. TbSRPP1-5 were transiently expressed in Nicotiana benthamiana protoplasts and the proteins were found to be localized on lipid droplets and in the endoplasmic reticulum, with TbSRPP1 and TbSRPP3 also present in the cytosol. Bimolecular fluorescence complementation confirmed pairwise interactions between all proteins except TbSRPP2. The corresponding genes showed diverse expression profiles in young T. brevicorniculatum plants exposed to abiotic stress, and all except TbSRPP4 and TbSRPP5 were upregulated. Young Arabidopsis thaliana plants that overexpressed TbSRPP2 and TbSRPP3 tolerated drought stress better than wild-type plants. Furthermore, we used rubber particle extracts and standards to investigate the affinity of the TbSRPPs for different phospholipids, revealing a preference for negatively charged head groups and 18:2/16:0 fatty acid chains. This finding may explain the effect of TbSRPP3-5 on the dispersity of artificial poly(cis-1,4-isoprene) bodies and on the lipid droplet distribution we observed in N. benthamiana leaves. Our data provide insight into the assembly of TbSRPPs on rubber particles, their role in rubber particle structure, and the link between rubber biosynthesis and lipid droplet-associated stress responses, suggesting that SRPPs form the basis of evolutionarily conserved intracellular complexes in plants.


Assuntos
Hemiterpenos/metabolismo , Corpos de Inclusão/metabolismo , Látex/metabolismo , Gotículas Lipídicas/metabolismo , Taraxacum/metabolismo , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Fosfolipídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Fisiológico , Taraxacum/genética
15.
Plant Mol Biol ; 96(1-2): 151-164, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29218491

RESUMO

KEY MESSAGE: Successful site-directed mutagenesis combined with in silico modeling and docking studies for the first time offers experimental proof of the role of the 'substrate selector' residue in plant polyphenol oxidases. The plant and fungi enzymes responsible for tissue browning are called polyphenol oxidases (PPOs). In plants, PPOs often occur as families of isoenzymes which are differentially expressed, but little is known about their physiological roles or natural substrates. In a recent study that explored these structure-function relationships, the eleven known dandelion (Taraxacum officinale) PPOs were shown to separate into two different phylogenetic groups differing in catalytic cavity architecture, kinetic parameters, and substrate range. The same study proposed that the PPOs' substrate specificity is controlled by one specific amino acid residue positioned at the entrance to the catalytic site: whereas group 1 dandelion PPOs possess a hydrophobic isoleucine (I) at position HB2+1, group 2 PPOs exhibit a larger, positively charged arginine (R). However, this suggestion was only based on bioinformatic analyses, not experiments. To experimentally investigate this hypothesis, we converted group 1 ToPPO-2 and group 2 ToPPO-6 into PPO-2-I244R and PPO-6-R254I, respectively, and expressed them in E. coli. By performing detailed kinetic characterization and in silico docking studies, we found that replacing this single amino acid significantly changed the PPO's substrate specificity. Our findings therefore proof the role of the 'substrate selector' in plant PPOs.


Assuntos
Catecol Oxidase/metabolismo , Taraxacum/metabolismo , Domínio Catalítico , Catecol Oxidase/genética , Cinética , Relação Estrutura-Atividade , Especificidade por Substrato , Taraxacum/genética
16.
Chem Biol Interact ; 262: 29-37, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27923645

RESUMO

Taraxacum officinale (dandelion) is a widespread perennial of the Asteraceae family. Dandelion is a rich source of different bioactive compounds, including phenolic compounds, terpenes, carbohydrates, proteins, fatty acids, vitamin and minerals. However, the content of phenolics in tested extracts by various authors was not always well described. Dandelion is also a commonly available food with a long history of human use and as such poses little risk of harm. In this study, we focused on four different phenolic fractions from leaves and petals of dandelion, which might be of great interest. The objective was to investigate the antioxidant properties of the phenolic fractions from dandelion leaves and petals in vitro. Effects of four different phenolic fractions from dandelion leaves and petals on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) in human plasma were studied in vitro. Their antioxidant properties against human plasma protein carbonylation and oxidation of protein thiols induced by a strong biological oxidant - hydrogen peroxide (H2O2) or H2O2/Fe (a donor of hydroxyl radicals) were also examined. The tested fractions of dandelion (0.5-50 µg/mL; the incubation time - 30 min) inhibited plasma lipid peroxidation induced by H2O2 or H2O2/Fe. However, their antioxidant properties were not concentration-dependent. All tested samples also inhibited plasma protein carbonylation and oxidation of thiol groups in plasma proteins stimulated by oxidants (H2O2 and OH∙). The obtained results suggest that four tested dandelion fractions, especially phenolic fractions from petals which are recognized as better than leaves source of flavonoids, may be a new and promising source of natural compounds with antioxidant activity beneficial for diseases-associated with oxidative stress, and with changes of hemostasis.


Assuntos
Proteínas Sanguíneas/metabolismo , Peróxido de Hidrogênio/toxicidade , Radical Hidroxila/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Taraxacum/química , Antioxidantes/química , Antioxidantes/farmacologia , Proteínas Sanguíneas/química , Cromatografia Líquida de Alta Pressão , Flores/química , Flores/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fenóis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Taraxacum/metabolismo
17.
Int J Phytoremediation ; 18(1): 48-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26125671

RESUMO

An alternative method to other technologies to clean up the soil, air and water pollution by heavy metals is phytoremediation. Therefore, a pot culture experiment was conducted at the College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, in 2014 to determine the potential absorption of cadmium by Portulaca oleracea (Common purslane), Solanum nigrum (Black nightshade), Abutilon theophrasti (Velvetleaf) and Taraxacum officinale (Dandelion). The type of experiment was completely randomized design with factorial arrangement and four replications. The soil in pot was treated with different rates of CdCl2.H2O (0 (control), 10, 20, 40, 60, and 80 mg Cd/kg soil) and the plants were sown. With increasing concentration levels, fresh weight and dry weight of shoots and roots of all plant species were reduced. The reduction severity was ranked according the following order, P. oleracea > A. theophrasti > S. nigrum > T. officinale. Bioconcentration factor (BCF), Translocation factor (TF) and Translocation efficiency (TE%) was ranked according the following order, T. officinale > S. nigrum > A. theophrasti > P. oleracea. The results of this study revealed that T. officinale and S. nigrum are effective species to phytoremediate Cd-contaminated soil.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Plantas Daninhas/metabolismo , Poluentes do Solo/metabolismo , Relação Dose-Resposta a Droga , Irã (Geográfico) , Malvaceae/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Portulaca/metabolismo , Solanum nigrum/metabolismo , Taraxacum/metabolismo
18.
Rev Biol Trop ; 64(3): 1171-84, 2016 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-29461791

RESUMO

Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 µg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher polyphenol concentration the level of plants cytotoxicity decreased significantly (p<0.001). The results of principal component analysis showed that saponins apparently were in synergy with polyphenols to decrease cytotoxicity, but antagonize with alkaloids and cyanogenic glycosides, indicating that these secondary metabolites present variability in the mechanisms of action against A. salina, as cytotoxic compounds. These results also demonstrate that polyphenols and saponins can be lethal at low concentrations, demonstrating the potential of brine shrimp bioassay as a model to evaluate plant extracts containing low concentrations of chemical compounds with high polarities. The significant positive correlation between cytotoxicity and concentration of alkaloids confirmed by the bioassay of brine shrimp can be useful to identify promising sources of antitumor compounds, and to evaluate tolerable limits not affecting other benign cells. Contents of secondary metabolites found in the selected plants confer them great pharmacologic values.


Assuntos
Alcaloides/análise , Artemia/efeitos dos fármacos , Glicosídeos/análise , Plantas Medicinais/química , Plantas Medicinais/toxicidade , Polifenóis/análise , Saponinas/análise , Animais , Artemisia absinthium/química , Artemisia absinthium/metabolismo , Artemisia absinthium/toxicidade , Asteraceae/química , Asteraceae/metabolismo , Asteraceae/toxicidade , Bioensaio , Equador , Euphorbiaceae/química , Euphorbiaceae/metabolismo , Euphorbiaceae/toxicidade , Piper/química , Piper/metabolismo , Piper/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Folhas de Planta/toxicidade , Plantas Medicinais/metabolismo , Valores de Referência , Metabolismo Secundário , Espectrofotometria/métodos , Taraxacum/química , Taraxacum/metabolismo , Taraxacum/toxicidade , Fatores de Tempo
19.
Oxid Med Cell Longev ; 2015: 619560, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26576225

RESUMO

Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption.


Assuntos
Senescência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Taraxacum/química , Raios Ultravioleta , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Flores/química , Flores/metabolismo , Glutationa/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Taraxacum/metabolismo
20.
Plant Sci ; 238: 323-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259198

RESUMO

Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications.


Assuntos
Flores/metabolismo , Glicopeptídeos/metabolismo , Hidroxiprolina/metabolismo , Prolina/metabolismo , Análise de Sequência de Proteína , Taraxacum/metabolismo , Sequência de Aminoácidos , Bactérias/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Dicroísmo Circular , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Glicopeptídeos/farmacologia , Hidroxiprolina/química , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peso Molecular , Prolina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA