Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.793
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 561, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711034

RESUMO

Modulation of DNA damage repair in lung squamous cell carcinoma (LUSC) can result in the generation of neoantigens and heightened immunogenicity. Therefore, understanding DNA damage repair mechanisms holds significant clinical relevance for identifying targets for immunotherapy and devising therapeutic strategies. Our research has unveiled that the tumor suppressor zinc finger protein 750 (ZNF750) in LUSC binds to the promoter region of tenascin C (TNC), leading to reduced TNC expression. This modulation may impact the malignant behavior of tumor cells and is associated with patient prognosis. Additionally, single-cell RNA sequencing (scRNA-seq) of LUSC tissues has demonstrated an inverse correlation between ZNF750/TNC expression levels and immunogenicity. Manipulation of the ZNF750-TNC axis in vitro within LUSC cells has shown differential sensitivity to CD8+ cells, underscoring its pivotal role in regulating cellular immunogenicity. Further transcriptome sequencing analysis, DNA damage repair assay, and single-strand break analyses have revealed the involvement of the ZNF750-TNC axis in determining the preference for homologous recombination (HR) repair or non-homologous end joining (NHEJ) repair of DNA damage. with involvement of the Hippo/ERK signaling pathway. In summary, this study sheds light on the ZNF750-TNC axis's role in DNA damage repair regulation in LUSC, laying a groundwork for future translational research in immune cell therapy for LUSC.


Assuntos
Carcinoma de Células Escamosas , Dano ao DNA , Neoplasias Pulmonares , Tenascina , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Tenascina/genética , Tenascina/metabolismo , Dano ao DNA/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas , Prognóstico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo
2.
Sci Rep ; 14(1): 12028, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797735

RESUMO

Obesity is a risk factor for pancreatic cancer development, partly due to the tissue environment of metabolic disorder-related inflammation. We aimed to detect a tissue environment marker triggered by obesity-related metabolic disorders related to pancreatic cancer progression. In murine experiments, Bl6/j mice fed a normal diet (ND) or a high-fat diet (HFD) were orthotopically injected with mPKC1, a murine-derived pancreatic cancer cell line. We used stocked sera from 140 pancreatic cancer patients for analysis and 14 colon polyp patients as a disease control. Compared with ND-fed mice, HFD-fed mice exhibited obesity, larger tumors, and worse prognoses. RNA sequencing of tumors identified tenascin C (TNC) as a candidate obesity-related serum tissue environment marker with elevated expression in tumors of HFD-fed mice. Serum TNC levels were greater in HFD-fed mice than in ND-fed mice. In pancreatic cancer patients, serum TNC levels were greater than those in controls. The TNC-high group had more metabolic disorders and greater CA19-9 levels than did the TNC-low group. There was no relationship between serum TNC levels and disease stage. Among 77 metastatic patients treated with chemotherapy, a high serum TNC concentration was an independent poor prognostic factor. Pancreatic cancer patients with high serum TNC levels experienced progression more rapidly.


Assuntos
Biomarcadores Tumorais , Dieta Hiperlipídica , Inflamação , Neoplasias Pancreáticas , Tenascina , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Tenascina/sangue , Animais , Humanos , Prognóstico , Camundongos , Masculino , Inflamação/sangue , Dieta Hiperlipídica/efeitos adversos , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Obesidade/sangue , Obesidade/complicações , Idoso , Linhagem Celular Tumoral , Doenças Metabólicas/sangue , Camundongos Endogâmicos C57BL
3.
Mol Biol Rep ; 51(1): 506, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622341

RESUMO

BACKGROUND: Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS: The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS: The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.


Assuntos
Fibrilação Atrial , Fator Natriurético Atrial , Ratos , Animais , Ratos Sprague-Dawley , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Tenascina , Fibrilação Atrial/tratamento farmacológico , Angiotensina II/farmacologia , Inflamação/tratamento farmacológico , Colágeno , Fibrose
4.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38666538

RESUMO

Polycystic ovary syndrome (PCOS) is a globally prevalent gynecological disorder among women of childbearing age. The present study aimed to investigate the role of tenascin C (TNC) in PCOS and its potential mechanisms. Fasting blood glucose and serum insulin, the homeostasis model assessment of insulin resistance and the serum hormone levels were determined in PCOS rats. In addition, H&E staining was used for assessing pathology. In addition, the effects of TNC on oxidative stress and inflammation response in PCOS rat and cell models was assessed. Furthermore, the roles of TNC on KGN cell proliferation and apoptosis were determined employing EdU assay and flow cytometry. TLR4/NF­κB pathway­related proteins were measured using western blotting, immunofluorescence and immunohistochemistry. It was found that the mRNA and protein expression was upregulated in PCOS rats and in KGN cells induced by dihydrotestosterone (DHT). Knockdown of TNC relieved the pathological characteristics and the endocrine abnormalities of PCOS rats. Knockdown of TNC inhibited ovarian cell apoptosis, oxidative stress and inflammation in PCOS rats. Knockdown of TNC reversed the DHT­induced reduction in cell proliferation and increase in apoptosis in KGN cells. Furthermore, knockdown of TNC alleviated oxidative stress and inflammatory responses induced by DHT in KGN cells. Additionally, knockdown of TNC inhibited the toll­like receptor 4 (TLR4)/NF­κB signaling pathway in PCOS rats and DHT­treated KGN cells. In conclusion, knockdown of TNC could ameliorate PCOS in both rats and a cell model by inhibiting cell apoptosis, oxidative stress and inflammation via the suppression of the TLR4/NF­κB signaling pathway.


Assuntos
Apoptose , Proliferação de Células , NF-kappa B , Estresse Oxidativo , Síndrome do Ovário Policístico , Transdução de Sinais , Tenascina , Receptor 4 Toll-Like , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/genética , Feminino , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , NF-kappa B/metabolismo , Ratos , Tenascina/metabolismo , Tenascina/genética , Modelos Animais de Doenças , Ratos Sprague-Dawley , Resistência à Insulina , Humanos , Linhagem Celular
5.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339104

RESUMO

One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive ß1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.


Assuntos
Aterosclerose , Células Espumosas , Placa Aterosclerótica , Animais , Camundongos , Proteínas da Matriz Extracelular , Fibronectinas/metabolismo , Células Espumosas/metabolismo , Lipídeos , Peptídeos/química , Tenascina/metabolismo
6.
J Pediatr Surg ; 59(5): 839-846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365473

RESUMO

BACKGROUND: Pulmonary vascular disease (PVD) complicated with pulmonary hypertension (PH) is a leading cause of mortality in congenital diaphragmatic hernia (CDH). Unfortunately, CDH patients are often resistant to PH therapy. Using the nitrogen CDH rat model, we previously demonstrated that CDH-associated PVD involves an induction of elastase and matrix metalloproteinase (MMP) activities, increased osteopontin and epidermal growth factor (EGF) levels, and enhanced smooth muscle cell (SMC) proliferation. Here, we aimed to determine whether the levels of the key members of this proteinase-induced pathway are also elevated in the pulmonary arteries (PAs) of CDH patients. METHODS: Neutrophil elastase (NE), matrix metalloproteinase-2 (MMP-2), epidermal growth factor (EGF), tenascin-C, and osteopontin levels were assessed by immunohistochemistry in the PAs from the lungs of 11 CDH patients and 5 normal age-matched controls. Markers of proliferation (proliferating cell nuclear antigen (PCNA)) and apoptosis (cleaved (active) caspase-3) were also used. RESULTS: While expressed by both control and CDH lungs, the levels of NE, MMP-2, EGF, as well as tenascin-C and osteopontin were significantly increased in the PAs from CDH patients. The percentage of PCNA-positive PA SMCs were also enhanced, while those positive for caspase-3 were slightly decreased. CONCLUSIONS: These results suggest that increased elastase and MMPs, together with elevated tenascin-C and osteopontin levels in an EGF-rich environment may contribute to the PVD in CDH infants. The next step of this study is to expand our analysis to a larger cohort, and determine the potential of targeting this pathway for the treatment of CDH-associated PVD and PH. TYPE OF STUDY: Therapeutic. LEVEL OF EVIDENCE: LEVEL III.


Assuntos
Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Doenças Vasculares , Humanos , Ratos , Animais , Hérnias Diafragmáticas Congênitas/complicações , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/metabolismo , Artéria Pulmonar , Osteopontina/metabolismo , Caspase 3/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Elastase Pancreática/metabolismo , Fator de Crescimento Epidérmico , Tenascina/metabolismo , Pulmão/metabolismo , Hipertensão Pulmonar/complicações , Metaloproteinases da Matriz , Doenças Vasculares/complicações , Éteres Fenílicos/metabolismo
7.
Adv Mater ; 36(15): e2310982, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216153

RESUMO

The immunomodulatory effects of many therapeutic agents are significantly challenged by their insufficient delivery efficiency and short retention time in tumors. Regarding the distinctively upregulated fibronectin (FN1) and tenascin C (TNC) in tumor stroma, herein a protease-activated FN1 and/or TNC binding peptide (FTF) is designed and an extracellular matrix (ECM)-trapped bioinspired lipoprotein (BL) (FTF-BL-CP) is proposed that can be preferentially captured by the TNC and/or FN1 for tumor retention, and then be responsively dissociated from the matrix to potentiate the antitumor immunity. The FTF-BL-CP treatment produces a 6.96-, 9.24-, 6.72-, 7.32-, and 6.73-fold increase of CD3+CD8+ T cells and their interferon-γ-, granzyme B-, perforin-, and Ki67-expressing subtypes versus the negative control, thereby profoundly eliciting the antitumor immunity. In orthotopic and lung metastatic breast cancer models, FTF-BL-CP produces notable therapeutic benefits of retarding tumor growth, extending survivals, and inhibiting lung metastasis. Therefore, this ECM-trapping strategy provides an encouraging possibility of prolonging tumor retention to potentiate the antitumor immunity for anticancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Humanos , Matriz Extracelular/metabolismo , Tenascina/metabolismo , Neoplasias Pulmonares/terapia , Lipoproteínas/metabolismo
9.
Pharmacol Ther ; 253: 108577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081519

RESUMO

Tenascin C (TNC), a glycoprotein that is abundant in the tumor extracellular matrix (ECM), is strongly overexpressed in tumor tissues but virtually undetectable in most normal tissues. Many TNC antibodies, peptides, aptamers, and nanobodies have been investigated as delivery vectors, including 20A1, α-A2, α-A3, α-IIIB, α-D, BC-2, BC-4 BC-8, 81C6, ch81C6, F16, FHK, Ft, Ft-NP, G11, G11-iRGD, GBI-10, 19H12, J1/TN1, J1/TN2, J1/TN3, J1/TN4, J1/TN5, NJT3, NJT4, NJT6, P12, PL1, PL3, R6N, SMART, ST2146, ST2485, TN11, TN12, TNFnA1A2-Fc, TNfnA1D-Fc, TNfnBD-Fc, TNFnCD-Fc, TNfnD6-Fc, TNfn78-Fc, TTA1, TTA1.1, and TTA1.2. In particular, BC-2, BC-4, 81C6, ch81C6, F16, FHK, G11, PL1, PL3, R6N, ST2146, TN11, and TN12 have been tested in human tissues. G11-iRGD and simultaneous multiple aptamers and arginine-glycine-aspartic acid (RGD) targeting (SMART) may be assessed in clinical trials because G11, iRGD and AS1411 (SMART components) are already in clinical trials. Many TNC-conjugate agents, including antibody-drug conjugates (ADCs), antibody fragment-drug conjugates (FDCs), immune-stimulating antibody conjugates (ISACs), and radionuclide-drug conjugates (RDCs), have been investigated in preclinical and clinical trials. RDCs investigated in clinical trials include 111In-DTPA-BC-2, 131I-BC-2, 131I-BC-4, 90Y-BC4, 131I81C6, 131I-ch81C6, 211At-ch81C6, F16124I, 131I-tenatumomab, ST2146biot, FDC 131I-F16S1PF(ab')2, and ISAC F16IL2. ADCs (including FHK-SSL-Nav, FHK-NB-DOX, Ft-NP-PTX, and F16*-MMAE) and ISACs (IL12-R6N and 125I-G11-IL2) may enter clinical trials because they contain components of marketed treatments or agents that were investigated in previous clinical studies. This comprehensive review presents historical perspectives on clinical advances in TNC-conjugate agents to provide timely information to facilitate tumor-targeting drug development using TNC.


Assuntos
Imunoconjugados , Tenascina , Humanos , Matriz Extracelular , Peptídeos , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral
10.
Gene ; 894: 147989, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972699

RESUMO

BACKGROUND: m6A regulators have important roles in a variety of autoimmune diseases, but their potential function in scleroderma, a refractory connective tissue disease, remains unclear. Tenascin C (TNC) is known to be a factor promoting collagen deposition in the development of scleroderma, but the regulatory relationship between TNC and m6A regulators is unknown. METHODS: We extracted GSE33463 data consisting of forty-one healthy controls and sixty-one patients with scleroderma, and we analyzed the expression levels of twenty-one m6A regulators as well as the associations between them. In addition, we obtained random forest (RF) and nomogram models to predict the likehood of scleroderma. Next, we categorized the m6Aclusters and geneclusters by consensus clustering, and we performed an immune cell infiltration analysis for each cluster. Finally, we injected adenoviruses into a bleomycin (BLM)-induced mouse model of scleroderma, which was used to overexpress FTO and TNC. We assess the extent of skin fibrosis in the mice samples using pathology stains and measuring their hydroxyproline content and collagen mRNA. RESULTS: We initially identified fourteen differentially expressed m6A regulators (WTAP, RBM15, CBLL1, FTO, ALKBH5, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, RBMX, HNRNPC, IGFBP1 and IGFBP2). We found ALKBH5 to be positively associated with CBLL1 and RBM15, and FTO to be negatively associated with WTAP. In addition, we identified four m6A regulators (CBLL1, IGFBP1, YTHDF2 and IGFBP2) using a RF model, and we designed a nomogram model with those variables that proved reliable according to the calibration curve and clinical impact curve. We found that the m6Acluster A was correlated with Type 1 T helper cell infiltration and the genecluster A was correlated with regulatory T cell infiltration. Finally, we showed that FTO overexpression downregulated the m6A and mRNA levels of TNC, and alleviated skin fibrosis in the mouse model of scleroderma. Thus, our overexpression experiments provide preliminary evidence suggesting that TNC is an adverse factor in scleroderma. CONCLUSION: Our approach might be useful as a new and accurate scleroderma diagnosis method. Moreover, our results suggested that FTO/TNC might be a novel scleroderma therapeutic target.


Assuntos
Basidiomycota , Tenascina , Animais , Humanos , Camundongos , Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Colágeno , Modelos Animais de Doenças , Fibrose , RNA Mensageiro , Ubiquitina-Proteína Ligases
11.
Environ Toxicol ; 39(3): 1442-1455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987507

RESUMO

Engrailed 2 (EN2) is a homeodomain-containing protein that is dysregulated in many types of cancer. However, the role of EN2 in non-small cell lung cancer (NSCLC) and the mechanism underlying its biological function are largely unclear. Here, we showed that EN2 played an oncogenic function in NSCLC and greatly enhanced the malignant phenotype of NSCLC cells. Meanwhile, EN2 was able to boost the expression of a well-studied oncogenic Tenascin-C (TNC) gene, which in turn activated the AKT signaling pathway. Interestingly, we found that EN2 directly bound to the super-enhancer (SE) region in the TNC locus. The histone marker H3K27ac was also enriched in the region, indicating the activation of the SE. Treatment of the cells with JQ1, an inhibitor of SE activity, abrogated the effect of EN2 on the expression of TNC and phosphorylation of AKT-Ser473. Collectively, our work unveils a novel mode of EN2 function, in which EN2 governs the SE in the TNC locus, consequently activating the oncogenic TNC-AKT axis in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Homeodomínio , Neoplasias Pulmonares , Tenascina , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tenascina/genética
12.
Front Immunol ; 14: 1275361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077374

RESUMO

Serum biomarkers are the gold standard in non-invasive disease diagnosis and have tremendous potential as prognostic and theranostic tools for patient stratification. Circulating levels of extracellular matrix molecules are gaining traction as an easily accessible means to assess tissue pathology. However, matrix molecules are large, multimodular proteins that are subject to a vast array of post-transcriptional and post-translational modifications. These modifications often occur in a tissue- and/or disease-specific manner, generating hundreds of different variants, each with distinct biological roles. Whilst this complexity can offer unique insight into disease processes, it also has the potential to confound biomarker studies. Tenascin-C is a pro-inflammatory matrix protein expressed at low levels in most healthy tissues but elevated in, and associated with the pathogenesis of, a wide range of autoimmune diseases, fibrosis, and cancer. Analysis of circulating tenascin-C has been widely explored as a disease biomarker. Hundreds of different tenascin-C isoforms can be generated by alternative splicing, and this protein is also modified by glycosylation and citrullination. Current enzyme-linked immunosorbent assays (ELISA) are used to measure serum tenascin-C using antibodies, recognising sites within domains that are alternatively spliced. These studies, therefore, report only levels of specific isoforms that contain these domains, and studies on the detection of total tenascin-C are lacking. As such, circulating tenascin-C levels may be underestimated and/or biologically relevant isoforms overlooked. We developed a highly specific and sensitive ELISA measuring total tenascin-C down to 0.78ng/ml, using antibodies that recognise sites in constitutively expressed domains. In cohorts of people with different inflammatory and musculoskeletal diseases, levels of splice-specific tenascin-C variants were lower than and distributed differently from total tenascin-C. Neither total nor splice-specific tenascin-C levels correlated with the presence of autoantibodies to citrullinated tenascin-C in rheumatoid arthritis (RA) patients. Elevated tenascin-C was not restricted to any one disease and levels were heterogeneous amongst patients with the same disease. These data confirm that its upregulation is not disease-specific, instead suggest that different molecular endotypes or disease stages exist in which pathology is associated with, or independent of, tenascin-C. This immunoassay provides a novel tool for the detection of total tenascin-C that is critical for further biomarker studies. Differences between the distribution of tenascin-C variants and total tenascin-C have implications for the interpretation of studies using isoform-targeted assays. These data highlight the importance of assay design for the detection of multimodular matrix molecules and reveal that there is still much to learn about the intriguingly complex biological roles of distinct matrix proteoforms.


Assuntos
Matriz Extracelular , Tenascina , Humanos , Tenascina/metabolismo , Matriz Extracelular/metabolismo , Isoformas de Proteínas , Biomarcadores , Autoanticorpos
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(12): 1523-1532, 2023 Dec 15.
Artigo em Chinês | MEDLINE | ID: mdl-38130197

RESUMO

Objective: To investigate whether the Runx2 gene can induce the differentiation of human amniotic mesenchymal stem cells (hAMSCs) to ligament fibroblasts in vitro and promote the tendon-bone healing in rabbits. Methods: hAMSCs were isolated from the placentas voluntarily donated from healthy parturients and passaged, and then identified by flow cytometric identification. Adenoviral vectors carrying Runx2 gene (Ad-Runx2) and empty vector adenovirus (Ad-NC) were constructed and viral titer assay; then, the 3rd generation hAMSCs were transfected with Ad-Runx2 (Ad-Runx2 group) or Ad-NC (Ad-NC group). The real-time fluorescence quantitative PCR and Western blot were used to detect Runx2 gene and protein expression to verify the effectiveness of Ad-Runx2 transfection of hAMSCs; and at 3 and 7 days after transfection, real-time fluorescence quantitative PCR was further used to detect the expressions of ligament fibroblast-related genes [vascular endothelial growth factor (VEGF), collagen type Ⅰ, Fibronectin, and Tenascin-C]. The hAMSCs were used as a blank control group. The hAMSCs, hAMSCs transfected with Ad-NC, and hAMSCs were mixed with Matrigel according to the ratio of 1 : 1 and 1 : 2 to construct the cell-scaffold compound. Cell proliferation was detected by cell counting kit 8 (CCK-8) assay, and the corresponding cell-scaffold compound with better proliferation were taken for subsequent animal experiments. Twelve New Zealand white rabbits were randomly divided into 4 groups of sham operation group (Sham group), anterior cruciate ligament reconstruction group (ACLR group), anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-NC-scaffold compound group (Ad-NC group), and anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-Runx2-scaffold compound group (Ad-Runx2 group), with 3 rabbits in each group. After preparing the ACL reconstruction model, the Ad-NC group and the Ad-Runx2 group injected the optimal hAMSCs-Matrigel compunds into the bone channel correspondingly. The samples were taken for gross, histological (HE staining and sirius red staining), and immunofluorescence staining observation at 1 month after operation to evaluate the inflammatory cell infiltration as well as collagen and Tenascin-C content in the ligament tissues. Results: Flow cytometric identification of the isolated cells conformed to the phenotypic characteristics of MSCs. The Runx2 gene was successfully transfected into hAMSCs. Compared with the Ad-NC group, the relative expressions of VEGF and collagen type Ⅰ genes in the Ad-Runx2 group significantly increased at 3 and 7 days after transfection ( P<0.05), Fibronectin significantly increased at 3 days ( P<0.05), and Tenascin-C significantly increased at 3 days and decreased at 7 days ( P<0.05). CCK-8 detection showed that there was no significant difference ( P>0.05) in the cell proliferation between groups and between different time points after mixed culture of two ratios. So the cell-scaffold compound constructed in the ratio of 1∶1 was selected for subsequent experiments. Animal experiments showed that at 1 month after operation, the continuity of the grafted tendon was complete in all groups; HE staining showed that the tissue repair in the Ad-Runx2 group was better and there were fewer inflammatory cells when compared with the ACLR group and the Ad-NC group; sirius red staining and immunofluorescence staining showed that the Ad-Runx2 group had more collagen typeⅠ and Ⅲ fibers, tending to form a normal ACL structure. However, the fluorescence intensity of Tenascin-C protein was weakening when compared to the ACLR and Ad-NC groups. Conclusion: Runx2 gene transfection of hAMSCs induces directed differentiation to ligament fibroblasts and promotes tendon-bone healing in reconstructed anterior cruciate ligament in rabbits.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Gravidez , Feminino , Humanos , Coelhos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fibronectinas/metabolismo , Colágeno Tipo I/genética , Tenascina/metabolismo , Colágeno/metabolismo , Ligamento Cruzado Anterior/cirurgia , Tendões/metabolismo , Fibroblastos/metabolismo
14.
Nanomedicine (Lond) ; 18(23): 1651-1668, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37929694

RESUMO

Background: Elevated expression of CAV1 in breast cancer increases tumor progression. Extracellular vesicles (EVs) from CAV1-expressing MDA-MB-231 breast cancer cells contain Tenascin C (TNC), but the relevance of TNC remained to be defined. Methods: EVs were characterized by nanotracking analysis, microscopy and western blotting. The uptake of EVs by cells was studied using flow cytometry. The effects of EVs on breast cancer cells were tested in migration, invasion, colony formation and in vivo assays. Results: EVs were taken up by cells; however, only those containing TNC promoted invasiveness. In vivo, EVs lacking TNC ceased to promote tumor growth. Conclusion: CAV1 and TNC contained in breast cancer cell-derived EVs were identified as proteins that favor progression of breast cancer.


Caveolin-1 (CAV1) is a protein that in breast cancer increases with disease progression. Extracellular vesicles (EVs) from breast cancer cells with CAV1 also contain Tenascin C (TNC) protein, but the importance of TNC remained to be defined. EVs were identified by size, microscopy and protein analysis. The effects of EVs on breast cancer cells were studied using cells and experiments in animals. CAV1 expression promotes TNC inclusion into EVs, which increased the aggressiveness of recipient breast cancer cells. In animals, only EVs with TNC increased features associated with cancer spread, while EVs lacking TNC reduced tumor growth.


Assuntos
Neoplasias da Mama , Caveolina 1 , Vesículas Extracelulares , Tenascina , Humanos , Linhagem Celular Tumoral , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caveolina 1/metabolismo , Vesículas Extracelulares/metabolismo , Tenascina/metabolismo , Animais , Camundongos , Camundongos SCID , Progressão da Doença
15.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834140

RESUMO

Tenascin-C (TNC) is a complex glycoprotein of the extracellular matrix (ECM) involved in a plethora of (patho-)physiological processes, such as oncogenesis and inflammation. Since chemokines play an essential role in both disease processes, we have investigated here the binding of TNC to some of the key chemokines, namely CCL2, CCL26, CXCL8, CXCL10, and CXCL12. Thereby, a differential chemokine-TNC binding pattern was observed, with CCL26 exhibiting the highest and CCL2 the lowest affinity for TNC. Heparan sulfate (HS), another member of the ECM, proved to be a similarly high-affinity ligand of TNC, with a Kd value of 730 nM. Chemokines use glycosa-minoglycans such as HS as co-receptors to induce immune cell migration. Therefore, we assumed an influence of TNC on immune cell chemotaxis due to co-localization within the ECM. CCL26- and CCL2-induced mobilization experiments of eosinophils and monocytes, respectively, were thus performed in the presence and the absence of TNC. Pre-incubation of the immune cells with TNC resulted in a 3.5-fold increase of CCL26-induced eosinophil chemotaxis, whereas a 1.3-fold de-crease in chemotaxis was observed when monocytes were pre-incubated with CCL2. As both chemokines have similar HS binding but different TNC binding affinities, we speculate that TNC acts as an attenuator in monocyte and as an amplifier in eosinophil mobilization by impeding CCL2 from binding to HS on the one hand, and by reinforcing CCL26 to bind to HS on the other hand.


Assuntos
Matriz Extracelular , Tenascina , Movimento Celular , Matriz Extracelular/metabolismo , Heparitina Sulfato/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Tenascina/metabolismo , Humanos
16.
Dev Biol ; 504: 86-97, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758009

RESUMO

Human satellite cells (HuSCs) have been deemed to be the potential cure to treat muscular atrophy diseases such as Duchenne muscular dystrophy. However, the clinical trials of HuSCs were restricted to the inadequacy of donors because of that freshly isolated HuSCs quickly lost the Pax7 expression and myogenesis capacity in vivo after a few days of culture. Here we found that oleanic acid, a kind of triterpenoid endowed with diverse biological functions with treatment potential, could efficiently promote HuSCs proliferation. The HuSCs cultured in the medium supplement with oleanic acid could maintain a high expression level of Pax7 and retain the ability to differentiate into myotubes as well as facilitate muscle regeneration in injured muscles of recipient mice. We further revealed that Tenascin-C acts as the core mechanism to activate the EGFR signaling pathway followed by HuSCs proliferation. Taken together, our data provide an efficient method to expand functional HuSCs and a novel mechanism that controls HuSCs proliferation, which sheds light on the HuSCs-based therapy to treat muscle diseases.


Assuntos
Células Satélites de Músculo Esquelético , Tenascina , Animais , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células , Receptores ErbB/metabolismo , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco , Tenascina/metabolismo
17.
J Immunoassay Immunochem ; 44(5-6): 396-417, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37694977

RESUMO

Gastric carcinoma (GC) is one of the most prevalent cancers worldwide and the fourth leading cause of cancer-related death. Studying the molecular profile of GC is essential for developing targeted therapies. ß-catenin, Tenascin, and Fascin expression are among the molecular abnormalities that are claimed to cause GC progression and chemoresistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate ß-catenin, Tenascin, and Fascin expression and their possible roles as prognostic and predictive biomarkers in GC using immunohistochemistry. This retrospective study included 84 GC cases. Tissue microarrays were constructed, followed by ß-catenin, Tenascin, and Fascin immunostaining. Their expression was assessed and compared with clinicopathological parameters and survival data. The study results revealed that ß-catenin nucleocytoplasmic expression, positive Tenascin, and Fascin expressions were detected in 86.9%, 70%, and 59.5% of cases, respectively. Their expression was significantly associated with poor prognostic parameters, such as deeper tumor invasion, lymph node metastasis, advanced pathological stage, vascular invasion, positive omental nodules, poor response to chemotherapy, and short overall survival. Hence, nucleocytoplasmic ß-catenin expression together with Tenascin and Fascin positivity can be potential prognostic and predictive markers, and they can be used as therapeutic targets for GC.


Assuntos
Carcinoma , Neoplasias Gástricas , Humanos , beta Catenina/metabolismo , Tenascina , Estudos Retrospectivos , Biomarcadores Tumorais/metabolismo , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Carcinoma/patologia
18.
J Plast Reconstr Aesthet Surg ; 83: 69-76, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270997

RESUMO

BACKGROUND: Although autologous fat grafting is considered a successful method for the management of contour deformities, the fat graft could potentially induce cancer reappearance by fueling dormant breast cancer cells. Our aim was to characterize the role of adipose-derived stem cells on active and dormant breast cancer cell growth. METHODS: Cobalt chloride was used to induce dormancy in MCF-7 cancer cells. Proliferation of active and dormant cancer cells was determined in the presence of adipose-derived stem cells. A proteome array was used to detect cancer-related protein expression in the cell-conditioned medium. The migration of cancer cells was measured in response to conditioned medium from the adipose-derived stem cells. RESULTS: The adipose-derived stem cells showed variable effects on active MCF-7 cells growth and inhibited MCF-7 proliferation after the withdrawal of cobalt chloride. Of the 84 different proteins measured in the conditioned medium, only tenascin-C was differentially expressed in the co-cultures. MCF-7 cells alone did not express tenascin-C, whereas co-cultures between MCF-7 and adipose-derived stem cells expressed more tenascin-C versus adipose-derived stem cells alone. The conditioned medium from co-cultures significantly increased the migration of the cancer cells. CONCLUSIONS: Adipose-derived stem cells themselves neither increased the growth or migration of cancer cells, suggesting that autologous fat grafting may be oncologically safe if reconstruction is postponed until there is no evidence of active disease. However, interactions between adipose-derived stem cells and MCF-7 cancer cells could potentially lead to the production of factors, which further promote cancer cell migration.


Assuntos
Tecido Adiposo , Neoplasias da Mama , Humanos , Feminino , Tecido Adiposo/transplante , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Tenascina/metabolismo , Tenascina/farmacologia , Células-Tronco , Proliferação de Células
19.
Analyst ; 148(14): 3247-3256, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366648

RESUMO

Glioblastoma multiforme (GBM) is a particularly aggressive and high-grade brain cancer, with poor prognosis and life expectancy, in urgent need of novel therapies. These severe outcomes are compounded by the difficulty in distinguishing between cancerous and non-cancerous tissues using conventional imaging techniques. Metallic nanoparticles (NPs) are advantageous due to their diverse optical and physical properties, such as their targeting and imaging potential. In this work, the uptake, distribution, and location of silica coated gold nanoparticles (AuNP-SHINs) within multicellular tumour spheroids (MTS) derived from U87-MG glioblastoma cells was investigated by surface enhanced Raman scattering (SERS) optical mapping. MTS are three-dimensional in vitro tumour mimics that represent a tumour in vivo much more closely than that of a two-dimensional cell culture. By using AuNP-SHIN nanotags, it is possible to readily functionalise the inner gold surface with a Raman reporter, and the outer silica surface with an antibody for tumour specific targeting. The nanotags were designed to target the biomarker tenascin-C overexpressed in U87-MG glioblastoma cells. Immunochemistry indicated that tenascin-C was upregulated within the core of the MTS, however limitations such as NP size, quiescence, and hypoxia, restricted the penetration of the nanotags to the core and they remained in the outer proliferating cells of the spheroids. Previous examples of MTS studies using SERS demonstrated the incubation of NPs on a 2D monolayer of cells, with the subsequent formation of the MTS from these pre-incubated cells. Here, we focus on the localisation of the NPs after incubation into pre-formed MTS to establish a better understanding of targeting and NP uptake. Therefore, this work highlights the importance for the investigation and translation of NP uptake into these 3D in vitro models.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Tenascina , Ouro/química , Esferoides Celulares , Dióxido de Silício/química
20.
BMC Oral Health ; 23(1): 425, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370064

RESUMO

BACKGROUND: Dental implant is the principal treatment for edentulism and the healthiness of the peri-implant tissue has a pivotal role for its longterm success. In addition, it has been shown that also the topography of the healing abutment can influence the outcome of the restoration. The objective of this human clinical trial was to assess the impact of a novel laser-treated healing abutment on peri-implant connective tissue and extracellular matrix proteins compared to the conventional machined surface, which served as the control group. METHODS: During second surgical stage a customized healing abutment were inserted on 30 single dental implants. Healing abutments were realized with two alternated different surface (two side laser-treated surfaces and two side machined surfaces) in order to be considered both as test and control on the same implant and reduce positioning bias. Following the soft tissue healing period (30 ± 7 days) a 5 mm circular biopsy was retrieved. Immuno-histochemical and quantitative real-time PCR (qPCR) analyses were performed on Collagen, Tenascin C, Fibrillin I, Metalloproteinases (MMPs) and their inhibitor (TIMPs). 15 were processed for qPCR, while the other 15 were processed for immunohistochemical analysis. Paired t-test between the two groups were performed. A value of p < 0.05 was considered statistically significant. RESULTS: Results revealed that the connective tissue facing the laser-treated surface expressed statistically significant lower amount of MMPs (p < 0.05) and higher level of TIMPs 3 (p < 0.05), compared to the tissue surrounding the machined implant, which, in turn expressed also altered level of extracellular matrix protein (Tenascin C, Fibrillin I (p < 0.05)) and Collagen V, that are known to be altered also in peri-implantitis. CONCLUSIONS: In conclusion, the laser-treated surface holds promise in positively influencing wound healing of peri-implant connective tissue. Results demonstrated that topographic nature of the healing abutments can positively influence mucosal wound healing and molecular expression. Previous studies have been demonstrated how laser treatment can rightly influence integrity and functionality of the gingiva epithelium and cell adhesion. Regarding connective tissue different molecular expression demonstrated a different inflammatory pattern between laser treated or machined surfaces where laser treated showed better response. Targeted interventions and preventive measures on peri- implant topography could effectively minimize the risk of peri-implant diseases contributing to the long-term success and durability of restoration. However, new studies are mandatory to better understand this phenomenon and the role of this surface in the peri-implantitis process.  TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov Identifier: (Registration Number: NCT05754970 ). Registered 06/03/2023, retrospectively registered.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Implantes Dentários/efeitos adversos , Tenascina , Colágeno , Tecido Conjuntivo , Lasers , Fibrilinas , Metaloproteinases da Matriz , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA