Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
EMBO J ; 40(21): e107277, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34558085

RESUMO

The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Neurônios/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Colina/metabolismo , Proteína Duplacortina/genética , Proteína Duplacortina/metabolismo , Feto , Ontologia Genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/classificação , Neurônios/citologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais , Estatmina/genética , Estatmina/metabolismo , Telencéfalo/citologia , Telencéfalo/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Mol Brain ; 13(1): 65, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366272

RESUMO

Inhibitory interneurons are critical for maintaining the excitatory/inhibitory balance. During the development cortical interneurons originate from the ganglionic eminence and arrive at the dorsal cortex through two tangential migration routes. However, the mechanisms underlying the development of cortical interneurons remain unclear. 3-Phosphoinositide-dependent protein kinase-1 (PDK1) has been shown to be involved in a variety of biological processes, including cell proliferation and migration, and plays an important role in the neurogenesis of cortical excitatory neurons. However, the function of PDK1 in interneurons is still unclear. Here, we reported that the disruption of Pdk1 in the subpallium achieved by crossing the Dlx5/6-Cre-IRES-EGFP line with Pdk1fl/fl mice led to the severely increased apoptosis of immature interneurons, subsequently resulting in a remarkable reduction in cortical interneurons. However, the tangential migration, progenitor pools and cell proliferation were not affected by the disruption of Pdk1. We further found the activity of AKT-GSK3ß signaling pathway was decreased after Pdk1 deletion, suggesting it might be involved in the regulation of the survival of cortical interneurons. These results provide new insights into the function of PDK1 in the development of the telencephalon.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proliferação de Células/genética , Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Neurogênese/genética , Telencéfalo/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Movimento Celular/genética , Sobrevivência Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Quinase 3 da Glicogênio Sintase/metabolismo , Hibridização In Situ , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Telencéfalo/crescimento & desenvolvimento
3.
J Neurosci ; 39(1): 177-192, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30377227

RESUMO

The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Eminência Mediana/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Contagem de Células , Movimento Celular/genética , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Feminino , Proteínas com Homeodomínio LIM/biossíntese , Proteínas com Homeodomínio LIM/genética , Masculino , Eminência Mediana/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Telencéfalo/citologia , Telencéfalo/crescimento & desenvolvimento , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/fisiologia
4.
Nucleic Acids Res ; 47(1): 168-183, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30329130

RESUMO

Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Metiltransferases/genética , Neurogênese/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase , Metilação , Camundongos , Neurônios/patologia , Proteínas Repressoras/genética , Fatores de Transcrição SOXD/genética , Proteínas com Domínio T , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo , Telencéfalo/patologia , Proteínas Supressoras de Tumor/genética
5.
Cereb Cortex ; 28(11): 3868-3879, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028946

RESUMO

Human mutations in CNTNAP2 are associated with an array of neuropsychiatric and neurological syndromes, including speech and language disorders, epilepsy, and autism spectrum disorder (ASD). We examined Cntnap2's expression and function in GABAergic cortical interneurons (CINs), where its RNA is present at highest levels in chandelier neurons, PV+ neurons and VIP+ neurons. In vivo functions were studied using both constitutive Cntnap2 null mice and a transplantation assay, the latter to assess cell autonomous phenotypes of medial ganglionic eminence (MGE)-derived CINs. We found that Cntnap2 constitutive null mutants had normal numbers of MGE-derived CINs, but had reduced PV+ CINs. Transplantation assays showed that Cntnap2 cell autonomously regulated the physiology of parvalbumin (PV)+, fast-spiking CINs; no phenotypes were observed in somatostatin+, regular spiking, CINs. We also tested the effects of 4 human CNTNAP2 ASD missense mutations in vivo, and found that they impaired PV+ CIN development. Together, these data reveal that reduced CNTNAP2 function impairs PV+ CINs, a cell type with important roles in regulating cortical circuits.


Assuntos
Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Alelos , Animais , Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Córtex Somatossensorial/fisiologia , Telencéfalo/crescimento & desenvolvimento
6.
J Cereb Blood Flow Metab ; 37(6): 2294-2307, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27601444

RESUMO

Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.


Assuntos
Astrócitos/metabolismo , Proliferação de Células , Metabolismo Energético , Glicogênio/metabolismo , Telencéfalo/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Feminino , Glicogênio Fosforilase/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Cultura Primária de Células , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento
7.
Genesis ; 54(10): 542-549, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27618396

RESUMO

In this study, we generated a transgenic mouse line driving Cre and EGFP expression with two putative cis-regulatory modules (CRMs) (i.e., hs687 and hs678) upstream of the homeobox gene Gsx2 (formerly Gsh2), a critical gene for establishing lateral ganglionic eminence (LGE) identity. The combination of these two CRMs drives transgene expression within the endogenous Gsx2 expression domains along the anterior-posterior neuraxis. By crossing this transgenic line with the RosatdTomato (Ai14) reporter mouse line, we observed a unique recombination pattern in the lateral ventral telencephalon, namely the LGE and the dorsal half of the medial GE (MGE), but not in the septum. We found robust recombination in many cell types derived from these embryonic regions, including olfactory bulb and amygdala interneurons and striatal projection neurons from the LGE, as well as cortical interneurons from the MGE and caudal GE (CGE). In summary, this transgenic mouse line represents a new tool for genetic manipulation in the LGE/CGE and the dorsal half of MGE.


Assuntos
Cistos Glanglionares/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Telencéfalo/crescimento & desenvolvimento , Tonsila do Cerebelo/crescimento & desenvolvimento , Animais , Cistos Glanglionares/patologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/biossíntese , Integrases/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Bulbo Olfatório/crescimento & desenvolvimento , Telencéfalo/metabolismo
8.
J Comp Neurol ; 524(4): 896-913, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26287569

RESUMO

Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.


Assuntos
Diencéfalo/crescimento & desenvolvimento , Proteínas de Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/citologia , Oryzias/crescimento & desenvolvimento , Telencéfalo/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Movimento Celular/fisiologia , Diencéfalo/citologia , Diencéfalo/metabolismo , Proteínas de Peixes/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal/métodos , Neurônios/metabolismo , Oryzias/anatomia & histologia , Oryzias/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo
9.
J Neuropathol Exp Neurol ; 74(7): 653-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26079447

RESUMO

Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable phenomena of fetal-onset hydrocephalus and abnormal neurogenesis. We used bromodeoxyuridine labeling, immunocytochemistry, electron microscopy, and cell culture to study the telencephalon of hydrocephalic HTx rats and correlated our findings with those in human hydrocephalic and nonhydrocephalic human fetal brains (n = 12 each). Our results suggest that abnormal expression of the intercellular junction proteins N-cadherin and connexin-43 in NSC leads to 1) disruption of the ventricular and subventricular zones, loss of NSCs and neural progenitor cells; and 2) abnormalities in neurogenesis such as periventricular heterotopias and abnormal neuroblast migration. In HTx rats, the disrupted NSC and progenitor cells are shed into the cerebrospinal fluid and can be grown into neurospheres that display intercellular junction abnormalities similar to those of NSC of the disrupted ventricular zone; nevertheless, they maintain their potential for differentiating into neurons and glia. These NSCs can be used to investigate cellular and molecular mechanisms underlying this condition, thereby opening the avenue for stem cell therapy.


Assuntos
Hidrocefalia/patologia , Junções Intercelulares/patologia , Células-Tronco Neurais/patologia , Neurogênese/fisiologia , Obstrução do Fluxo Ventricular Externo/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Diferenciação Celular , Movimento Celular , Células Cultivadas , Embrião de Mamíferos , Feminino , Feto , Idade Gestacional , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Junções Intercelulares/ultraestrutura , Masculino , Microscopia Eletrônica , Células-Tronco Neurais/ultraestrutura , Ratos , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/patologia , Telencéfalo/ultraestrutura
10.
Stem Cell Rev Rep ; 11(2): 288-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25420577

RESUMO

It was recently shown that the conditioned media (CM) of Human Umbilical Cord Perivascular Cells (HUCPVCs), a mesenchymal progenitor population residing within the Wharton Jelly of the umbilical cord, was able to modulate in vitro the survival and viability of different neuronal and glial cells populations. In the present work, we aimed to assess if the secretome of HUCPVCs is able to 1) induce the differentiation of human telencephalon neural precursor cells (htNPCs) in vitro, and 2) modulate neural/glial proliferation, differentiation and survival in the dentate gyrus (DG) of adult rat hippocampus. For this purpose, two separate experimental setups were performed: 1) htNPCs were incubated with HUCPVCs-CM for 5 days after which neuronal differentiation was assessed and, 2) HUCPVCs, or their respective CM, were injected into the DG of young adult rats and their effects assessed 7 days later. Results revealed that the secretome of HUCPVCs was able to increase neuronal cell differentiation in vitro; indeed, higher densities of immature (DCX(+) cells) and mature neurons (MAP-2(+) cells) were observed when htNPCs were incubated with the HUCPVCs-CM. Additionally, when HUCPVCs and their CM were injected in the DG, results revealed that both cells or CM were able to increase the endogenous proliferation (BrdU(+) cells) 7 days after injection. It was also possible to observe an increased number of newborn neurons (DCX(+) cells), upon injection of HUCPVCs or their respective CM. Finally western blot analysis revealed that after CM or HUCPVCs transplantation, there was an increase of fibroblast growth factor-2 (FGF-2) and, to a lesser extent, of nerve growth factor (NGF) in the DG tissue. Concluding, our results have shown that the transplantation of HUCPVCs or the administration of their secretome were able to potentiate neuronal survival and differentiation in vitro and in vivo.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Neurais/transplante , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/crescimento & desenvolvimento , Proteína Duplacortina , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Ratos , Telencéfalo/citologia , Telencéfalo/crescimento & desenvolvimento , Cordão Umbilical/citologia , Cordão Umbilical/crescimento & desenvolvimento , Cordão Umbilical/metabolismo
11.
Genome Res ; 24(4): 592-603, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24642863

RESUMO

Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.


Assuntos
Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Neoplasias/genética , Síndrome das Pernas Inquietas/genética , Telencéfalo/crescimento & desenvolvimento , Alelos , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Íntrons , Camundongos , Proteína Meis1 , Polimorfismo de Nucleotídeo Único , Telencéfalo/patologia
12.
Endocrinology ; 155(5): 1944-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24605826

RESUMO

Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17ß and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17ß treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.


Assuntos
Envelhecimento , Núcleo Hipotalâmico Dorsomedial/metabolismo , Regulação para Baixo , Hormônios Hipotalâmicos/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas , Animais , Biomarcadores/metabolismo , Extensões da Superfície Celular/metabolismo , Diencéfalo/citologia , Diencéfalo/crescimento & desenvolvimento , Diencéfalo/metabolismo , Núcleo Hipotalâmico Dorsomedial/citologia , Núcleo Hipotalâmico Dorsomedial/crescimento & desenvolvimento , Estradiol/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Neurofibrilas/metabolismo , Neurônios/citologia , Ratos , Ratos Transgênicos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Telencéfalo/citologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo
13.
PLoS One ; 9(2): e86025, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516524

RESUMO

Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Crista Neural/citologia , Crista Neural/crescimento & desenvolvimento , Telencéfalo/crescimento & desenvolvimento , Via de Sinalização Wnt , Animais , Linhagem da Célula , Proliferação de Células , Deleção de Genes , Meninges/citologia , Camundongos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Telencéfalo/patologia , beta Catenina/metabolismo
14.
Cereb Cortex ; 24(1): 186-98, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23042737

RESUMO

The corpus callosum (CC) represents the major forebrain commissure connecting the 2 cerebral hemispheres. Midline crossing of callosal axons is controlled by several glial and neuronal guideposts specifically located along the callosal path, but it remains unknown how these cells acquire their position. Here, we show that the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn) displays agenesis of the CC and mislocation of the glial and neuronal guidepost cells. Using transplantation experiments, we demonstrate that agenesis of the CC is primarily caused by midline defects. These defects originate during telencephalic patterning and involve an up-regulation of Slit2 expression and altered Fgf and Wnt/ß-catenin signaling. Mutations in sprouty1/2 which mimic the changes in these signaling pathways cause a disorganization of midline guideposts and CC agenesis. Moreover, a partial recovery of midline abnormalities in Pdn/Pdn;Slit2(-/-) embryos mutants confirms the functional importance of correct Slit2 expression levels for callosal development. Hence, Gli3 controlled restriction of Fgf and Wnt/ß-catenin signaling and of Slit2 expression is crucial for positioning midline guideposts and callosal development.


Assuntos
Corpo Caloso/crescimento & desenvolvimento , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Telencéfalo/crescimento & desenvolvimento , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/fisiopatologia , Animais , Encéfalo/crescimento & desenvolvimento , Análise por Conglomerados , Corpo Caloso/embriologia , Feminino , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Mutação/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Polidactilia/genética , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Telencéfalo/embriologia , Regulação para Cima/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína Gli3 com Dedos de Zinco , beta Catenina/fisiologia
15.
J Neurosci ; 33(2): 411-23, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303921

RESUMO

Premature infants exhibit neurodevelopmental delay and reduced growth of the cerebral cortex. However, the underlying mechanisms have remained elusive. Therefore, we hypothesized that neurogenesis in the ventricular and subventricular zones of the cerebral cortex would continue in the third trimester of pregnancy and that preterm birth would suppress neurogenesis. To test our hypotheses, we evaluated autopsy materials from human fetuses and preterm infants of 16-35 gestational weeks (gw). We noted that both cycling and noncycling Sox2(+) radial glial cells and Tbr2(+) intermediate progenitors were abundant in human preterm infants until 28 gw. However, their densities consistently decreased from 16 through 28 gw. To determine the effect of premature birth on neurogenesis, we used a rabbit model and compared preterm [embryonic day 29 (E29), 3 d old] and term (E32, <2 h old) pups at an equivalent postconceptional age. Glutamatergic neurogenesis was suppressed in preterm rabbits, as indicated by the reduced number of Tbr2(+) intermediate progenitors and the increased number of Sox2(+) radial glia. Additionally, hypoxia-inducible factor-1α, vascular endothelial growth factor, and erythropoietin were higher in term than preterm pups, reflecting the hypoxic intrauterine environment of just-born term pups. Proneural genes, including Pax6 and Neurogenin-1 and -2, were higher in preterm rabbit pups compared with term pups. Importantly, neurogenesis and associated factors were restored in preterm pups by treatment with dimethyloxallyl glycine, a hypoxia mimetic agent. Hence, glutamatergic neurogenesis continues in the premature infants, preterm birth suppresses neurogenesis, and hypoxia-mimetic agents might restore neurogenesis, enhance cortical growth, and improve neurodevelopmental outcome of premature infants.


Assuntos
Neurogênese/fisiologia , Terceiro Trimestre da Gravidez/fisiologia , Nascimento Prematuro/fisiopatologia , Adulto , Animais , Contagem de Células , Ventrículos Cerebrais/crescimento & desenvolvimento , Eritropoetina/fisiologia , Feminino , Idade Gestacional , Glicina/farmacologia , Humanos , Hipóxia/fisiopatologia , Fator 1 Induzível por Hipóxia/biossíntese , Fator 1 Induzível por Hipóxia/fisiologia , Imuno-Histoquímica , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/fisiologia , Gravidez , Coelhos , Transdução de Sinais/fisiologia , Telencéfalo/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia
16.
Biochem Biophys Res Commun ; 423(4): 627-31, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22659737

RESUMO

Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zones in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.


Assuntos
Proliferação de Células , Neurogênese/genética , Oryzias/crescimento & desenvolvimento , Telencéfalo/crescimento & desenvolvimento , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Bromodesoxiuridina/química , Mutação , Oryzias/genética , Supressão Genética , Telencéfalo/citologia
17.
Cell Stem Cell ; 9(5): 447-62, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22056141

RESUMO

Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by hamartomatous neurological lesions that exhibit abnormal cell proliferation and differentiation. Hyperactivation of mTOR pathway by mutations in either the Tsc1 or Tsc2 gene underlies TSC pathogenesis, but involvement of specific neural cell populations in the formation of TSC-associated neurological lesions remains unclear. We deleted Tsc1 in Emx1-expressing embryonic telencephalic neural stem cells (NSCs) and found that mutant mice faithfully recapitulated TSC neuropathological lesions, such as cortical lamination defects and subependymal nodules (SENs). These alterations were caused by enhanced generation of SVZ neural progeny, followed by their premature differentiation and impaired maturation during both embryonic and postnatal development. Notably, mTORC1-dependent Akt inhibition and STAT3 activation were involved in the reduced self-renewal and earlier neuronal and astroglial differentiation of mutant NSCs. Thus, finely tuned mTOR activation in embryonic NSCs may be critical to prevent development of TSC-associated brain lesions.


Assuntos
Células-Tronco Embrionárias/enzimologia , Células-Tronco Neurais/enzimologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Movimento Celular , Proliferação de Células , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/patologia , Ventrículos Cerebrais/ultraestrutura , Desenvolvimento Embrionário , Epilepsia/complicações , Epilepsia/patologia , Inativação Gênica , Marcação de Genes , Megalencefalia/complicações , Megalencefalia/patologia , Camundongos , Mutação/genética , Células Neuroepiteliais/metabolismo , Células Neuroepiteliais/patologia , Neurônios/metabolismo , Neurônios/patologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo , Telencéfalo/patologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
18.
J Neurosci ; 31(5): 1919-33, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21289201

RESUMO

During early telencephalic development, the major portion of the ventral telencephalic (subpallial) region becomes subdivided into three regions, the lateral (LGE), medial (MGE), and caudal (CGE) ganglionic eminences. In this study, we systematically recapitulated subpallial patterning in mouse embryonic stem cell (ESC) cultures and investigated temporal and combinatory actions of patterning signals. In serum-free floating culture, the dorsal-ventral specification of ESC-derived telencephalic neuroectoderm is dose-dependently directed by Sonic hedgehog (Shh) signaling. Early Shh treatment, even before the expression onset of Foxg1 (also Bf1; earliest marker of the telencephalic lineage), is critical for efficiently generating LGE progenitors, and continuous Shh signaling until day 9 is necessary to commit these cells to the LGE lineage. When induced under these conditions and purified by fluorescence-activated cell sorter, telencephalic cells efficiently differentiated into Nolz1(+)/Ctip2(+) LGE neuronal precursors and subsequently, both in culture and after in vivo grafting, into DARPP32(+) medium-sized spiny neurons. Purified telencephalic progenitors treated with high doses of the Hedgehog (Hh) agonist SAG (Smoothened agonist) differentiated into MGE- and CGE-like tissues. Interestingly, in addition to strong Hh signaling, the efficient specification of MGE cells requires Fgf8 signaling but is inhibited by treatment with Fgf15/19. In contrast, CGE differentiation is promoted by Fgf15/19 but suppressed by Fgf8, suggesting that specific Fgf signals play different, critical roles in the positional specification of ESC-derived ventral subpallial tissues. We discuss a model of the antagonistic Fgf8 and Fgf15/19 signaling in rostral-caudal subpallial patterning and compare it with the roles of these molecules in cortical patterning.


Assuntos
Células-Tronco Embrionárias/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Telencéfalo/crescimento & desenvolvimento , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Cicloexilaminas/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Telencéfalo/citologia , Telencéfalo/efeitos dos fármacos , Telencéfalo/metabolismo , Tiofenos/farmacologia , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Cereb Cortex ; 21(7): 1695-702, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21127017

RESUMO

Vascular-specific growth factor angiopoietin-2 (Ang2) is mainly involved during vascular network setup. Recently, Ang2 was suggested to play a role in adult neurogenesis, affecting migration and differentiation of adult neuroblasts in vitro. However, to date, no data have reported an effect of Ang2 on neurogenesis during embryonic development. As we detected Ang2 expression in the developing cerebral cortex at embryonic day E14.5 and E16.5, we used in utero electroporation to knock down Ang2 expression in neuronal progenitors located in the cortical ventricular zone (VZ) to examine the role of Ang2 in cortical embryonic neurogenesis. Using this strategy, we showed that radial migration from the VZ toward the cortical plate of Ang2-knocked down neurons is altered as well as their morphology. In parallel, we observed a perturbation of intermediate progenitor population and the surrounding vasculature. Taken together, our results show for the first time that, in addition to its role during brain vasculature setup, Ang2 is also involved in embryonic cortical neurogenesis and especially in the radial migration of projection neurons.


Assuntos
Angiopoietina-2/fisiologia , Neurogênese/fisiologia , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento , Angiopoietina-2/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes/métodos , Camundongos , Neurogênese/genética , Neurônios/citologia , Neurônios/fisiologia , Gravidez , Telencéfalo/irrigação sanguínea
20.
Brain Res ; 1372: 29-40, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21114965

RESUMO

p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Proteínas da Matriz Extracelular/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Nicho de Células-Tronco/metabolismo , Telencéfalo/citologia , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA