Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cells ; 10(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34943961

RESUMO

Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERß) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERß.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Animais , Composição Corporal/genética , Dioxóis/farmacologia , Metabolismo Energético/genética , Receptor beta de Estrogênio/genética , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Caracteres Sexuais
2.
PLoS One ; 15(4): e0231650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315370

RESUMO

Exposure to ionizing radiation contributing to negative health outcomes is a widespread concern. However, the impact of low dose and sub-lethal dose radiation (SLDR) exposures remain contentious, particularly in pregnant women who represent a vulnerable group. The fetal programming hypothesis states that an adverse in utero environment or stress during development of an embryo or fetus can result in permanent physiologic changes often resulting in progressive metabolic dysfunction with age. To assess changes in gene expression profiles of glucose/insulin signaling and lipid metabolism caused by radiation exposure in utero, pregnant C57Bl/6J mice were irradiated using a dose response ranging from low dose to SLDR and compared to a Sham-irradiated group. mRNA expression analysis in 16 week old offspring (n = 84) revealed that genes involved in metabolic function including glucose metabolism, insulin signaling and lipid metabolism were unaffected by prenatal radiation exposures up to 300 mGy. However, female offspring of dams exposed to 1000 mGy had upregulated expression of genes contributing to insulin resistance and gluconeogenesis. In a second cohort of mice, the effects of SLDR on fetal programming of hepatic SOCS3 and PEPCK protein expression were assessed. 4 month old female offspring of dams irradiated at 1000 mGy had: 1) increased liver weights, 2) increased hepatic expression of proteins involved in glucose metabolism and 3) increased 18F-fluorodeoxyglucose (FDG) uptake in interscapular brown adipose tissue (IBAT) measured by positron emission tomography (PET) (n = 25). The results of this study indicate that prenatal radiation exposure does not affect metabolic function up to 300 mGy and 1000 mGy may be a threshold dose for sex-specific alterations in glucose uptake and hepatic gene and protein expression of SOCS3, PEPCK, PPARGC1A and PPARGC1B. These findings suggest that SLDR doses alter glucose uptake in IBAT and hepatic gene and protein expression of offspring and these changes may progress with age.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Desenvolvimento Fetal/genética , Resistência à Insulina/genética , Fígado/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Animais , Glicemia/metabolismo , Metabolismo dos Carboidratos/genética , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Feminino , Desenvolvimento Fetal/efeitos da radiação , Feto , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Fígado/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Radiação
3.
Am J Physiol Endocrinol Metab ; 318(3): E318-E329, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961704

RESUMO

Browning of white adipose tissue (WAT) has been recognized as an important strategy for the treatment of obesity, insulin resistance, and diabetes. Enoyl coenzyme A hydratase 1 (ECH1) is a widely known enzyme involved in lipid metabolism. However, whether and how ECH1 is implicated in browning of WAT remain obscure. Adeno-associated, virus-mediated genetic engineering of ECH1 in adipose tissue was used in investigations in mouse models of obesity induced by a high-fat diet (HFD) or browning induced by cold exposure. Metabolic parameters showed that ECH1 overexpression decreased weight gain and improved insulin sensitivity and lipid profile after 8 wk of an HFD. Further work revealed that these changes were associated with enhanced energy expenditure and increased appearance of brown-like adipocytes in inguinal WAT, as verified by a remarkable increase in uncoupling protein 1 and thermogenic gene expression. In vitro, ECH1 induced brown fat-related gene expression in adipocytes differentiated from primary stromal vascular fractions, whereas knockdown of ECH1 reversed this effect. Mechanistically, ECH1 regulated the thermogenic program by inhibiting mammalian target of rapamycin signaling, which may partially explain the potential mechanism for ECH1 regulating adipose browning. In summary, ECH1 may participate in the pathology of obesity by regulating browning of WAT, which probably provides us with a new therapeutic strategy for combating obesity.


Assuntos
Tecido Adiposo Marrom/enzimologia , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Terapia Genética/métodos , Doenças Metabólicas/terapia , Obesidade/terapia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Temperatura Baixa , Dieta Hiperlipídica , Metabolismo Energético , Engenharia Genética , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Termogênese , Aumento de Peso
4.
Cell Rep ; 28(8): 2004-2011.e4, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433978

RESUMO

Brown adipose tissue (BAT) is a thermogenic organ that maintains body temperature and energy homeostasis. Transcriptional regulation plays an important role in the program of brown adipogenesis. However, it remains unclear how the transcriptional events are controlled in this program. In this study, we analyze an SENP2 BAT conditional knockout mouse model and find that SENP2-mediated de-SUMOylation is essential for BAT development. SENP2 catalyzes de-SUMOylation of cAMP response element-binding protein (CREB) to suppress Necdin expression, which induces brown adipocyte differentiation and brown adipogenesis. Mechanistically, we find that SUMOylation enhances CREB interaction with serine/threonine protein phosphatase 2A (PP2A) to de-phosphorylate CREB, which activates Necdin transcription. SENP2 deficiency enhances the expression of Necdin to inhibit brown adipocyte differentiation. Therefore, we reveal a crucial role of SENP2-mediated de-SUMOylation of CREB in suppression of Necdin expression during brown adipose development and brown adipogenesis.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Diferenciação Celular , Cisteína Endopeptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Cisteína Endopeptidases/deficiência , Humanos , Masculino , Camundongos , Sumoilação
5.
Mol Metab ; 23: 60-74, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833219

RESUMO

OBJECTIVE: Understanding the signaling mechanisms that control brown adipose tissue (BAT) development is relevant to understanding energy homeostasis and obesity. The AKT kinases are insulin effectors with critical in vivo functions in adipocytes; however, their role in adipocyte development remains poorly understood. The goal of this study was to investigate AKT function in BAT development. METHODS: We conditionally deleted Akt1 and Akt2 either individually or together with Myf5-Cre, which targets early mesenchymal precursors that give rise to brown adipocytes. Because Myf5-Cre also targets skeletal muscle and some white adipocyte lineages, comparisons were made between AKT function in BAT versus white adipose tissue (WAT) and muscle development. We also deleted both Akt1 and Akt2 in mature brown adipocytes with Ucp1-Cre or Ucp1-CreER to investigate AKT1/2 signaling in BAT maintenance. RESULTS: AKT1 and AKT2 are individually dispensable in Myf5-Cre lineages in vivo for establishing brown and white adipocyte precursor cell pools and for their ability to differentiate (i.e. induce PPARγ). AKT1 and AKT2 are also dispensable for skeletal muscle development, and AKT3 does not compensate in either the adipocyte or muscle lineages. In contrast, AKT2 is required for adipocyte lipid filling and efficient downstream AKT substrate phosphorylation. Mice in which both Akt1 and Akt2 are deleted with Myf5-Cre lack BAT but have normal muscle mass, and doubly deleting Akt1 and Akt2 in mature brown adipocytes, either congenitally (with Ucp1-Cre), or inducibly in older mice (with Ucp1-CreER), also ablates BAT. Mechanistically, AKT signaling promotes adipogenesis in part by stimulating ChREBP activity. CONCLUSIONS: AKT signaling is required in vivo for BAT development but dispensable for skeletal muscle development. AKT1 and AKT2 have both overlapping and distinct functions in BAT development with AKT2 being the most critical individual isoform. AKT1 and AKT2 also have distinct and complementary functions in BAT maintenance.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Desenvolvimento Muscular/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular/genética , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética
6.
J Physiol Sci ; 69(1): 23-30, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29611149

RESUMO

In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.


Assuntos
Adipócitos/citologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Proliferação de Células/fisiologia , Células Endoteliais/citologia , Temperatura , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , Masculino , Mesocricetus , Proteína Desacopladora 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Toxicol Appl Pharmacol ; 359: 12-23, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30222981

RESUMO

Obesity and its related metabolic disorders including insulin resistance and fatty liver become major public health concerns in both developed and developing countries. Brown adipose tissue (BAT), a critical organ of energy expenditure due to thermogenesis, has been considered as an attractive target for prevention or treatment of obesity and obesity related diseases. Previous studies indicate Met-enkephalin (MetEnk) has the potential on adipocyte browning, however, whether MetEnk displays the impact on adipocyte browning in vivo to improve obesity associated morbidities is still unclear. In the present study, we showed that MetEnk effectively prevented high fat diet (HFD) induced C57BL/6J mice weight gain, clearly enhanced glucose tolerance and insulin sensitivity, and dramatically reduced hepatic steatosis in HFD fed mice. Mechanically, MetEnk restored protein kinase A (PKA) signaling pathway in HFD challenged mice and promoted subcutaneous white adipose tissue (WAT) browning. Our study suggests that MetEnk can be considered as a potential therapeutic peptide for diet-induced obesity and metabolic disorders.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Encefalina Metionina/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/patologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Intolerância à Glucose/tratamento farmacológico , Resistência à Insulina , Masculino , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores Opioides delta/efeitos dos fármacos
8.
PLoS Genet ; 12(12): e1006474, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27923061

RESUMO

Increasing energy expenditure through brown adipocyte recruitment is a promising approach to combat obesity. We report here the comprehensive profiling of the epigenome and transcriptome throughout the lineage commitment and differentiation of C3H10T1/2 mesenchymal stem cell line into brown adipocytes. Through direct comparison to datasets from differentiating white adipocytes, we systematically identify stage- and lineage-specific coding genes, lncRNAs and microRNAs. Utilizing chromatin state maps, we also define stage- and lineage-specific enhancers, including super-enhancers, and their associated transcription factor binding motifs and genes. Through these analyses, we found that in brown adipocytes, brown lineage-specific genes are pre-marked by both H3K4me1 and H3K27me3, and the removal of H3K27me3 at the late stage is necessary but not sufficient to promote brown gene expression, while the pre-deposition of H3K4me1 plays an essential role in poising the brown genes for expression in mature brown cells. Moreover, we identify SOX13 as part of a p38 MAPK dependent transcriptional response mediating early brown cell lineage commitment. We also identify and subsequently validate PIM1, SIX1 and RREB1 as novel regulators promoting brown adipogenesis. Finally, we show that SIX1 binds to adipogenic and brown marker genes and interacts with C/EBPα, C/EBPß and EBF2, suggesting their functional cooperation during adipogenesis.


Assuntos
Adipogenia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Homeodomínio/genética , Obesidade/genética , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Animais , Autoantígenos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteína beta Intensificadora de Ligação a CCAAT/biossíntese , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais , Camundongos , Obesidade/metabolismo , Obesidade/patologia , RNA Longo não Codificante/biossíntese , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcriptoma/genética
9.
Tissue Cell ; 48(5): 452-60, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27561621

RESUMO

Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/crescimento & desenvolvimento , Diferenciação Celular/genética , Termogênese/genética , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Proliferação de Células/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Norepinefrina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Proteína Desacopladora 1/biossíntese , Proteína Desacopladora 1/genética
10.
Mol Cell Biol ; 36(15): 2027-38, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185876

RESUMO

Brown adipose tissue (BAT) plays a unique role in regulating whole-body energy homeostasis by dissipating energy through thermogenic uncoupling. Berardinelli-Seip congenital lipodystrophy (BSCL) type 2 (BSCL2; also known as seipin) is a lipodystrophy-associated endoplasmic reticulum membrane protein essential for white adipocyte differentiation. Whether BSCL2 directly participates in brown adipocyte differentiation, development, and function, however, is unknown. We show that BSCL2 expression is increased during brown adipocyte differentiation. Its deletion does not impair the classic brown adipogenic program but rather induces premature activation of differentiating brown adipocytes through cyclic AMP (cAMP)/protein kinase A (PKA)-mediated lipolysis and fatty acid and glucose oxidation, as well as uncoupling. cAMP/PKA signaling is physiologically activated during neonatal BAT development in wild-type mice and greatly potentiated in mice with genetic deletion of Bscl2 in brown progenitor cells, leading to reduced BAT mass and lipid content during neonatal brown fat formation. However, prolonged overactivation of cAMP/PKA signaling during BAT development ultimately causes apoptosis of brown adipocytes through inflammation, resulting in BAT atrophy and increased overall adiposity in adult mice. These findings reveal a key cell-autonomous role for BSCL2 in controlling BAT mass/activity and provide novel insights into therapeutic strategies targeting cAMP/PKA signaling to regulate brown adipocyte function, viability, and metabolic homeostasis.


Assuntos
Adipogenia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades gama da Proteína de Ligação ao GTP , Homeostase , Lipólise , Camundongos
11.
Horm Mol Biol Clin Investig ; 19(1): 13-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25390013

RESUMO

Obesity remains a major global health concern. Understanding the metabolic influences of the obesity epidemic in the human population on maintenance of a healthy weight and metabolic profile is still of great significance. The importance and role of white adipose tissue has been long established, particularly with excess adiposity. Brown adipose tissue (BAT), however, has only recently been shown to contribute significantly to the metabolic signature of mammals outside the previously recognised role in small mammals and neonates. BAT's detection in adults has led to a renewed interest and is now considered to be a potential therapeutic target to prevent excess white fat accumulation in obesity, a theory further promoted by the recent discovery of beige fat. Adipose tissue distribution varies significantly between genders. Pre-menopausal females often show enhanced lower and peripheral fat deposition in adiposity deposition compared to the male profile of central and visceral fat accumulation with obesity. This sex disparity is partly attributed to the different effects of sex hormone profiles and interactions on the adipose tissue system. In this review, we explore this intricate relationship and show how modifications in the effects of sex hormones impact on both brown and white adipose tissues. We also discuss the impact of sex hormones on activation of the hypothalamic-pituitary-adrenal (HPA) axis and how the three pathways between adiposity, HPA and sex steroids can have a major contribution to the prevention or maintenance of obesity and therefore on overall health.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Hormônios Esteroides Gonadais/fisiologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Estrogênios/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Progesterona/metabolismo , Caracteres Sexuais , Testosterona/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-25151642

RESUMO

Cold environmental conditions and small body size promote heat loss and may create thermoregulatory challenges for marine mammals born in polar regions. However, among polar-born phocid seal species there are variations in physical attributes and environmental conditions at birth, allowing for an interesting contrast in thermoregulatory strategy. We compared thermoregulatory strategies through morphometrics, sculp attributes (conductivity and resistance), nonshivering thermogenesis (NST via uncoupling protein 1; UCP1), and muscle thermogenesis (via enzyme activity) in neonatal harp (Pagophilus groenlandicus), hooded (Cystophora cristata), and Weddell seals (Leptonychotes weddellii). Harp seals are the smallest at birth (9.8±0.7 kg), rely on lanugo (82.49±3.70% of thermal resistance), and are capable of NST through expression of UCP1 in brown adipose tissue (BAT). In contrast, hooded seal neonates (26.8±1.3 kg) have 2.06±0.23 cm of blubber, accounting for 38.19±6.07% of their thermal resistance. They are not capable of NST, as UCP1 is not expressed. The large Weddell seal neonates (31.5±4.9 kg) rely on lanugo (89.85±1.25% of thermal resistance) like harp seals, but no evidence of BAT was found. Muscle enzyme activity was highest in Weddell seal neonates, suggesting that they rely primarily on muscle thermogenesis. Similar total thermal resistance, combined with marked differences in thermogenic capacity of NST and ST among species, strongly supports that thermoregulatory strategy in neonatal phocids is more closely tied to pups' surface area to volume ratio (SA:V) and potential for early water immersion rather than mass and ambient environmental conditions.


Assuntos
Animais Recém-Nascidos/fisiologia , Regulação da Temperatura Corporal , Modelos Biológicos , Focas Verdadeiras/fisiologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/fisiologia , Adiposidade , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Regiões Antárticas , Regiões Árticas , Peso ao Nascer , Canadá , Feminino , Groenlândia , Cabelo/crescimento & desenvolvimento , Cabelo/fisiologia , Canais Iônicos/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Focas Verdadeiras/crescimento & desenvolvimento , Pele/crescimento & desenvolvimento , Fenômenos Fisiológicos da Pele , Especificidade da Espécie , Gordura Subcutânea/crescimento & desenvolvimento , Gordura Subcutânea/fisiologia , Condutividade Térmica , Proteína Desacopladora 1
13.
PLoS One ; 9(6): e90825, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603714

RESUMO

Hypothermia is rapidly induced during cold exposure when thermoregulatory mechanisms, including fatty acid (FA) utilization, are disturbed. FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipose tissues and macrophages, have been identified as key molecules in the pathogenesis of overnutrition-related diseases, such as insulin resistance and atherosclerosis. We have recently shown that FABP4/5 are prominently expressed in capillary endothelial cells in the heart and skeletal muscle and play a crucial role in FA utilization in these tissues. However, the role of FABP4/5 in thermogenesis remains to be determined. In this study, we showed that thermogenesis is severely impaired in mice lacking both FABP4 and FABP5 (DKO mice), as manifested shortly after cold exposure during fasting. In DKO mice, the storage of both triacylglycerol in brown adipose tissue (BAT) and glycogen in skeletal muscle (SkM) was nearly depleted after fasting, and a biodistribution analysis using 125I-BMIPP revealed that non-esterified FAs (NEFAs) are not efficiently taken up by BAT despite the robustly elevated levels of serum NEFAs. In addition to the severe hypoglycemia observed in DKO mice during fasting, cold exposure did not induce the uptake of glucose analogue 18F-FDG by BAT. These findings strongly suggest that DKO mice exhibit pronounced hypothermia after fasting due to the depletion of energy storage in BAT and SkM and the reduced supply of energy substrates to these tissues. In conclusion, FABP4/5 play an indispensable role in thermogenesis in BAT and SkM. Our study underscores the importance of FABP4/5 for overcoming life-threatening environments, such as cold and starvation.


Assuntos
Resposta ao Choque Frio , Proteínas de Ligação a Ácido Graxo/fisiologia , Proteínas de Neoplasias/fisiologia , Termogênese , Adaptação Fisiológica , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Animais , Glicemia , Jejum , Ácidos Graxos/metabolismo , Glicogênio/metabolismo , Corpos Cetônicos/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético , Tamanho do Órgão , Ativação Transcricional , Triglicerídeos/sangue
14.
Biochem Biophys Res Commun ; 446(4): 959-64, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24642257

RESUMO

Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , PPAR gama/genética , Regulação para Cima , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , Gordura Subcutânea/crescimento & desenvolvimento , Gordura Subcutânea/metabolismo , Transgenes , Proteína Desacopladora 1
15.
Biochim Biophys Acta ; 1842(3): 358-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23688783

RESUMO

Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Assuntos
Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Distribuição da Gordura Corporal , Diferenciação Celular , Humanos , Camundongos
16.
J Clin Endocrinol Metab ; 99(1): 151-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217905

RESUMO

CONTEXT: Brown adipose tissue (BAT) has the unique ability of generating heat due to the expression of mitochondrial uncoupling protein 1 (UCP1). A recent discovery regarding functional BAT in adult humans has increased interest in the molecular pathways of BAT development and functionality. An important role for estrogen in white adipose tissue was shown, but the possible role of estrogen in human fetal BAT (fBAT) is unclear. OBJECTIVE: The objective of this study was to determine whether human fBAT expresses estrogen receptor α (ERα) and ERß. In addition, we examined their localization as well as their correlation with crucial proteins involved in BAT differentiation, proliferation, mitochondriogenesis and thermogenesis including peroxisome proliferator-activated receptor γ (PPARγ), proliferating cell nuclear antigen (PCNA), PPARγ-coactivator-1α (PGC-1α), and UCP1. DESIGN: The fBAT was obtained from 4 human male fetuses aged 15, 17, 20, and 23 weeks gestation. ERα and ERß expression was assessed using Western blotting, immunohistochemistry, and immunocytochemistry. Possible correlations with PPARγ, PCNA, PGC-1α, and UCP1 were examined by double immunofluorescence. RESULTS: Both ERα and ERß were expressed in human fBAT, with ERα being dominant. Unlike ERß, which was present only in mature brown adipocytes, we detected ERα in mature adipocytes, preadipocytes, mesenchymal and endothelial cells. In addition, double immunofluorescence supported the notion that differentiation in fBAT probably involves ERα. Immunocytochemical analysis revealed mitochondrial localization of both receptors. CONCLUSION: The expression of both ERα and ERß in human fBAT suggests a role for estrogen in its development, primarily via ERα. In addition, our results indicate that fBAT mitochondria could be targeted by estrogens and pointed out the possible role of both ERs in mitochondriogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feto/metabolismo , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Idade Gestacional , Humanos , Imuno-Histoquímica , Canais Iônicos/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1
17.
Dev Cell ; 26(4): 393-404, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23987512

RESUMO

The recent surge in obesity has provided an impetus to better understand the mechanisms of adipogenesis, particularly in brown adipose tissue (BAT) because of its potential utilization for antiobesity therapy. Postnatal brown adipocytes arise from early muscle progenitors, but how brown fat lineage is determined is not completely understood. Here, we show that a multifunctional protein, Ewing Sarcoma (EWS), is essential for determining brown fat lineage during development. BATs from Ews null embryos and newborns are developmentally arrested. Ews mutant brown preadipocytes fail to differentiate due to loss of Bmp7 expression, a critical early brown adipogenic factor. We demonstrate that EWS, along with its binding partner Y-box binding protein 1 (YBX1), activates Bmp7 transcription. Depletion of either Ews or Ybx1 leads to loss of Bmp7 expression and brown adipogenesis. Remarkably, Ews null BATs and brown preadipocytes ectopically express myogenic genes. These results demonstrate that EWS is essential for early brown fat lineage determination.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/citologia , Animais , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Temperatura Baixa , Dieta Hiperlipídica , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Desenvolvimento Muscular/genética , Proteína EWS de Ligação a RNA/genética , Termogênese/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
18.
Am J Physiol Endocrinol Metab ; 304(12): E1321-30, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23612996

RESUMO

Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.


Assuntos
Tecido Adiposo Branco/metabolismo , Hipertensão Renal/metabolismo , Síndrome Metabólica/metabolismo , Síndrome do Ovário Policístico/metabolismo , Sistema Nervoso Simpático/metabolismo , Testosterona/metabolismo , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/crescimento & desenvolvimento , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estado Pré-Diabético/metabolismo , Sistema Nervoso Simpático/crescimento & desenvolvimento , Testosterona/farmacologia
19.
Biol Pharm Bull ; 36(6): 980-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563593

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Furanos/farmacologia , Resistência à Insulina/fisiologia , Oxazóis/farmacologia , PPAR gama/agonistas , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Glicemia/análise , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Obesidade/sangue , Obesidade/induzido quimicamente , Tamanho do Órgão/efeitos dos fármacos , PPAR gama/metabolismo , Ratos , Ratos Wistar , Glutamato de Sódio
20.
Annu Rev Nutr ; 31: 33-47, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21548774

RESUMO

We here discuss the role of brown adipose tissue on energy homeostasis and assess its potential as a target for body weight management. Because of their high number of mitochondria and the presence of uncoupling protein 1, brown fat adipocytes can be termed as energy inefficient for adenosine-5'-triphosphate (ATP) production but energy efficient for heat production. Thus, the energy inefficiency of ATP production, despite high energy substrate oxidation, allows brown adipose tissue to generate heat for body temperature regulation. Whether such thermogenic property also plays a role in body weight regulation is still debated. The recent (re)discovery of brown adipose tissue in human adults and a better understanding of brown adipose tissue development have encouraged the quest for new alternatives to treat obesity since obese individuals seem to have less brown adipose tissue mass/activity than do their lean counterparts. In this review, we discuss the physiological relevance of brown adipose tissue on thermogenesis and its potential usefulness on body weight control in humans.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Adiposidade , Adulto , Animais , Peso Corporal , Criança , Metabolismo Energético , Humanos , Recém-Nascido , Mitocôndrias/metabolismo , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA