Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mater Chem B ; 12(19): 4717-4723, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655651

RESUMO

Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.


Assuntos
Ácido Clorogênico , Inseticidas , Estruturas Metalorgânicas , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Animais , Tenebrio/química , Tenebrio/efeitos dos fármacos , Larva/efeitos dos fármacos
2.
J Biol Chem ; 299(9): 105066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468103

RESUMO

Among the rare venomous mammals, the short-tailed shrew Blarina brevicauda has been suggested to produce potent neurotoxins in its saliva to effectively capture prey. Several kallikrein-like lethal proteases have been identified, but the active substances of B. brevicauda remained unclear. Here, we report Blarina paralytic peptides (BPPs) 1 and 2 isolated from its submaxillary glands. Synthetic BPP2 showed mealworm paralysis and a hyperpolarization shift (-11 mV) of a human T-type Ca2+ channel (hCav3.2) activation. The amino acid sequences of BPPs were similar to those of synenkephalins, which are precursors of brain opioid peptide hormones that are highly conserved among mammals. However, BPPs rather resembled centipede neurotoxic peptides SLPTXs in terms of disulfide bond connectivity and stereostructure. Our results suggested that the neurotoxin BPPs were the result of convergent evolution as homologs of nontoxic endogenous peptides that are widely conserved in mammals. This finding is of great interest from the viewpoint of the chemical evolution of vertebrate venoms.


Assuntos
Canais de Cálcio Tipo T , Neurotoxinas , Peptídeos , Musaranhos , Animais , Humanos , Sequência de Aminoácidos , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/farmacologia , Peptídeos/síntese química , Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Evolução Molecular , Musaranhos/classificação , Musaranhos/genética , Musaranhos/metabolismo , Tenebrio/efeitos dos fármacos , Células HEK293 , Eletrofisiologia
3.
Food Chem ; 334: 127475, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32688176

RESUMO

Although numerous types of organisms have been used to enrich selenium, a low-cost and efficient organism is yet to be identified. This study aimed to develop a new means of selenium enrichment using Tenebrio molitor larvae. Our results indicated that the total selenium content in larvae was increased 83-fold to 54.21 ± 1.25 µg/g, and of this content, organic selenium accounted for over 97% after feeding the larvae with 20 µg/g of sodium selenite. Selenium was distributed unequally in the protein fraction with following order: alkali-soluble protein-bound selenium (36.32%) > salt-soluble protein-bound selenium (19.41%) > water-soluble protein-bound selenium (17.03%) > alcohol-soluble protein-bound selenium (3.21%). Additionally, 81% of the selenium within the soluble proteins was distributed in subunits possessing molecular weights of <40 kDa. After hydrolysis by alcalase, the protein hydrolysate of selenium-enriched larvae possessing 75% selenium recovery exhibited stronger antioxidant and immunoregulatory activities than those of regular larvae.


Assuntos
Antioxidantes/farmacologia , Fatores Imunológicos/farmacologia , Proteínas de Insetos/metabolismo , Hidrolisados de Proteína/farmacologia , Selênio/farmacocinética , Tenebrio/metabolismo , Adulto , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Antioxidantes/metabolismo , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Hidrólise , Fatores Imunológicos/metabolismo , Proteínas de Insetos/farmacologia , Larva/efeitos dos fármacos , Larva/metabolismo , Camundongos , Hidrolisados de Proteína/metabolismo , Células RAW 264.7 , Selênio/análise , Subtilisinas/química , Subtilisinas/metabolismo , Tenebrio/efeitos dos fármacos
4.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322485

RESUMO

Tenebrio molitor larvae (mealworm) is an edible insect and is considered a future food. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a novel method for simultaneous analysis of 353 target analytes was developed and validated. Various sample preparation steps including "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) extraction conditions, number of acetonitrile-hexane partitions, and dispersive-solid phase extraction (dSPE) sorbents were compared, and the optimal conditions were determined. In the established method, 5 g of homogenized mealworms was extracted with acetonitrile and treated with QuEChERS EN 15662 salts. The crude extract was subjected to three rounds of acetonitrile-hexane partitioning, and the acetonitrile layer was cleaned with C18 dSPE. The final solution was matrix-matched and injected into LC-MS/MS (2 µL). For target analytes, the limits of quantitation (LOQs) were ≤10 µg/kg, and the correlation coefficient (r2) of calibration was >0.990. In recovery tests, more than 90% of the pesticides showed an excellent recovery range (70-120%) with relative standard deviation (RSD) ≤20%. For more than 94% of pesticides, a negligible matrix effect (within ±20%) was observed. The analytical method was successfully applied and used for the detection of three urea pesticides in 4 of 11 mealworm samples.


Assuntos
Cromatografia Líquida/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Tenebrio/efeitos dos fármacos , Acetonitrilas/química , Animais , Calibragem , Insetos Comestíveis , Hexanos/química , Insetos , Larva , Limite de Detecção , Extração em Fase Sólida , Ureia/análise
5.
Sci Rep ; 10(1): 20033, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208833

RESUMO

The industrial production of Tenebrio molitor L. requires optimized rearing and processing conditions to generate insect biomass with high nutritional value in large quantities. One of the problems arising from processing is a tremendous loss in mineral accessibility, affecting, amongst others, the essential trace element Zn. As a feasible strategy this study investigates Zn-enrichment of mealworms during rearing to meet the nutritional requirements for humans and animals. Following feeding ZnSO4-spiked wheat bran substrates late instar mealworm larvae were evaluated for essential micronutrients and human/animal toxic elements. In addition, growth rate and viability were assessed to select optimal conditions for future mass-rearing. Zn-feeding dose-dependently raised the total Zn content, yet the Znlarvae/Znwheat bran ratio decreased inversely related to its concentration, indicating an active Zn homeostasis within the mealworms. The Cu status remained stable, suggesting that, in contrast to mammals, the intestinal Cu absorption in mealworm larvae is not affected by Zn. Zn biofortification led to a moderate Fe and Mn reduction in mealworms, a problem that certainly can be overcome by Fe/Mn co-supplementation during rearing. Most importantly, Zn feeding massively reduced the levels of the human/animal toxicant Cd within the mealworm larvae, a technological novelty of outstanding importance to be implemented in the future production process to ensure the consumer safety of this edible insect species.


Assuntos
Ração Animal/análise , Cádmio/toxicidade , Larva/crescimento & desenvolvimento , Tenebrio/crescimento & desenvolvimento , Zinco/administração & dosagem , Animais , Larva/efeitos dos fármacos , Valor Nutritivo , Tenebrio/efeitos dos fármacos
6.
Molecules ; 25(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545293

RESUMO

The impaired activity of tyrosinase and laccase can provoke serious concerns in the life cycles of mammals, insects and microorganisms. Investigation of inhibitors of these two enzymes may lead to the discovery of whitening agents, medicinal products, anti-browning substances and compounds for controlling harmful insects and bacteria. A small collection of novel reversible tyrosinase and laccase inhibitors with a phenylpropanoid and hydroxylated biphenyl core was prepared using naturally occurring compounds and their activity was measured by spectrophotometric and electrochemical assays. Biosensors based on tyrosinase and laccase enzymes were constructed and used to detect the type of protein-ligand interaction and half maximal inhibitory concentration (IC50). Most of the inhibitors showed an IC50 in a range of 20-423 nM for tyrosinase and 23-2619 nM for laccase. Due to the safety concerns of conventional tyrosinase and laccase inhibitors, the viability of the new compounds was assayed on PC12 cells, four of which showed a viability of roughly 80% at 40 µM. In silico studies on the crystal structure of laccase enzyme identified a hydroxylated biphenyl bearing a prenylated chain as the lead structure, which activated strong and effective interactions at the active site of the enzyme. These data were confirmed by in vivo experiments performed on the insect model Tenebrio molitur.


Assuntos
Inibidores Enzimáticos/síntese química , Lacase/química , Monofenol Mono-Oxigenase/química , Fenol/química , Propanóis/síntese química , Tenebrio/crescimento & desenvolvimento , Animais , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hidroxilação , Lacase/antagonistas & inibidores , Lacase/metabolismo , Modelos Moleculares , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Células PC12 , Propanóis/química , Propanóis/farmacologia , Conformação Proteica , Ratos , Tenebrio/efeitos dos fármacos , Tenebrio/enzimologia
7.
Parasitology ; 147(1): 120-125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559931

RESUMO

Environmental toxicants are pervasive in nature, but sub-lethal effects on non-target organisms and their parasites are often overlooked. Particularly, studies on terrestrial hosts and their parasites exposed to agricultural toxicants are lacking. Here, we studied the effect of sequence and timing of sub-lethal exposures of the pyrethroid insecticide alpha-cypermethrin on parasite establishment using the tapeworm Hymenolepis diminuta and its intermediate insect host Tenebrio molitor as a model system. We exposed T. molitor to alpha-cypermethrin (LD20) before and after experimental H. diminuta infection and measured the establishment success of larval tapeworms. Also, we conducted in vitro studies quantifying the direct effect of the insecticide on parasite viability. Our results showed that there was no direct lethal effect of alpha-cypermethrin on H. diminuta cysticercoids at relevant concentrations (LD10 to LD90 of the intermediate host). However, we observed a significantly increased establishment of H. diminuta in beetles exposed to alpha-cypermethrin (LD20) after parasite infection. In contrast, parasite establishment was significantly lower in beetles exposed to the insecticide before parasite infection. Thus, our results indicate that environmental toxicants potentially impact host-parasite interactions in terrestrial systems, but that the outcome is context-dependent by enhancing or reducing parasite establishment depending on timing and sequence of exposure.


Assuntos
Hymenolepis diminuta , Inseticidas/farmacologia , Piretrinas/farmacologia , Tenebrio/parasitologia , Animais , Besouros/efeitos dos fármacos , Besouros/parasitologia , Exposição Ambiental , Interações Hospedeiro-Parasita/efeitos dos fármacos , Hymenolepis diminuta/efeitos dos fármacos , Hymenolepis diminuta/fisiologia , Tenebrio/efeitos dos fármacos , Fatores de Tempo
8.
Metallomics ; 11(10): 1700-1715, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31490528

RESUMO

Copper(ii) complex formation processes between alloferon 1 (Allo1) (H1 GVSGH6 GQH9 GVH12G) analogues where the phenylalanine residue is introduced in the place of His residue H6F and H12F have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For the phenylalanine analogues of alloferon 1, complex speciation has been obtained for a 1 : 1, 2 : 1 and 3 : 1 metal-to-ligand molar ratio. At physiological pH and in 1 : 1 metal-to-ligand molar ratio the phenylalanine analogues of alloferon 1 form a CuL complex similar to that of alanine analogues with the 4N{NH2,N1Im,2NIm} coordination mode. The stability of the complexes of the phenylalanine analogues is higher in comparison to those of alanine analogues, but lower in comparison to those containing tryptophan. Injection of Allo12F into insects induced prominent apoptotic changes in all hemocytes. The presence of apoptotic bodies only in the insect hemolymph testifies to the fact that Allo12F is an extremely pro-apoptotic peptide.


Assuntos
Cobre/química , Cobre/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Estabilidade de Medicamentos , Hemócitos/citologia , Hemócitos/efeitos dos fármacos , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Tenebrio/citologia , Tenebrio/efeitos dos fármacos , Triptofano/análogos & derivados , Triptofano/farmacologia
9.
Toxins (Basel) ; 11(9)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461888

RESUMO

Melittin (MEL) is a basic polypeptide originally purified from honeybee venom. MEL exhibits a broad spectrum of biological activity. However, almost all studies on MEL activity have been carried out on vertebrate models or cell lines. Recently, due to cheap breeding and the possibility of extrapolating the results of the research to vertebrates, insects have been used for various bioassays and comparative physiological studies. For these reasons, it is valuable to examine the influence of melittin on insect physiology. Here, for the first time, we report the immunotropic and cardiotropic effects of melittin on the beetle Tenebrio molitor as a model insect. After melittin injection at 10-7 M and 10-3 M, the number of apoptotic cells in the haemolymph increased in a dose-dependent manner. The pro-apoptotic action of MEL was likely compensated by increasing the total number of haemocytes. However, the injection of MEL did not cause any changes in the percent of phagocytic haemocytes or in the phenoloxidase activity. In an in vitro bioassay with a semi-isolated Tenebrio heart, MEL induced a slight chronotropic-positive effect only at a higher concentration (10-4 M). Preliminary results indicated that melittin exerts pleiotropic effects on the functioning of the immune system and the endogenous contractile activity of the heart. Some of the induced responses in T. molitor resemble the reactions observed in vertebrate models. Therefore, the T. molitor beetle may be a convenient invertebrate model organism for comparative physiological studies and for the identification of new properties and mechanisms of action of melittin and related compounds.


Assuntos
Venenos de Abelha/química , Coração/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Meliteno/farmacologia , Contração Miocárdica/efeitos dos fármacos , Tenebrio/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Coração/fisiologia , Hemócitos/efeitos dos fármacos , Masculino , Meliteno/isolamento & purificação , Modelos Animais , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Tenebrio/imunologia , Tenebrio/fisiologia
10.
Toxins (Basel) ; 11(7)2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269670

RESUMO

Cry3Bb toxin from Bacillus thuringiensis is an important insecticidal protein due to its potency against coleopteran pests, especially rootworms. Cadherin, a protein in the insect midgut epithelium, is a receptor of Cry toxins; in some insect species toxin-binding domains of cadherins-synergized Cry toxicity. Previously, we reported that the DvCad1-CR8-10 fragment of Diabrotica virgifera virgifera cadherin-like protein (GenBank Accession #EF531715) enhanced Cry3Bb toxicity to the Colorado Potato Beetle (CPB), Leptinotarsadecimlineata (L. decimlineata). We report that individual CR domains of the DvCad1-CR8-10 fragment were found to have strong binding affinities to α-chymotrypsin-treated Cry3Bb. The dissociation constant (Kd) of Cry3Bb binding to the CR8, CR9, and CR10 domain was 4.9 nM, 28.2 nM, and 4.6 nM, respectively. CR8 and CR10, but not CR9, enhanced Cry3Bb toxicity against L. decimlineata and the lesser mealworm Alphitobius diaperinus neonates. In-frame deletions of the DvCad1-CR10 open reading frame defined a high-affinity binding and synergistic site to a motif in residues I1226-D1278. A 26 amino acid peptide from the high affinity Cry3Bb-binding region of CR10 functioned as a Cry3Bb synergist against coleopteran larvae.


Assuntos
Caderinas/metabolismo , Besouros/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas de Insetos/metabolismo , Peptídeos/toxicidade , Tenebrio/efeitos dos fármacos , Animais , Sítios de Ligação , Larva/efeitos dos fármacos , Controle Biológico de Vetores
11.
Nat Prod Res ; 33(20): 3033-3036, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30580620

RESUMO

Alphitobius diaperinus is an important pathogen with worldwide distribution that causes severe economic loss of efficiency in broilers. This study evaluates the potential of organic extracts of two strains entomopathogenic fungus Beauveria bassiana (CG71 and UNI40) as a biocontrol agent on A. diaperinus and promotes the phytochemical investigation. The effective percentages of mortalities were 95.97% (UNI40 methanolic extract), 69.23, 64.64, and 50.39% (CG 71 methanolic, ethyl acetate and butanol extracts). However, there was a decrease in the lesser mealworms susceptibility in relation to the use of insecticides and extracts. The metabolites 5-hydroxymethyl-2-furanoic acid, dipicolinic acid and monomethyl dipicolinate were isolated from ethyl acetate extract, and ß-adenosine of butanolic extract of B. bassiana CG 71. In addition, the cyclodepsipeptides were identified in methanolic extracts of the two strains. The insecticide activity results indicated that the B. bassiana extracts are an alternative to A. diaperinus control.


Assuntos
Beauveria/patogenicidade , Agentes de Controle Biológico/isolamento & purificação , Besouros/efeitos dos fármacos , Animais , Agentes de Controle Biológico/farmacologia , Galinhas , Inseticidas , Tenebrio/efeitos dos fármacos
12.
Bull Entomol Res ; 108(3): 351-359, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28893327

RESUMO

In insects, two types of the immune responses, cellular and humoral, constitute a defensive barrier against various parasites and pathogens. In response to pathogens, insects produce a wide range of immune agents that act on pathogens directly, such as cecropins or lysozyme, or indirectly by the stimulation of hemocyte migration or by increasing phenoloxidase (PO) activity. Recently, many new immunologically active substances from insects, such as peptides and polypeptides, have been identified. Nevertheless, in the most cases, their physiological functions are not fully known. One such substance is yamamarin - a pentapeptide isolated from the silk moth Antheraea yamamai. This yamamarin possesses strong antiproliferative properties and is probably involved in diapause regulation. Here, we examined the immunotropic activity of yamamarin by testing its impact on selected functions of the immune system in heterologous bioassays with the beetle Tenebrio molitor, commonly known as a stored grains pest. Our results indicate that the pentapeptide affects the activity of immune processes in the beetle. We show that yamamarin induces changes in both humoral and cellular responses. The yamamarin increases the activity of PO, as well as causes changes in the hemocyte cytoskeleton and stimulates phagocytic activity. We detected an increased number of apoptotic hemocytes, however after the yamamarin injection, no significant variations in the antibacterial activity in the hemolymph were observed. The obtained data suggest that yamamarin could be an important controller of the immune system in T. molitor.


Assuntos
Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Proteínas de Insetos , Oligopeptídeos , Tenebrio/efeitos dos fármacos , Animais , Hemócitos/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Monofenol Mono-Oxigenase/metabolismo , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Tenebrio/imunologia
13.
Toxins (Basel) ; 9(7)2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684723

RESUMO

Most previous studies have focused on analgesic and anti-cancer activities for the conotoxins identified from piscivorous and molluscivorous cone snails, but little attention has been devoted to insecticidal activity of conotoxins from the dominant vermivorous species. As a representative vermivorous cone snail, the Chinese tubular cone snail (Conus betulinus) is the dominant Conus species inhabiting the South China Sea. We sequenced related venom transcriptomes from C. betulinus using both the next-generation sequencing and traditional Sanger sequencing technologies, and a comprehensive library of 215 conotoxin transcripts was constructed. In our current study, six conotoxins with potential insecticidal activity were screened out from our conotoxin library by homologous search with a reported positive control (alpha-conotoxin ImI from C. imperialis) as the query. Subsequently, these conotoxins were synthesized by chemical solid-phase and oxidative folding for further insecticidal activity validation, such as MTT assay, insect bioassay and homology modeling. The final results proved insecticidal activities of our achieved six conotoxins from the transcriptome-based dataset. Interestingly, two of them presented a lot of high insecticidal activity, which supports their usefulness for a trial as insecticides in field investigations. In summary, our present work provides a good example for high throughput development of biological insecticides on basis of the accumulated genomic resources.


Assuntos
Conotoxinas , Inseticidas , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Conotoxinas/química , Conotoxinas/genética , Conotoxinas/toxicidade , Caramujo Conus , Insetos , Inseticidas/química , Inseticidas/toxicidade , Conformação Molecular , Análise de Sequência , Tenebrio/efeitos dos fármacos , Transcriptoma
14.
Sci Rep ; 7: 46406, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425475

RESUMO

This study evaluated the insecticidal activity of garlic, Allium sativum Linnaeus (Amaryllidaceae) essential oil and their principal constituents on Tenebrio molitor. Garlic essential oil, diallyl disulfide, and diallyl sulfide oil were used to compare the lethal and repellent effects on larvae, pupae and adults of T. molitor. Six concentrations of garlic essential oil and their principal constituents were topically applied onto larvae, pupae and adults of this insect. Repellent effect and respiration rate of each constituent was evaluated. The chemical composition of garlic essential oil was also determined and primary compounds were dimethyl trisulfide (19.86%), diallyl disulfide (18.62%), diallyl sulfide (12.67%), diallyl tetrasulfide (11.34%), and 3-vinyl-[4H]-1,2-dithiin (10.11%). Garlic essential oil was toxic to T. molitor larva, followed by pupa and adult. In toxic compounds, diallyl disulfide was the most toxic than diallyl sulfide for pupa > larva > adult respectively and showing lethal effects at different time points. Garlic essential oil, diallyl disulfide and diallyl sulfide induced symptoms of intoxication and necrosis in larva, pupa, and adult of T. molitor between 20-40 h after exposure. Garlic essential oil and their compounds caused lethal and sublethal effects on T. molitor and, therefore, have the potential for pest control.


Assuntos
Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Tenebrio/efeitos dos fármacos , Animais , Alho , Larva/efeitos dos fármacos , Pupa/efeitos dos fármacos
15.
PLoS One ; 11(11): e0166186, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846238

RESUMO

Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species.


Assuntos
Ração Animal , Larva/efeitos dos fármacos , Tenebrio/efeitos dos fármacos , Animais , Arsênio/toxicidade , Cádmio/toxicidade , Galinhas , Larva/química , Chumbo/toxicidade , Simuliidae , Tenebrio/química
16.
J Inorg Biochem ; 138: 99-113, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24935092

RESUMO

Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain.


Assuntos
Complexos de Coordenação/química , Cobre/química , Histidina/química , Compostos Organometálicos/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Estabilidade de Medicamentos , Coração/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/patologia , Masculino , Monofenol Mono-Oxigenase/biossíntese , Mutação Puntual , Tenebrio/efeitos dos fármacos , Tenebrio/enzimologia
17.
Inorg Chem ; 52(10): 5951-61, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23656165

RESUMO

Mononuclear and polynuclear copper(II) complexes of the alloferons 1 (Allo1) with point mutations (H6A) H(1)GVSGA(6)GQH(9)GVH(12)G-COOH (Allo6A) and (H12A) H(1)GVSGH(6)GQH(9)GVA(12)G-COOH (Allo12A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic, and mass spectrometry (MS) methods. Complete complex speciation at different metal-to-ligand ratios ranging from 1:1 to 3:1 was obtained. At physiological pH 7.4 and a 1:1 metal-to-ligand molar ratio, the Allo6A and Allo12A peptides form CuL complexes with the 4N {NH2, N(Im)-H(1),2N(Im)} binding mode. The amine nitrogen donor and the imidazole nitrogen atoms (H(9)H(12) or H(6)H(9)) can be considered to be independent metal-binding sites in the species formed for the systems studied. As a consequence, di- and trinuclear complexes for the metal-to-ligand 2:1 and 3:1 molar ratios dominate in solution, respectively. The induction of apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH 7.4 was studied. The biological results show that copper(II) ions in vivo did not cause any apparent apoptotic features. The most active was the Cu(II)-Allo12A complex formed at pH 7.4 with a {NH2, N(Im)-H(1),N(Im)-H(6),N(Im)-H(9)} binding site. It exhibited 123% higher of caspase activity in hemocytes than the native peptide, Allo1.


Assuntos
Apoptose/efeitos dos fármacos , Cobre/química , Compostos Organometálicos/farmacologia , Peptídeos/química , Tenebrio/efeitos dos fármacos , Animais , Concentração de Íons de Hidrogênio , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Peptídeos/genética , Mutação Puntual , Relação Estrutura-Atividade , Tenebrio/citologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-22640634

RESUMO

The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Endotoxinas/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Precursores de Proteínas/toxicidade , Serina Endopeptidases/genética , Tenebrio/enzimologia , Tenebrio/genética , Animais , Toxinas de Bacillus thuringiensis , Catepsinas/genética , Catepsinas/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Bases de Dados de Proteínas , Comportamento Alimentar/efeitos dos fármacos , Perfilação da Expressão Gênica , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Análise de Sequência com Séries de Oligonucleotídeos , Serina Endopeptidases/metabolismo , Tenebrio/efeitos dos fármacos
19.
J Pept Sci ; 14(6): 708-13, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18181232

RESUMO

The subject of these studies was a search for proctolin antagonists among peptides originating from insect species because the proctolin antagonists constantly pose a problem. During these studies we performed the synthesis of the following peptides: a native decapeptide from Manduca sexta Mas-MT-I and its 11 analogs with shortened sequences at the N-end as well as a growth suppressor, a pentapeptide isolated from Antheraea yamamai, Any-GS and its 10 analogs, modified at position 1 and with a shortened peptide chain. Biological effects were evaluated by the cardiotropic test on the semi-isolated heart of the insect species Tenebrio molitor. Mas-MT-I and six analogs stimulate the heartbeat frequency, especially [6-10]-Mas-MT-I, whereas the [4-10]-Mas-MT-I analog shows a strong inhibition of the heartbeat frequency, if insect. The Any-GS and the analogs [Gln(1)]- and [Gly(1)]-Any-GS also show a strong cardioinhibitory effect.


Assuntos
Proteínas de Insetos/farmacologia , Manduca/química , Peptídeos/farmacologia , Tenebrio/efeitos dos fármacos , Sequência de Aminoácidos , Animais
20.
Environ Microbiol ; 8(5): 858-70, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16623743

RESUMO

Photorhabdus luminescens, a Gram-negative bacterium, secretes a protein toxin (PL toxin) that is toxic to insects. In this study, the effects of the PL toxin on large receptor-free unilamellar phospholipid vesicles (LUVs) of Manduca sexta and on brush border membrane vesicles (BBMVs) of M. sexta and Tenebrio molitor were examined. Cry1Ac served as a positive control in our experiments due to its known channel-forming activity on M. sexta. Voltage clamping assays with dissected midguts of M. sexta and T. molitor clearly showed that both Cry1Ac and PL toxin caused channel formation in the midguts, although channel formation was not detected for T. molitor midguts under Cry1Ac and it was less sensitive to PL toxin than to Cry1Ac for M. sexta midguts. Calcein release experiments showed that both toxins made LUVs (unilamellar lipid vesicles) permeable, and at some concentrations of the toxins such permeabilizing effects were pH-dependent. The lowest concentrations of PL toxin were more than 600-fold and 24-fold lower to induce BBMV permeability of T. molitor and M. sexta than those to induce calcein release from LUVs of M. sexta. These further support that PL toxin is responsible for channel formation in the larvae midguts. The lower concentration to induce permeability in BBMV than in LUV is, probably, attributable to that BBMV has PL toxin receptors that facilitate the toxin to induce permeabilization. Furthermore, our results indicate that the effects of PL toxin on BBMV permeability of M. sexta were not significantly influenced by Gal Nac, but those of Cry1Ac were. This implies that PL toxin and Cry1Ac might use different molecular binding sites in BBMV to cause channel formation.


Assuntos
Toxinas Bacterianas/toxicidade , Manduca/efeitos dos fármacos , Fosfolipídeos/metabolismo , Photorhabdus/química , Tenebrio/efeitos dos fármacos , Animais , Toxinas Bacterianas/isolamento & purificação , Toxinas Bacterianas/farmacocinética , Eletroforese em Gel de Poliacrilamida , Dose Letal Mediana , Manduca/crescimento & desenvolvimento , Manduca/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Técnicas de Patch-Clamp , Permeabilidade , Tenebrio/crescimento & desenvolvimento , Tenebrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA