Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Brain Behav Immun ; 116: 203-215, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070625

RESUMO

Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.


Assuntos
Tecido Nervoso , Osteoartrite do Joelho , Ratos , Camundongos , Animais , Miostatina/metabolismo , Ratos Sprague-Dawley , Dor/metabolismo , Modelos Animais de Doenças , Tecido Nervoso/metabolismo , Macrófagos/metabolismo , Gânglios Espinais/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958692

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine ß-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.


Assuntos
Lesões Encefálicas Traumáticas , Sulfeto de Hidrogênio , Tecido Nervoso , Fármacos Neuroprotetores , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Axotomia , Apoptose , Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Cistationina beta-Sintase/metabolismo
3.
J Neurosci ; 43(29): 5414-5430, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37286351

RESUMO

Multiple myeloma (MM) is a neoplasia of B plasma cells that often induces bone pain. However, the mechanisms underlying myeloma-induced bone pain (MIBP) are mostly unknown. Using a syngeneic MM mouse model, we show that periosteal nerve sprouting of calcitonin gene-related peptide (CGRP+) and growth associated protein 43 (GAP43+) fibers occurs concurrent to the onset of nociception and its blockade provides transient pain relief. MM patient samples also showed increased periosteal innervation. Mechanistically, we investigated MM induced gene expression changes in the dorsal root ganglia (DRG) innervating the MM-bearing bone of male mice and found alterations in pathways associated with cell cycle, immune response and neuronal signaling. The MM transcriptional signature was consistent with metastatic MM infiltration to the DRG, a never-before described feature of the disease that we further demonstrated histologically. In the DRG, MM cells caused loss of vascularization and neuronal injury, which may contribute to late-stage MIBP. Interestingly, the transcriptional signature of a MM patient was consistent with MM cell infiltration to the DRG. Overall, our results suggest that MM induces a plethora of peripheral nervous system alterations that may contribute to the failure of current analgesics and suggest neuroprotective drugs as appropriate strategies to treat early onset MIBP.SIGNIFICANCE STATEMENT Multiple myeloma (MM) is a painful bone marrow cancer that significantly impairs the quality of life of the patients. Analgesic therapies for myeloma-induced bone pain (MIBP) are limited and often ineffective, and the mechanisms of MIBP remain unknown. In this manuscript, we describe cancer-induced periosteal nerve sprouting in a mouse model of MIBP, where we also encounter metastasis to the dorsal root ganglia (DRG), a never-before described feature of the disease. Concomitant to myeloma infiltration, the lumbar DRGs presented blood vessel damage and transcriptional alterations, which may mediate MIBP. Explorative studies on human tissue support our preclinical findings. Understanding the mechanisms of MIBP is crucial to develop targeted analgesic with better efficacy and fewer side effects for this patient population.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Tecido Nervoso , Humanos , Camundongos , Masculino , Animais , Mieloma Múltiplo/complicações , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Qualidade de Vida , Dor/metabolismo , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Gânglios Espinais/metabolismo
4.
Sci Rep ; 13(1): 8856, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258605

RESUMO

The cellular and molecular underpinnings of Wallerian degeneration have been robustly explored in laboratory models of successful nerve regeneration. In contrast, there is limited interrogation of failed regeneration, which is the challenge facing clinical practice. Specifically, we lack insight on the pathophysiologic mechanisms that lead to the formation of neuromas-in-continuity (NIC). To address this knowledge gap, we have developed and validated a novel basic science model of rapid-stretch nerve injury, which provides a biofidelic injury with NIC development and incomplete neurologic recovery. In this study, we applied next-generation RNA sequencing to elucidate the temporal transcriptional landscape of pathophysiologic nerve regeneration. To corroborate genetic analysis, nerves were subject to immunofluorescent staining for transcripts representative of the prominent biological pathways identified. Pathophysiologic nerve regeneration produces substantially altered genetic profiles both temporally and in the mature neuroma microenvironment, in contrast to the coordinated genetic signatures of Wallerian degeneration and successful regeneration. To our knowledge, this study presents as the first transcriptional study of NIC pathophysiology and has identified cellular death, fibrosis, neurodegeneration, metabolism, and unresolved inflammatory signatures that diverge from pathways elaborated by traditional models of successful nerve regeneration.


Assuntos
Tecido Nervoso , Neuroma , Traumatismos dos Nervos Periféricos , Humanos , Transcriptoma , Degeneração Walleriana/metabolismo , Regeneração Nervosa/genética , Tecido Nervoso/metabolismo , Neuroma/patologia , Análise de Sequência de RNA , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 120(17): e2210735120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075074

RESUMO

The invasion of nerves by cancer cells, or perineural invasion (PNI), is potentiated by the nerve microenvironment and is associated with adverse clinical outcomes. However, the cancer cell characteristics that enable PNI are poorly defined. Here, we generated cell lines enriched for a rapid neuroinvasive phenotype by serially passaging pancreatic cancer cells in a murine sciatic nerve model of PNI. Cancer cells isolated from the leading edge of nerve invasion showed a progressively increasing nerve invasion velocity with higher passage number. Transcriptome analysis revealed an upregulation of proteins involving the plasma membrane, cell leading edge, and cell movement in the leading neuroinvasive cells. Leading cells progressively became round and blebbed, lost focal adhesions and filipodia, and transitioned from a mesenchymal to amoeboid phenotype. Leading cells acquired an increased ability to migrate through microchannel constrictions and associated more with dorsal root ganglia than nonleading cells. ROCK inhibition reverted leading cells from an amoeboid to mesenchymal phenotype, reduced migration through microchannel constrictions, reduced neurite association, and reduced PNI in a murine sciatic nerve model. Cancer cells with rapid PNI exhibit an amoeboid phenotype, highlighting the plasticity of cancer migration mode in enabling rapid nerve invasion.


Assuntos
Amoeba , Tecido Nervoso , Neoplasias Pancreáticas , Camundongos , Animais , Neoplasias Pancreáticas/genética , Nervo Isquiático/metabolismo , Pâncreas/metabolismo , Tecido Nervoso/metabolismo , Movimento Celular/genética , Invasividade Neoplásica , Microambiente Tumoral
6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(4): 379-384, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-36414565

RESUMO

Objective: To establish an optimized method for the isolation and purification of astrocytes from the neural tissues of young and aged rats. Then, the morphological and functional differences of astrocytes between young and aged rats were compared to explore the functional changes of astrocytes after aging and its possible mechanism in the aging process. Methods: Young (2 months old) and aged (20 months old) SD rats were used. Astrocytes in brain and spinal cord tissue were purified by 50% - 35% percoll density gradient centrifugation. Each group of cells was set up with three duplicate wells. After 72 h of culture, Glial fibrillary acidic protein (GFAP) which was astrocyte specific marker were detected by immunofluorescence to evaluate the morphological characteristics. Cell senescence markers (p16 and p21) and ß- Galactosidase were detected by qPCR and staining respectively. The expressions of pro-inflammatory cytokines (IL-1ß, TNF-α) and anti-inflammatory cytokines were detected by qPCR. Results: Using 50%-35% percoll gradient separation, astrocytes were obtained with large number, good activity and purity of more than 95%, which could be used in subsequent experiments. Compared with the astrocytes in the nerve tissue of young rats, the astrocytes in the nervous tissue of the aged rats had fewer protrusions and tended to be activated in cell morphology; the positive rate of ß -galactosidase staining was increased significantly and the expressions of p16 and p21 were increased (P<0.01). The expressions of pro-inflammatory cytokines (IL-1ß, TNF-α) were increased (P<0.05), and the expression of anti-inflammatory cytokine (IL-10) was decreased (P<0.05) in astrocytes of the aged rats nervous tissue. Conclusion: The percoll gradient of 50% - 35% could be used as a method for separation, purification and primary culture of astrocytes. With the increase of age, astrocytes undergo cellular senescence, showing a pro-inflammatory phenotype, promoting inflammaging of the nervous system, which may be one of the mechanisms of nervous system aging and neurodegenerative diseases.


Assuntos
Astrócitos , Tecido Nervoso , Animais , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Citocinas/metabolismo , Tecido Nervoso/metabolismo , Galactosidases/metabolismo
7.
Cell Tissue Res ; 388(3): 503-519, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332371

RESUMO

The Na,K-ATPase (NKA) is an essential ion transporter and signaling molecule in all animal tissues and believed to consist at least one α and one ß-subunit to form a functional enzyme. In the large milkweed bug, Oncopeltus fasciatus, adaptation to dietary cardiac glycosides (CGs), which can fatally block the NKA, has resulted in gene duplications leading to four α1-subunits. These differ in sensitivity to CGs, but resistance trades off against ion pumping activity, thus influencing the α1-subunits' suitability for specific tissues. Besides, O. fasciatus possesses four different ß-subunits that can alter the NKA's kinetics and should play an essential role in the formation of cellular junctions.Proteomic analyses revealed the distribution and composition of α1/ß-complexes in the nervous tissue of O. fasciatus. The highly CG-resistant, but less active α1B and the highly active, but less resistant α1C predominated in the nervous tissue and co-occurred with ß2 and ß3, partly forming larger complexes than just heterodimers. Immunohistochemical analyses provided a fine scale resolution of the subunits' distribution in different morphological structures of the nervous tissue. This may suggest that α1 as well as ß-subunits occur in isolation without the other subunit, which contradicts the present understanding that the two types of subunits have to associate to form functional complexes. An isolated occurrence was especially prominent for ß3 and ßx, the enigmatic fourth and N-terminally largely truncated ß-subunit. We hypothesize that dimerization of these ß-subunits plays a role in cell-cell contacts.


Assuntos
Heterópteros , Tecido Nervoso , Animais , Duplicação Gênica , Heterópteros/metabolismo , Tecido Nervoso/metabolismo , Proteômica , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Cells ; 11(2)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053395

RESUMO

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor-nerve interactions, we assessed a potential NLGN1-GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neoplasias/metabolismo , Tecido Nervoso/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Neoplasias/patologia , Tecido Nervoso/patologia , Ligação Proteica , Pseudópodes/metabolismo
9.
Acta Histochem ; 123(6): 151764, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34352653

RESUMO

Fipronil (FIP) insecticide is extensively used in agriculture, public health and veterinary medicine. Although it is considered as a neurotoxin to insects (target organisms) and exhibits neurological signs upon vertebrates (non-target organisms) exposure, slight is known about its potential neurotoxic effects and its molecular mechanisms on vertebrates. The current study is designed to assess oxidative stress as a molecular mechanism of FIP neurotoxicity subordinated with apoptosis and neural tissue reactivity. Ten adult male albino rats received 10 mg/kg body weight fipronil technical grade by oral gavage daily for 45 days (subacute exposure). Brain neural tissue regions (hippocampus, cerebellum and caudate putamen) were processed to examine oxidative stress induced cellular macromolecular alterations as MDA, PCC and DNA fragmentation. Besides, TNF-α and Bcl-2 gene expression and immunoreactivity for caspase-3 (active form), iNOS and GFAP were evaluated. Also, histopathological assessment was conducted. We found that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). Also, it significantly upregulated TNF-α and non-significantly down-regulated Bcl-2 gene expression (p ≤ 0.05). Further, significant increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in these brain neural tissue regions in FIP treated group was noticed (p ≤ 0.05). Histopathological findings, including alterations in the histological architecture and neuronal degeneration, were also observed in these brain regions of FIP treated group. In conclusion, we suggest the ability of FIP to induce oxidative stress mediated macromolecular alterations, leading to apoptosis and tissue reaction in these brain regions which showed variable susceptibility to FIP toxic effects.


Assuntos
Apoptose/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/efeitos adversos , Animais , Caspase 3/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/biossíntese , Masculino , Tecido Nervoso/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Pirazóis/farmacologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/biossíntese
10.
Biomolecules ; 11(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439916

RESUMO

Current treatments for neurodegenerative diseases aim to alleviate the symptoms experienced by patients; however, these treatments do not cure the disease nor prevent further degeneration. Improvements in current disease-modeling and drug-development practices could accelerate effective treatments for neurological diseases. To that end, 3D bioprinting has gained significant attention for engineering tissues in a rapid and reproducible fashion. Additionally, using patient-derived stem cells, which can be reprogrammed to neural-like cells, could generate personalized neural tissues. Here, adipose tissue-derived mesenchymal stem cells (MSCs) were bioprinted using a fibrin-based bioink and the microfluidic RX1 bioprinter. These tissues were cultured for 12 days in the presence of SB431542 (SB), LDN-193189 (LDN), purmorphamine (puro), fibroblast growth factor 8 (FGF8), fibroblast growth factor-basic (bFGF), and brain-derived neurotrophic factor (BDNF) to induce differentiation to dopaminergic neurons (DN). The constructs were analyzed for expression of neural markers, dopamine release, and electrophysiological activity. The cells expressed DN-specific and early neuronal markers (tyrosine hydroxylase (TH) and class III beta-tubulin (TUJ1), respectively) after 12 days of differentiation. Additionally, the tissues exhibited immature electrical signaling after treatment with potassium chloride (KCl). Overall, this work shows the potential of bioprinting engineered neural tissues from patient-derived MSCs, which could serve as an important tool for personalized disease models and drug-screening.


Assuntos
Bioimpressão/métodos , Fibrina/química , Células-Tronco Mesenquimais/citologia , Tecido Nervoso/metabolismo , Impressão Tridimensional , Tecido Adiposo/metabolismo , Sobrevivência Celular , Células Cultivadas , Dopamina/metabolismo , Desenho de Fármacos , Fibronectinas/química , Humanos , Hidrogéis , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia , Cloreto de Potássio/química , Engenharia Tecidual/métodos , Alicerces Teciduais
11.
Clin Exp Hypertens ; 43(3): 254-262, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33327798

RESUMO

Background: High-salt intake after renal ischemia/reperfusion (I/R) injury leads to hypertension and further renal injury, but the mechanisms are largely unknown. This study tested the hypothesis that degeneration of transient receptor potential vanilloid 1 (TRPV1)-positive nerves exacerbates salt-induced hypertension and renal injury after I/R via enhancing renal macrophage infiltration.Methods: Large dose of capsaicin (CAP, 100 mg/kg, subcutaneously) was used to degenerate rat TRPV1-positive nerves. Then, rats were subjected to renal I/R injury and fed with a low-salt (0.4% NaCl) diet for 5 weeks after I/R, followed by a high-salt (4% NaCl) diet for 4 weeks during which macrophages were depleted using liposome-encapsulated clodronate (LC, 1.3 ml/kg/week, intravenously).Results: The protein level of TRPV1 in the kidney was downregulated by renal I/R injury and was further decreased by CAP treatment. LC treatment did not affect the protein levels of renal TRPV1. After renal I/R injury, high-salt diet significantly increased renal macrophage infiltration, inflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta), systolic blood pressure, the urine/water intake ratio, plasma creatine and urea levels, urinary 8-isoprostane, and renal collagen deposition. Interestingly, CAP treatment further increased these parameters. These increases were abolished by depleting macrophages with LC treatment.Conclusions: These data suggest that degenerating TRPV1-positive nerves exacerbates salt-induced hypertension and tissue injury in rats after renal I/R injury via macrophages-mediated renal inflammation.


Assuntos
Hipertensão/patologia , Macrófagos/patologia , Tecido Nervoso/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Cloreto de Sódio na Dieta/efeitos adversos , Canais de Cátion TRPV/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Capsaicina , Ácido Clodrônico/farmacologia , Fibrose , Hipertensão/fisiopatologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Macrófagos/metabolismo , Masculino , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752058

RESUMO

Sialic acids (Sias) are the most abundant terminal sugar residues of glycoproteins and glycolipids on the surface of mammalian cells. The nervous tissue is the organ with the highest expression level of Sias. The 'sialylation' of glycoconjugates is performed via sialyltransferases, whereas 'desialylation' is done by sialidases or is a possible consequence of oxidative damage. Sialic acid residues on the neural cell surfaces inhibit complement and microglial activation, as well as phagocytosis of the underlying structures, via binding to (i) complement factor H (CFH) or (ii) sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors. In contrast, activated microglial cells show sialidase activity that desialylates both microglia and neurons, and further stimulates innate immunity via microglia and complement activation. The desialylation conveys neurons to become susceptible to phagocytosis, as well as triggers a microglial phagocytosis-associated oxidative burst and inflammation. Dysfunctions of the 'Sia-SIGLEC' and/or 'Sia-complement' axes often lead to neurological diseases. Thus, Sias on glycoconjugates of the intact glycocalyx and its desialylation are major regulators of neuroinflammation.


Assuntos
Imunidade Inata/genética , Tecido Nervoso/metabolismo , Ácidos Siálicos/genética , Sialiltransferases/genética , Glicoconjugados/genética , Glicoconjugados/imunologia , Humanos , Macrófagos , Microglia/imunologia , Microglia/metabolismo , Tecido Nervoso/imunologia , Neurônios/metabolismo , Neurônios/patologia , Fagocitose/genética , Ácidos Siálicos/imunologia , Ácidos Siálicos/metabolismo , Sialiltransferases/imunologia
13.
J Craniofac Surg ; 31(5): 1483-1487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502102

RESUMO

The present study is based on the concept of neuro-aging and how it may affect surrounding skin cells. It has been shown that many factors play a significant role in skin homeostasis by interfering with various cytokines, either through activation or inhibition. Granulocyte macrophage colony-stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine, and our previous study has shown its effects on neuronal senescence after ultraviolet (UV) irradiation of skin cells. Following our previous work, this study was performed to investigate the neuroprotective effects of a GM-CSF antagonist, and how it may play an essential role in mediating anti-senescence and anti-inflammatory effects in the keratinocyte/nerve aging model. When human blastoma cells (SH-SY5Y) were treated with 10 ng/ml of GM-CSF, the levels of regulatory RNAs associated with aging, such as matrix metalloproteinase-9 (MMP9), nuclear factor NF-kappa-B p50 subunit (NFKB), inducible nitric oxide synthase (iNOS), and interleukin 1 beta (IL-1ß) increased, whereas GM-CSF inhibition caused their expression to decrease. A decrease in the antioxidant, glutathione (GSH) was observed after SH-SY5Y cells were treated with GM-CSF. This study confirms that this GM-CSF antagonist may play an important role in neural senescence, where inhibition may be a new target in the skin/nerve aging model.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Pele/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Pele/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Raios Ultravioleta
14.
Mater Sci Eng C Mater Biol Appl ; 110: 110741, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204049

RESUMO

Spinal cord injury (SCI) is a disease of the central nervous system (CNS) that has not yet been treated successfully. In the United States, almost 450,000 people suffer from SCI. Despite the development of many clinical treatments, therapeutics are still at an early stage for a successful bridging of damaged nerve spaces and complete recovery of nerve functions. Biomimetic 3D scaffolds have been an effective option in repairing the damaged nervous system. 3D scaffolds allow improved host tissue engraftment and new tissue development by supplying physical support to ease cell function. Recently, 3D bioprinting techniques that may easily regulate the dimension and shape of the 3D tissue scaffold and are capable of producing scaffolds with cells have attracted attention. Production of biologically more complex microstructures can be achieved by using 3D bioprinting technology. Particularly in vitro modeling of CNS tissues for in vivo transplantation is critical in the treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focus on 3D bioprinting methods, bio-inks, and cells widely used in neural tissue engineering and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed.


Assuntos
Bioimpressão , Tecido Nervoso/metabolismo , Impressão Tridimensional , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Engenharia Tecidual , Alicerces Teciduais/química , Humanos , Tecido Nervoso/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia
15.
Artif Cells Nanomed Biotechnol ; 48(1): 362-376, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31899965

RESUMO

Microvascular disturbance, excessive inflammation and gliosis are key pathophysiologic changes in relation to functional status following the traumatic spinal cord injury (SCI). Continuous release of vascular endothelial growth factor (VEGF) to the lesion site was proved be able to promote the vascular remodelling, whereas the effects on reduction of inflammation and gliosis remain unclear. Currently, aiming at exploring the synergistic roles of VEGF and neurotrophin-3 (NT-3) on angiogenesis, anti-inflammation and neural repair, we developed a technique to co-deliver VEGF165 and NT-3 locally with a homotopic graft of tissue-engineered acellular spinal cord scaffold (ASCS) in a hemisected (3 mm in length) SCI model. As the potential in secretion of growth factors (GFs), bone mesenchymal stem cells (BMSCs) were introduced with the aim to enhance the VEGF/NT-3 release. Our data demonstrate that sustained VEGF/NT-3 release from ASCS significantly increases the local levels of VEGF/NT-3 and angiogenesis, regardless of whether it is in combination with BMSCs transplantation that exhibits positive effects on anti-inflammation, axonal outgrowth and locomotor recovery. This study verifies that co-delivery of VEGF/NT-3 reduces inflammation and gliosis in the hemisected spinal cord, promotes axonal outgrowth and results in better locomotor recovery, while the BMSCs transplantation facilitates these functions limitedly.


Assuntos
Células-Tronco Mesenquimais , Tecido Nervoso , Neurotrofina 3/metabolismo , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Tecido Nervoso/transplante , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química
16.
ACS Nano ; 14(1): 664-675, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31895542

RESUMO

Recording neural activity from the living brain is of great interest in neuroscience for interpreting cognitive processing or neurological disorders. Despite recent advances in neural technologies, development of a soft neural interface that integrates with neural tissues, increases recording sensitivity, and prevents signal dissipation still remains a major challenge. Here, we introduce a biocompatible, conductive, and biostable neural interface, a supramolecular ß-peptide-based hydrogel that allows signal amplification via tight neural/hydrogel contact without neuroinflammation. The non-biodegradable ß-peptide forms a multihierarchical structure with conductive nanomaterial, creating a three-dimensional electrical network, which can augment brain signal efficiently. By achieving seamless integration in brain tissue with increased contact area and tight neural tissue coupling, the epidural and intracortical neural signals recorded with the hydrogel were augmented, especially in the high frequency range. Overall, our tissuelike chronic neural interface will facilitate a deeper understanding of brain oscillation in broad brain states and further lead to more efficient brain-computer interfaces.


Assuntos
Encéfalo/metabolismo , Hidrogéis/química , Tecido Nervoso/metabolismo , Peptídeos/química , Animais , Eletricidade , Técnicas Eletroquímicas , Eletrodos , Substâncias Macromoleculares/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Tecido Nervoso/química , Tamanho da Partícula , Propriedades de Superfície
17.
Biomolecules ; 9(11)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717470

RESUMO

Herein, we assayed the antioxidant and anti-inflammatory potential of caffeine in a lipopolysaccharide (LPS)-injected mouse model of neurodegeneration and synaptic impairment. For this purpose, LPS was injected for two weeks on an alternate-day basis (250 µg/kg/i.p. for a total of seven doses), while caffeine was injected daily for four weeks (30 mg/kg/i.p/four weeks). According to our findings, there was a significant increase in the level of reactive oxygen species (ROS), as evaluated from the levels of lipid peroxidation (LPO) and ROS assays. Also, we evaluated the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) and the enzyme hemeoxygenase 1 (HO-1) in the mouse groups and found reduced expression of Nrf2 and HO-1 in the LPS-treated mice brains, but they were markedly upregulated in the LPS + caffeine co-treated group. We also noted enhanced expression of toll-Like Receptor 4 (TLR4), phospho-nuclear factor kappa B (p-NF-kB), and phospho-c-Jun n-terminal kinase (p-JNK) in the LPS-treated mice brains, which was significantly reduced in the LPS + caffeine co-treated group. Moreover, we found enhanced expression of Bcl2-associated X, apoptosis regulator (Bax), and cleaved caspase-3, and reduced expression of B-cell lymphoma 2 (Bcl-2) in the LPS-treated group, which were markedly reversed in the LPS + caffeine co-treated group. Furthermore, we analyzed the expression of synaptic proteins in the treated groups and found a marked reduction in the expression of synaptic markers in the LPS-treated group; these were significantly upregulated in the LPS + caffeine co-treated group. In summary, we conclude that caffeine may inhibit LPS-induced oxidative stress, neuroinflammation, and synaptic dysfunction.


Assuntos
Cafeína/farmacologia , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Tecido Nervoso/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1 , Humanos , Inflamação/genética , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Proteínas de Membrana , Camundongos , NF-kappa B/genética , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 33(9): 1169-1173, 2019 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-31512461

RESUMO

OBJECTIVE: To explore a rapid histological preparation method to observe morphology and composition distribution of tendon collagen fascicle and endotendinum. METHODS: Taking porcine superflexor tendon of foot as an example, tendons were sliced into sections with 6 µm by frozen section technology, after which general observation of the section integrity was carried out. After fixed with 10% neutral buffered formalin and performed with HE staining, the tissue integrity and ice crystal formation were observed under microscope. Sections were then divided into 5 groups by different methods of dyeing. Group A: Priodic acid-Shiff (PAS) staining; group B: Masson staining; group C: reticular fibers staining; group D: immunohistochemical and immunofluorescent staining of type Ⅲ collagen; group E: the sections were baked at 65℃ for 10 minutes and stained with Masson. The composition distribution of tendon collagen fascicle and endotendinum in different groups were observed. RESULTS: From general observation, the frozen section of tendon tissue was complete and continuous. Although the tissue integrity in the tendon sections could be seen and no ice crystal was formed, the composition distribution could not be identified by HE staining. The entire tendons in groups A, B, and C were dyed, and the composition distribution of collagen fascicle and endotendinum could not be identified. The endotendinum in group D was stained weakly positive for type Ⅲ collagen alone, and the two components were differentiated dyed but the contrast was not obvious. In group E, the collagen fascicle and endotendinium were differentiated dyed and the two components in tendon tissue were clearly visible. CONCLUSION: The morphology and the composition distribution of tendon collagen fascicle and endotendinum can be characterized rapidly and accurately, using a combination of baking at 65℃ for 10 minutes and Masson staining after porcine superflexor tendons were sliced by frozen section technology.


Assuntos
Colágeno , Tecido Nervoso , Tendões , Animais , Colágeno/metabolismo , Tecido Nervoso/metabolismo , Coloração e Rotulagem , Suínos , Tendões/metabolismo
19.
Macromol Biosci ; 19(10): e1900147, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31486250

RESUMO

Conducting polymers (CPs) is one of intelligent biomaterials with the specific properties of reversible redox states, which have a significant effects on the cell behaviors and nerve tissue regeneration. However, the effects of CPs with different electrical conductivity on the behaviors of nerve cells are rarely reported. Therefore, a kind of Poly(3-hexylthiophene) (P3HT) with certain molecular weight is synthesized by Kumada catalyst transfer polymerization (KCTP) method and employed to prepare bioabsorbable and electroactive intelligent composites of Poly(3-hexylthiophene)/Poly(glycolide-lactide) (P3HT/PLGA). FeCl3 doping electroactive membranes with different electrical conductivities are prepared to investigate the cell behaviors. On the substrate with higher electrical conductivity, the proliferation of rat adrenal pheochromocytoma cells (PC12 cells) is significantly promoted and neurite length is increased obviously. In particular, the most significant improvements are the neuron gene expression of Synapsin 1 and microtubule-associated protein 2 (MAP2) by the composites with high conductivity. These results suggest that P3HT/PLGA with suitable electrical conductivity have a positive role in promoting neural growth and differentiation, which is promising for advancing potential application of nerve repair and regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cloretos , Compostos Férricos , Regeneração Nervosa , Tecido Nervoso/metabolismo , Neurônios/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Engenharia Tecidual , Animais , Cloretos/química , Cloretos/farmacologia , Condutividade Elétrica , Compostos Férricos/química , Compostos Férricos/farmacologia , Tecido Nervoso/citologia , Neurônios/citologia , Células PC12 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos
20.
Proc Natl Acad Sci U S A ; 116(30): 15068-15073, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285319

RESUMO

Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton. Formation of chondrocytes from SCPs also occurred in zebrafish, indicating evolutionary conservation. Our findings reveal multipotency of SCPs, providing a developmental link between the nervous system and skeleton.


Assuntos
Osso e Ossos/citologia , Linhagem da Célula/genética , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Tecido Nervoso/citologia , Células de Schwann/citologia , Animais , Biomarcadores/metabolismo , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Células Cromafins/citologia , Células Cromafins/metabolismo , Embrião de Mamíferos , Embrião não Mamífero , Desenvolvimento Embrionário , Expressão Gênica , Melanócitos/citologia , Melanócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Fibras Nervosas/metabolismo , Tecido Nervoso/embriologia , Tecido Nervoso/metabolismo , Crista Neural/citologia , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Células de Schwann/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA