Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690647

RESUMO

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Assuntos
Nível de Alerta , Plexo Corióideo , Células Ependimogliais , Hibernação , Proteínas Proto-Oncogênicas c-fos , Torpor , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nível de Alerta/fisiologia , Torpor/fisiologia , Hibernação/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/fisiologia , Mesocricetus , Masculino , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Cricetinae
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339044

RESUMO

Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Hormônios Peptídicos , Termogênese , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/fisiologia
3.
J Nutr Biochem ; 122: 109458, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802370

RESUMO

Iron overload has been demonstrated to be associated with insulin resistance, iron overload cardiomyopathy (IOC). Brown adipose tissue (BAT) is emerging as a novel therapeutic target for the treatment of various diseases, not only because of its capacity for dissipating excess energy via non-shivering thermogenesis, but also because of its implication in physiological and pathophysiological processes. However, little attention has been devoted to the precise alterations and impacts of iron overload-BAT. We conducted RNA-Seq analysis on BAT samples obtained from mice subjected to a high iron diet (HID) or a normal chow diet (CON), respectively. The RNA-seq transcriptomic analysis revealed that 1,289 differentially expressed RNAs (DEGs) were identified, with a higher number of the downregulated genes (910 genes) compared to the upregulated genes (379 genes). The results of Gene Ontology (GO) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the downregulated DEGs were primarily involved in hypertrophic cardiomyopathy, dilated cardiomyopathy, which were defined as IOC under the iron overload condition. The association between iron overload-BAT with cardiomyopathy was further investigated using exosome coculture technology. Our results demonstrated that the exosomes derived from ferric citrate treated-mature HIB 1B brown adipocytes, could be internalized by HL-1 cardiomyocytes, and contributed to the dysfunction in these cells. The present study has revealed the alterations and impacts of iron overload-BAT, particularly on the onset of IOC via not only RNA-seq but also exosomes coculture technology. The outputs might shed light on the novel therapeutic strategies for the treatment of IOC.


Assuntos
Cardiomiopatias , Exossomos , Sobrecarga de Ferro , Animais , Camundongos , Adipócitos Marrons , RNA-Seq , Técnicas de Cocultura , Tecido Adiposo Marrom/fisiologia , Cardiomiopatias/genética , Sobrecarga de Ferro/genética , Termogênese/genética
4.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298226

RESUMO

Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.


Assuntos
Sirtuínas , Humanos , Polifenóis/farmacologia , PPAR gama , Obesidade , Tecido Adiposo Branco/fisiologia , Tecido Adiposo Marrom/fisiologia , Termogênese/genética
5.
Cancer Discov ; 12(10): 2231, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35984237

RESUMO

Cold exposure reduces tumor growth through activation of brown adipose tissue (BAT).


Assuntos
Tecido Adiposo Marrom , Neoplasias , Tecido Adiposo Marrom/fisiologia , Humanos , Neoplasias/genética
6.
Sci Rep ; 12(1): 4112, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260768

RESUMO

An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21-42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements were assessed using DXA scanning. An FDG-18 PET/MR was performed to visualize BAT activity. Brown adipose tissue was detected in 18 subjects (67% normal-weight individuals and 33% overweight/obese). The presence of BAT corresponded with a lower visceral adipose tissue (VAT) content (p = 0.04, after adjustment for age, daily kcal intake, and DXA Lean mass). We noted significantly lower omega-6 fatty acids (p = 0.03) and MUFA (p = 0.02) intake in subjects with detected BAT activity after adjustment for age, daily average kcal intake, and DXA Lean mass, whereas omega-3 fatty acids intake was comparable between the two groups. BAT presence was positively associated with the concentration of serum IL-6 (p = 0.01) during cold exposure. Our results show that BAT activity may be related to daily omega-6 fatty acids intake.


Assuntos
Tecido Adiposo Marrom , Tomografia por Emissão de Pósitrons , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/fisiologia , Ácidos Graxos Ômega-6 , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Masculino , Obesidade
7.
Mol Metab ; 55: 101411, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863940

RESUMO

OBJECTIVE: Accumulating evidence indicates that high uric acid (UA) is strongly associated with obesity and metabolic syndrome and drives the development of nonalcoholic fatty liver disease (NAFLD) and insulin resistance. Although urate transporter-1 (URAT1), which is primarily expressed in the kidneys, plays a critical role in the development of hyperuricemia, its pathophysiological implication in NAFLD and insulin resistance remains unclear. We herein investigated the role and functional significance of URAT1 in diet-induced obese mice. METHODS: Mice fed a high-fat diet (HFD) for 16-18 weeks or a normal-fat diet (NFD) were treated with or without a novel oral URAT1-selective inhibitor (dotinurad [50 mg/kg/day]) for another 4 weeks. RESULTS: We found that URAT1 was also expressed in the liver and brown adipose tissue (BAT) other than the kidneys. Dotinurad administration significantly ameliorated HFD-induced obesity and insulin resistance. HFD markedly induced NAFLD, which was characterized by severe hepatic steatosis as well as the elevation of serum ALT activity and tissue inflammatory cytokine genes (chemokine ligand 2 (Ccl2) and tissue necrosis factor α (TNFα)), all of which were attenuated by dotinurad. Similarly, HFD significantly increased URAT1 expression in BAT, resulting in lipid accumulation (whitening of BAT), and increased the production of tissue reactive oxygen species (ROS), which were reduced by dotinurad via UCP1 activation. CONCLUSIONS: In conclusion, a novel URAT1-selective inhibitor, dotinurad, ameliorates insulin resistance by attenuating hepatic steatosis and promoting rebrowning of lipid-rich BAT in HFD-induced obese mice. URAT1 serves as a key regulator of the pathophysiology of metabolic syndrome and may be a new therapeutic target for insulin-resistant individuals, particularly those with concomitant NAFLD.


Assuntos
Tecido Adiposo Marrom/metabolismo , Resistência à Insulina/genética , Transportadores de Ânions Orgânicos/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Triglicerídeos/metabolismo
9.
Nutrients ; 13(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835983

RESUMO

We investigated the effects of a novel multi-ingredient supplement comprised of polyphenol antioxidants and compounds known to facilitate mitochondrial function and metabolic enhancement (ME) in a mouse model of obesity. In this study, 6-week-old male C57/BL6J mice were placed on a high-fat diet (HFD; ~60% fat) for 6 weeks, with subsequent allocation into experimentalgroups for 4 weeks: HFD control, HFD + ME10 (10 components), HFD + ME7 (7 components), HFD + ME10 + EX, HFD + EX (where '+EX' animals exercised 3 days/week), and chow-fed control. After the intervention, HFD control animals had significantly greater body weight and fat mass. Despite the continuation of HFD, animals supplemented with multi-ingredient ME or who performed exercise training showed an attenuation of fat mass and preservation of lean body mass, which was further enhanced when combined (ME+EX). ME supplementation stimulated the upregulation of white and brown adipose tissue mRNA transcripts associated with mitochondrial biogenesis, browning, fatty acid transport, and fat metabolism. In WAT depots, this was mirrored by mitochodrial oxidative phosphorylation (OXPHOS) protein expression, and increased in vivo fat oxidation measured via CLAMS. ME supplementation also decreased systemic and local inflammation markers. Herein, we demonstrated that novel multi-ingredient nutritional supplements induced significant fat loss independent of physical activity while preserving muscle mass in obese mice. Mechanistically, these MEs appear to act by inducing a browning program in white adipose tissue and decreasing other pathophysiological impairments associated with obesity, including mitochondrial respiration alterations induced by HFD.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Dieta Hiperlipídica , Suplementos Nutricionais , Comportamento Alimentar , Aumento de Peso/fisiologia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Circulação Sanguínea , Respiração Celular , Epididimo/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Oxirredução , Fosforilação Oxidativa , Fosforilação , Condicionamento Físico Animal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima , Redução de Peso
10.
Nat Commun ; 12(1): 5255, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489438

RESUMO

Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling.


Assuntos
Tecido Adiposo Marrom/citologia , Monócitos/fisiologia , Adiponectina/genética , Tecido Adiposo Marrom/fisiologia , Animais , Diferenciação Celular/genética , Contagem de Leucócitos , Macrófagos/citologia , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Monócitos/citologia , Tomografia por Emissão de Pósitrons , Receptores CCR2/genética , Receptores CCR2/metabolismo
11.
Sci Rep ; 11(1): 15767, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344941

RESUMO

The beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.


Assuntos
Tecido Adiposo Marrom/fisiologia , Homeostase , Células Mieloides/metabolismo , Neuropilina-1/fisiologia , Obesidade/prevenção & controle , Termogênese , Animais , Dieta/efeitos adversos , Metabolismo Energético , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia
12.
Int J Biol Sci ; 17(11): 2853-2870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345212

RESUMO

In mammals, thermogenic organs exist in the body that increase heat production and enhance energy regulation. Because brown adipose tissue (BAT) consumes energy and generates heat, increasing energy expenditure via BAT might be a potential strategy for new treatments for obesity and obesity-related diseases. Thermogenic differentiation affects normal adipose tissue generation, emphasizing the critical role that common transcriptional regulation factors might play in common characteristics and sources. An understanding of thermogenic differentiation and related factors could help in developing ways to improve obesity indirectly or directly through targeting of specific signalling pathways. Many studies have shown that the active components of various natural products promote thermogenesis through various signalling pathways. This article reviews recent major advances in this field, including those in the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA), cyclic guanosine monophosphate-GMP-dependent protein kinase G (cGMP-AKT), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), transforming growth factor-ß/bone morphogenic protein (TGF-ß/BMP), transient receptor potential (TRP), Wnt, nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κΒ), Notch and Hedgehog (Hh) signalling pathways in brown and brown-like adipose tissue. To provide effective information for future research on weight-loss nutraceuticals or drugs, this review also highlights the natural products and their active ingredients that have been reported in recent years to affect thermogenesis and thus contribute to weight loss via the above signalling pathways.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Transdução de Sinais/fisiologia , Termogênese/fisiologia , Animais , Peso Corporal , Metabolismo Energético , Humanos , Obesidade
13.
Immunol Cell Biol ; 99(7): 749-766, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866598

RESUMO

Brown adipose tissue (BAT) may be an important metabolic regulator of whole-body glucose. While important roles have been ascribed to macrophages in regulating metabolic functions in BAT, little is known of the roles of other immune cells subsets, particularly dendritic cells (DCs). Eating a high-fat diet may compromise the development of hematopoietic stem and progenitor cells (HSPCs)-which give rise to DCs-in bone marrow, with less known of its effects in BAT. We have previously demonstrated that ongoing exposure to low-dose ultraviolet radiation (UVR) significantly reduced the 'whitening' effect of eating a high-fat diet upon interscapular (i) BAT of mice. Here, we examined whether this observation may be linked to changes in the phenotype of HSPCs and myeloid-derived immune cells in iBAT and bone marrow of mice using 12-colour flow cytometry. Many HSPC subsets declined in both iBAT and bone marrow with increasing metabolic dysfunction. Conversely, with rising adiposity and metabolic dysfunction, conventional DCs (cDCs) increased in both of these tissues. When compared with a low-fat diet, consumption of a high-fat diet significantly reduced proportions of myeloid, common myeloid and megakaryocyte-erythrocyte progenitors in iBAT, and short-term hematopoietic stem cells in bone marrow. In mice fed the high-fat diet, exposure to low-dose UVR significantly reduced proportions of cDCs in iBAT, independently of nitric oxide release from irradiated skin [blocked using the scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO)], but did not significantly modify HSPC subsets in either tissue. Further studies are needed to determine whether changes in these cell populations contribute towards metabolic dysfunction .


Assuntos
Tecido Adiposo Marrom , Células-Tronco Hematopoéticas , Tecido Adiposo Marrom/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Células Progenitoras Mieloides , Raios Ultravioleta
14.
Nat Metab ; 3(4): 485-495, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33846638

RESUMO

Brown adipose tissue (BAT) and beige fat function in energy expenditure in part due to their role in thermoregulation, making these tissues attractive targets for treating obesity and metabolic disorders. While prolonged cold exposure promotes de novo recruitment of brown adipocytes, the exact sources of cold-induced thermogenic adipocytes are not completely understood. Here, we identify transient receptor potential cation channel subfamily V member 1 (Trpv1)+ vascular smooth muscle (VSM) cells as previously unidentified thermogenic adipocyte progenitors. Single-cell RNA sequencing analysis of interscapular brown adipose depots reveals, in addition to the previously known platelet-derived growth factor receptor (Pdgfr)α-expressing mesenchymal progenitors, a population of VSM-derived adipocyte progenitor cells (VSM-APC) expressing the temperature-sensitive cation channel Trpv1. We demonstrate that cold exposure induces the proliferation of Trpv1+ VSM-APCs and enahnces their differentiation to highly thermogenic adipocytes. Together, these findings illustrate the landscape of the thermogenic adipose niche at single-cell resolution and identify a new cellular origin for the development of brown and beige adipocytes.


Assuntos
Adipócitos/fisiologia , Temperatura Baixa , Células-Tronco Hematopoéticas/fisiologia , Músculo Liso Vascular/fisiologia , Canais de Cátion TRPV/fisiologia , Termogênese/fisiologia , Adipócitos Bege/fisiologia , Adipócitos Marrons/fisiologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Canais de Cátion TRPV/genética
15.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805982

RESUMO

Adipose tissue and its crosstalk with other organs plays an essential role in the metabolic homeostasis of the entire body. Alteration of this communication (i.e., due to obesity) is related to the development of several comorbidities including type 2 diabetes, cardiovascular diseases, or cancer. Within the adipose depot, adipocytes are the main cell type and thus the main source of secreted molecules, which exert modulating effects not only at a local but also at a systemic level. Extracellular vesicles (EVs) have recently emerged as important mediators in cell-cell communication and account for part of the cellular secretome. In recent years, there has been a growing body of research on adipocyte-derived extracellular vesicles (Ad-EVs). However, there is still a lack of standardized methodological approaches, especially regarding primary adipocytes. In this review, we will provide an outline of crucial aspects when working on adipose-derived material, with a special focus on primary adipocytes. In parallel, we will point out current methodological challenges in the EV field and how they impact the transcriptomic, proteomic and functional evaluations of Ad-EVs.


Assuntos
Adipócitos/citologia , Tecido Adiposo/fisiologia , Comunicação Celular , Tecido Adiposo Marrom/fisiologia , Animais , Células Cultivadas , Comorbidade , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , Obesidade/metabolismo , Proteômica , Reprodutibilidade dos Testes , Células-Tronco/citologia , Transcriptoma
16.
J Endocrinol ; 249(3): 223-237, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33877054

RESUMO

Estrogen receptor ß (ERb), one of the two major estrogen receptors, acts via genomic and non-genomic signaling pathways to affect many metabolic functions, including mitochondrial biogenesis and respiration. This study assessed the effect of ERb classical genomic activity on adipocyte-specific and -systemic metabolic responses to wheel running exercise in a rodent model of menopause. Female mice lacking the ERb DNA-binding domain (ERbDBDKO, n = 20) and WT (n = 21) littermate controls were fed a high-fat diet (HFD), ovariectomized (OVX), and randomized to control (no running wheel) and exercise (running wheel access) groups and were followed for 8 weeks. Wheel running did not confer protection against metabolic dysfunction associated with HFD+OVX in either ERbDBDKO or WT mice, despite increased energy expenditure. Unexpectedly, in the ERbDBDKO group, wheel running increased fasting insulin and surrogate measures of insulin resistance, and modestly increased adipose tissue inflammatory gene expression (P ≤ 0.05). These changes were not accompanied by significant changes in adipocyte mitochondrial respiration. It was demonstrated for the first time that female WT OVX mice do experience exercise-induced browning of white adipose tissue, indicated by a robust increase in uncoupling protein 1 (UCP1) (P ≤ 0.05). However, KO mice were completely resistant to this effect, indicating that full ERb genomic activity is required for exercise-induced browning. The inability to upregulate UCP1 with exercise following OVX may have resulted in the increased insulin resistance observed in KO mice, a hypothesis requiring further investigation.


Assuntos
Receptor beta de Estrogênio/metabolismo , Atividade Motora/fisiologia , Ovariectomia , Adipócitos/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Dieta Hiperlipídica , Metabolismo Energético , Receptor beta de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Genótipo , Glucose/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout
17.
Sci Rep ; 11(1): 6526, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753827

RESUMO

This exploratory retrospective study aims to investigate the thermal changes in the thyroid gland region of patients with hypothyroidism and fibromyalgia by analyzing the temperature of the brown adipose tissue (BAT). A total of 166 individuals from 1000 thermographic electronic medical records were classified into four groups: Group HP + FM-50 individuals with hypothyroidism and fibromyalgia; Group FM-56 individuals with fibromyalgia only; Group HP-30 individuals with hypothyroidism only, and Group Control-30 healthy individuals. The thermal images from the electronic medical records were acquired by a FLIR T650SC infrared camera (used for thermometry) and the temperature data for each group were statistically analyzed. Group HP + FM showed r = 0, meaning that the average temperatures of the thyroid and BAT are independent of each other. Groups FM, HP and Control showed r = 1, meaning that the average temperatures of the thyroid and BAT were directly related. Our findings showed that the average temperatures of the thyroid and BAT regions are similar. Also, there was no correlation between thyroid gland temperature and the presence of hypothyroidism or fibromyalgia using thermometry.


Assuntos
Tecido Adiposo Marrom/fisiologia , Fibromialgia/fisiopatologia , Hipotireoidismo/fisiopatologia , Glândula Tireoide/fisiopatologia , Tecido Adiposo Marrom/diagnóstico por imagem , Adolescente , Adulto , Registros Eletrônicos de Saúde , Feminino , Fibromialgia/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Hipotireoidismo/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Temperatura , Termografia/métodos , Glândula Tireoide/diagnóstico por imagem , Adulto Jovem
18.
Cell Death Dis ; 12(1): 134, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510128

RESUMO

Cancer cachexia is a metabolic disorder characterized by skeletal muscle wasting and white adipose tissue browning. Specific functions of several hormones, growth factors, and cytokines derived from tumors can trigger cachexia. Moreover, adipose tissue lipolysis might explain weight loss that occurs owing to cachexia. Extracellular vesicles (EVs) are involved in intercellular communication. However, whether EVs participate in lipolysis induced by cancer cachexia has not been thoroughly investigated. Using Lewis lung carcinoma (LLC) cell culture, we tested whether LLC cell-derived EVs can induce lipolysis in 3T3-L1 adipocytes. EVs derived from LLC cells were isolated and characterized biochemically and biophysically. Western blotting and glycerol assay were used to study lipolysis. LLC cell-derived EVs induced lipolysis in vivo and vitro. EVs fused directly with target 3T3-L1 adipocytes and transferred parathyroid hormone-related protein (PTHrP), activating the PKA signaling pathway in 3T3-L1 adipocytes. Blocking PTHrP activity in LLC-EVs using a neutralizing antibody and by knocking down PTHR expression prevented lipolysis in adipocytes. Inhibiting the PKA signaling pathway also prevents the lipolytic effects of EVs. In vivo, suppression of LLC-EVs release by knocking down Rab27A alleviated white adipose tissue browning and lipolysis. Our data showed that LLC cell-derived EVs induced adipocyte lipolysis via the extracellular PTHrP-mediated PKA pathway. Our data demonstrate that LLC-EVs induce lipolysis in vitro and vivo by delivering PTHrP, which interacts with PTHR. The lipolytic effect of LLC-EVs was abrogated by PTHR knockdown and treatment with a neutralizing anti-PTHrP antibody. Together, these data show that LLC-EV-induced lipolysis is mediated by extracellular PTHrP. These findings suggest a novel mechanism of lipid droplet loss and identify a potential therapeutic strategy for cancer cachexia.


Assuntos
Tecido Adiposo Marrom/fisiologia , Caquexia/fisiopatologia , Vesículas Extracelulares/patologia , Lipólise/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Carcinoma Pulmonar de Lewis , Diferenciação Celular , Humanos , Masculino , Camundongos
19.
Front Endocrinol (Lausanne) ; 12: 778019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126308

RESUMO

Cold temperature activates the sympathetic nervous system (SNS) to induce bone loss by altering bone remodeling. Brown adipose tissue (BAT) is influenced by the SNS in cold environments. Many studies have confirmed a positive relationship between BAT volume and bone mass, but the influence and mechanism of BAT on bone in vivo and in vitro is still unknown. Two-month-old C57/BL6j male mice were exposed to cold temperature (4°C) to induce BAT generation. BAT volume, bone remodeling and microstructure were assessed after 1 day, 14 days and 28 days of cold exposure. CTX-1, P1NP and IL-6 levels were detected in the serum by ELISA. To determine the effect of BAT on osteoclasts and osteoblasts in vitro, brown adipocyte conditional medium (BAT CM) was collected and added to the differentiation medium of bone marrow-derived macrophages (BMMs) and bone marrow mesenchymal stem cells (BMSCs). Micro-CT results showed that the bone volume fraction (BV/TV, %) significantly decreased after 14 days of exposure to cold temperature but recovered after 28 days. Double labeling and TRAP staining in vivo showed that bone remodeling was altered during cold exposure. BAT volume enlarged after 14 days of cold stimulation, and IL-6 increased. BAT CM promoted BMSC mineralization by increasing osteocalcin (Ocn), RUNX family transcription factor 2 (Runx2) and alkaline phosphatase (Alp) expression, while bone absorption was inhibited by BAT CM. In conclusion, restoration of bone volume after cold exposure may be attributed to enlarged BAT. BAT has a beneficial effect on bone mass by facilitating osteogenesis and suppressing osteoclastogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Remodelação Óssea/fisiologia , Osso e Ossos/metabolismo , Temperatura Baixa , Colágeno Tipo I/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Marrom/fisiologia , Animais , Osso e Ossos/diagnóstico por imagem , Meios de Cultivo Condicionados , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Tamanho do Órgão , Osteogênese/fisiologia , Microtomografia por Raio-X
20.
Am J Physiol Endocrinol Metab ; 320(2): E359-E378, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284094

RESUMO

Cold- and diet-induced recruitment of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT) are dynamic processes, and the recruited state attained is a state of dynamic equilibrium, demanding continuous stimulation to be maintained. An involvement of macrophages, classical proinflammatory (M1) or alternatively activated anti-inflammatory (M2), is presently discussed as being an integral part of these processes. If these macrophages play a mediatory role in the recruitment process, such an involvement would have to be maintained in the recruited state. We have, therefore, investigated whether the recruited state of these tissues is associated with macrophage accretion or attrition. We found no correlation (positive or negative) between total UCP1 mRNA levels (as a measure of recruitment) and proinflammatory macrophages in any adipose depot. We found that in young chow-fed mice, cold-induced recruitment correlated with accretion of anti-inflammatory macrophages; however, such a correlation was not seen when cold-induced recruitment was studied in diet-induced obese mice. Furthermore, the anti-inflammatory macrophage accretion was mediated via ß1/ß2-adrenergic receptors; yet, in their absence, and thus in the absence of macrophage accretion, recruitment proceeded normally. We thus conclude that the classical recruited state in BAT and inguinal (brite/beige) WAT is not paralleled by macrophage accretion or attrition. Our results make mediatory roles for macrophages in the recruitment process less likely.NEW & NOTEWORTHY A regulatory or mediatory role-positive or negative-for macrophages in the recruitment of brown adipose tissue is presently discussed. As the recruited state in the tissue is a dynamic process, maintenance of the recruited state would need persistent alterations in macrophage complement. Contrary to this expectation, we demonstrate here an absence of alterations in macrophage complement in thermogenically recruited brown-or brite/beige-adipose tissues. Macrophage regulation of thermogenic capacity is thus less likely.


Assuntos
Tecido Adiposo Bege/fisiologia , Tecido Adiposo Marrom/fisiologia , Macrófagos/fisiologia , Receptores Adrenérgicos beta 1/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Termogênese , Tecido Adiposo Bege/citologia , Tecido Adiposo Marrom/citologia , Animais , Dieta/efeitos adversos , Regulação da Expressão Gênica , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA