Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 21(10): 2247-2260, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36107737

RESUMO

Neuropeptides are signaling molecules that regulate almost all physiological processes in animals. Around 50 different genes for neuropeptides have been described in insects. In Coleoptera, which is the largest insect order based on numbers of described species, knowledge about neuropeptides and protein hormones is still limited to a few species. Here, we analyze the neuropeptidomes of two closely related tenebrionid beetles: Tenebrio molitor and Zophobas atratus─both of which are model species in physiological and pharmacological research. We combined transcriptomic and mass spectrometry analyses of the central nervous system to identify neuropeptides and neuropeptide-like and protein hormones. Several precursors were identified in T. molitor and Z. atratus, of which 50 and 40, respectively, were confirmed by mass spectrometry. This study provides the basis for further functional studies of neuropeptides as well as for the design of environmentally friendly and species-specific peptidomimetics to be used as biopesticides. Furthermore, since T. molitor has become accepted by the European Food Safety Authority as a novel food, a deeper knowledge of the neuropeptidome of this species will prove useful for optimizing production programs at an industrial scale.


Assuntos
Besouros , Neuropeptídeos , Peptidomiméticos , Tenebrio , Animais , Agentes de Controle Biológico/metabolismo , Besouros/metabolismo , Hormônios , Larva/metabolismo , Neuropeptídeos/metabolismo , Peptidomiméticos/metabolismo , Tenebrio/genética , Tenebrio/metabolismo
2.
Arch Insect Biochem Physiol ; 111(3): e21916, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35584005

RESUMO

ATP-binding cassette (ABC) transporters, one of the largest transmembrane protein families, transport a diverse number of substate across membranes. Details of their diverse physiological functions have not been established. Here, we identified 87 ABC transporter genes in the genomes of Tenebrio molitor along with those from Asbolus verrucosus (104), Hycleus cichorii (65), and Hycleus phaleratus (80). Combining these genes (336 in total) with genes reported in Tribolium castaneum (73), we analyzed the phylogeny of ABC transporter genes in all five Tenebrionids. They are assigned into eight subfamilies (ABCA-H). In comparison to other species, the ABCC subfamily in this group of beetles appears expanded. The expression profiles of the T. molitor genes at different life stages and in various tissues were also investigated using transcriptomic analysis. Most of them display developmental specific expression patterns, suggesting to us their possible roles in development. Most of them are highly expressed in detoxification-related tissues including gut and Malpighian tubule, from which we infer their roles in insecticide resistance. We detected specific or abundant expressions of many ABC transporter genes in various tissues such as salivary gland, ovary, testis, and antenna. This new information helps generate new hypotheses on their biological significance within tissues.


Assuntos
Besouros , Tenebrio , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Animais , Besouros/metabolismo , Feminino , Genômica , Masculino , Filogenia , Tenebrio/genética , Tenebrio/metabolismo
3.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639230

RESUMO

The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/metabolismo , Staphylococcus aureus/imunologia , Tenebrio/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva/genética , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Filogenia , Homologia de Sequência de Aminoácidos , Infecções Estafilocócicas , Tenebrio/genética , Tenebrio/metabolismo , Tenebrio/microbiologia
4.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847078

RESUMO

Biosurfactant immunomodulatory activities in mammals, nematodes, and plants have been investigated. However, the immune activation property of biosurfactants in insects has not been reported. Therefore, here, we studied the defense response triggered by lipopeptides (fengycin and iturin A), glycolipids (rhamnolipid), and cyclic polypeptides (bacitracin) in the coleopteran insect, mealworm Tenebrio molitor. The in vitro antimicrobial activities against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (Candida albicans) were assessed by mixing these pathogens with the hemolymph of biosurfactant-immune-activated larvae. E. coli growth was remarkably inhibited by this hemolymph. The antimicrobial peptide (AMP) induction results also revealed that all biosurfactants tested induced several AMPs, exclusively in hemocytes. The survivability analysis of T. molitor larvae challenged by E. coli (106 CFU/µL) at 24 h post biosurfactant-immune activation showed that fengycin, iturin A, and rhamnopid significantly increased survivability against E. coli. Biosurfactant-induced TmSpatzles activation was also monitored, and the results showed that TmSpz3 and TmSpz-like were upregulated in the hemocytes of iturin A-injected larvae, while TmSpz4 and TmSpz6 were upregulated in the fat bodies of the fengycin-, iturin A-, and rhamnolipid-injected larvae. Overall, these results suggest that lipopeptide and glycolipid biosurfactants induce the expression of AMPs in T. molitor via the activation of spätzle genes, thereby increasing the survivability of T. molitor against E. coli.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Insetos/genética , Tensoativos/farmacologia , Tenebrio , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/fisiologia , Genes de Insetos , Hemócitos/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Proteínas de Insetos/metabolismo , Tenebrio/genética , Tenebrio/imunologia , Tenebrio/metabolismo
5.
Sci Rep ; 9(1): 16878, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728023

RESUMO

Dorsal, a member of the nuclear factor-kappa B (NF-κB) family of transcription factors, is a critical downstream component of the Toll pathway that regulates the expression of antimicrobial peptides (AMPs) against pathogen invasion. In this study, the full-length ORF of Dorsal was identified from the RNA-seq database of the mealworm beetle Tenebrio molitor (TmDorX2). The ORF of TmDorX2 was 1,482 bp in length, encoding a polypeptide of 493 amino acid residues. TmDorX2 contains a conserved Rel homology domain (RHD) and an immunoglobulin-like, plexins, and transcription factors (IPT) domain. TmDorX2 mRNA was detected in all developmental stages, with the highest levels observed in 3-day-old adults. TmDorX2 transcripts were highly expressed in the adult Malpighian tubules (MT) and the larval fat body and MT tissues. After challenging the larvae with Staphylococcus aureus and Escherichia coli, the TmDorX2 mRNA levels were upregulated 6 and 9 h post infection in the whole body, fat body, and hemocytes. Upon Candida albicans challenge, the TmDorX2 mRNA expression were found highest at 9 h post-infection in the fat body. In addition, TmDorX2-knockdown larvae exposed to E. coli, S. aureus, or C. albicans challenge showed a significantly increased mortality rate. Furthermore, the expression of 11 AMP genes was downregulated in the gut and fat body of dsTmDorX2-injected larvae upon E. coli challenge. After C. albicans and S. aureus challenge of dsTmDorX2-injected larvae, the expression of 11 and 10 AMPs was downregulated in the gut and fat body, respectively. Intriguingly, the expression of antifungal transcripts TmTenecin-3 and TmThaumatin-like protein-1 and -2 was greatly decreased in TmDorX2-silenced larvae in response to C. albicans challenge, suggesting that TmDorX2 regulates antifungal AMPs in the gut in response to C. albicans infection. The AMP expression profiles in the fat body, hemocytes, gut, and MTs suggest that TmDorX2 might have an important role in promoting the survival of T. molitor larvae against all mentioned pathogens.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Corpo Adiposo/imunologia , Hemócitos/imunologia , Proteínas de Insetos/imunologia , Tenebrio/imunologia , Fatores de Transcrição/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/patogenicidade , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Corpo Adiposo/microbiologia , Hemócitos/microbiologia , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Intestinos/imunologia , Intestinos/microbiologia , Larva/genética , Larva/imunologia , Larva/microbiologia , Túbulos de Malpighi/imunologia , Túbulos de Malpighi/metabolismo , Túbulos de Malpighi/ultraestrutura , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Tenebrio/genética , Tenebrio/microbiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
6.
Insect Mol Biol ; 27(1): 46-60, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28833767

RESUMO

Most insects have a gut lined with a peritrophic membrane (PM) consisting of chitin and proteins, mainly peritrophins that have chitin-binding domains. The PM is proposed to originate from mucus-forming mucins (Mf-mucins), which acquired a chitin-binding domain that interlocked with chitin, replacing mucus in function. We evaluated the expression of Mf-mucins and peritrophins by RNA-sequencing (RNA-seq) throughout the midgut of four distantly related insects. Mf-mucins were identified as proteins with high o-glycosylation and a series of uninterrupted Pro/Thr/Ser residues. The results demonstrate that the mucus layer is widespread in insects, and suggest that insect Mf-mucins are derived from those found in other animals by the loss of the cysteine knot and von Willebrand domains. The data also support a role of Mf-mucins in protecting the middle midgut of Musca domestica against acidic buffers. Mf-mucins may also produce a jelly-like material associated with the PM that immobilizes digestive enzymes in Spodoptera frugiperda. Peritrophins with a domain similar to Mf-mucins may be close to the ancestor of peritrophins. Expression data of peritrophins and chitin synthase genes throughout the midgut of M. domestica, S. frugiperda and Tenebrio molitor indicated that peritrophins were incorporated along the PM, according to their preferential sites of formation. Finally, the data support the view that mucus has functions distinct from the PM.


Assuntos
Proteínas de Insetos/genética , Mucinas/metabolismo , Animais , Sistema Digestório/metabolismo , Gafanhotos/genética , Gafanhotos/metabolismo , Moscas Domésticas/genética , Moscas Domésticas/metabolismo , Proteínas de Insetos/metabolismo , Análise de Sequência de RNA , Spodoptera/genética , Spodoptera/metabolismo , Tenebrio/genética , Tenebrio/metabolismo
7.
Insect Biochem Mol Biol ; 76: 38-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27395781

RESUMO

Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor.


Assuntos
Dipeptidil Peptidase 4/genética , Proteínas de Insetos/genética , Tenebrio/genética , Sequência de Aminoácidos , Animais , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Trato Gastrointestinal/enzimologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Alinhamento de Sequência , Tenebrio/enzimologia , Tenebrio/crescimento & desenvolvimento
8.
BMC Genomics ; 16: 75, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25757364

RESUMO

BACKGROUND: Larvae of the tenebrionids Tenebrio molitor and Tribolium castaneum have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anterior midgut that contribute to the early stages of protein digestion. RESULTS: High throughput sequencing was used to quantify and characterize transcripts encoding cysteine peptidases from the C1 papain family in the gut of tenebrionid larvae. For T. castaneum, 25 genes and one questionable pseudogene encoding cysteine peptidases were identified, including 11 cathepsin L or L-like, 11 cathepsin B or B-like, and one each F, K, and O. The majority of transcript expression was from two cathepsin L genes on chromosome 10 (LOC659441 and LOC659502). For cathepsin B, the major expression was from genes on chromosome 3 (LOC663145 and LOC663117). Some transcripts were expressed at lower levels or not at all in the larval gut, including cathepsins F, K, and O. For T. molitor, there were 29 predicted cysteine peptidase genes, including 14 cathepsin L or L-like, 13 cathepsin B or B-like, and one each cathepsin O and F. One cathepsin L and one cathepsin B were also highly expressed, orthologous to those in T. castaneum. Peptidases lacking conservation in active site residues were identified in both insects, and sequence analysis of orthologs indicated that changes in these residues occurred prior to evolutionary divergence. Sequences from both insects have a high degree of variability in the substrate binding regions, consistent with the ability of these enzymes to degrade a variety of cereal seed storage proteins and inhibitors. Predicted cathepsin B peptidases from both insects included some with a shortened occluding loop without active site residues in the middle, apparently lacking exopeptidase activity and unique to tenebrionid insects. Docking of specific substrates with models of T. molitor cysteine peptidases indicated that some insect cathepsins B and L bind substrates with affinities similar to human cathepsin L, while others do not and have presumably different substrate specificity. CONCLUSIONS: These studies have refined our model of protein digestion in the larval gut of tenebrionid insects, and suggest genes that may be targeted by inhibitors or RNA interference for the control of cereal pests in storage areas.


Assuntos
Cisteína Endopeptidases/genética , Microbioma Gastrointestinal/genética , Tenebrio/genética , Tribolium/genética , Animais , Catepsina B/genética , Catepsina L/genética , Sistema Digestório , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Larva/genética , Proteólise , Tenebrio/fisiologia , Tribolium/fisiologia
9.
Arch Insect Biochem Physiol ; 88(1): 85-99, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403020

RESUMO

Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model.


Assuntos
Autofagia/genética , Tenebrio/genética , Tenebrio/imunologia , Tenebrio/microbiologia , Animais , DNA Complementar/genética , Imunidade Inata , Larva/imunologia , Larva/microbiologia , Listeria monocytogenes/imunologia , Listeria monocytogenes/fisiologia , Interferência de RNA , RNA de Cadeia Dupla , RNA Mensageiro/genética , Análise de Sequência de DNA , Análise de Sequência de Proteína
10.
Arch Insect Biochem Physiol ; 87(1): 40-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042129

RESUMO

Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor. The cDNAs for ecCuZnSOD, icCuZnSOD, and MnSOD, respectively, encode 24.55, 15.81, and 23.14 kDa polypeptides, which possess structural features typical of other insect SODs. They showed 20-94% identity to other known SOD sequences from Bombyx mori, Musca domestica, Nasonia vitripennis, Pediculus humanus corporis, and Tribolium castaneum. Expression of these genes was analyzed in selected tissues and developmental stages, and following exposure to Escherichia coli and parasitization by Scleroderma guani. We recorded expression of all three SODs in cuticle, fat body, and hemocytes and in the major developmental stages. Relatively higher expressions were detected in late-instar larvae and pupae, compared to other developmental stages. Transcriptional levels were upregulated following bacterial infection. Analysis of pupae parasitized by S. guani revealed that expression of T. molitor SOD genes was significantly induced following parasitization. We infer that these genes act in immune response and in host-parasitoid interactions.


Assuntos
Regulação da Expressão Gênica , Estágios do Ciclo de Vida/genética , Superóxido Dismutase/genética , Tenebrio/genética , Tenebrio/parasitologia , Animais , Sequência de Bases , DNA Complementar , Infecções por Escherichia coli , Corpo Adiposo/enzimologia , Hemócitos/enzimologia , Dados de Sequência Molecular , Superóxido Dismutase/metabolismo , Tenebrio/enzimologia , Regulação para Cima , Vespas/fisiologia
11.
Int J Mol Sci ; 14(11): 22462-82, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24240808

RESUMO

Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRP-LE, a member of the PGRP family, selectively binds to diaminopimelic acid (DAP)-type peptidoglycan to activate both the immune deficiency (Imd) and proPhenoloxidase (proPO) pathways in insects. A PGRP-LE-dependent induction of autophagy to control Listeria monocytogenes has also been reported. We identified and partially characterized a novel PGRP-LE homologue, from Tenebrio molitor and analyzed its functional role in the survival of the insect against infection by a DAP-type PGN containing intracellular pathogen, L. monocytogenes. The cDNA is comprised of an open reading frame (ORF) of 990 bp and encodes a polypeptide of 329 residues. TmPGRP-LE contains one PGRP domain, but lacks critical residues for amidase activity. Quantitative RT-PCR analysis showed a broad constitutive expression of the transcript at various stages of development spanning from larva to adult. RNAi mediated knockdown of the transcripts, followed by a challenge with L. monocytogenes, showed a significant reduction in survival rate of the larvae, suggesting a putative role of TmPGRP-LE in sensing and control of L. monocytogenes infection in T. molitor. These results implicate PGRP-LE as a defense protein necessary for survival of T. molitor against infection by L. monocytogenes.


Assuntos
Proteínas de Transporte/genética , Listeria monocytogenes/genética , Tenebrio/microbiologia , Animais , Proteínas de Transporte/isolamento & purificação , Clonagem Molecular , Inativação Gênica , Listeria monocytogenes/patogenicidade , Listeriose/genética , Listeriose/microbiologia , Tenebrio/genética
12.
Int J Mol Sci ; 14(10): 20744-67, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24132157

RESUMO

CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic "Cys-Cys-Gly" motif and "Cys188" residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Tenebrio/genética , Tetraspanina 30/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular/métodos , DNA Complementar/genética , Larva/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , Alinhamento de Sequência
13.
Insect Biochem Mol Biol ; 42(9): 655-64, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659439

RESUMO

Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents.


Assuntos
Catepsina L/metabolismo , Precursores Enzimáticos/metabolismo , Trato Gastrointestinal/enzimologia , Proteínas de Insetos/metabolismo , Tenebrio/enzimologia , Animais , Catepsina L/genética , Catepsina L/isolamento & purificação , Cristalografia por Raios X , Precursores Enzimáticos/genética , Precursores Enzimáticos/isolamento & purificação , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Cinética , Larva/enzimologia , Larva/genética , Masculino , Conformação Proteica , Coelhos , Tenebrio/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-22640634

RESUMO

The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Endotoxinas/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Precursores de Proteínas/toxicidade , Serina Endopeptidases/genética , Tenebrio/enzimologia , Tenebrio/genética , Animais , Toxinas de Bacillus thuringiensis , Catepsinas/genética , Catepsinas/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Bases de Dados de Proteínas , Comportamento Alimentar/efeitos dos fármacos , Perfilação da Expressão Gênica , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Análise de Sequência com Séries de Oligonucleotídeos , Serina Endopeptidases/metabolismo , Tenebrio/efeitos dos fármacos
15.
Pest Manag Sci ; 67(9): 1076-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21495115

RESUMO

BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective against many lepidopteran pests, but there is a lack of Bt-based pesticides for efficient control of important coleopteran pests. Based on the reported increase in Bt toxin oligomerization by a polypeptide from the Cry3Aa receptor cadherin in Tenebrio molitor (Coleoptera: Tenebrionidae), it was hypothesized that this cadherin peptide, rTmCad1p, would enhance Cry3Aa toxicity towards coleopteran larvae. To test this hypothesis, the relative toxicity of Cry3Aa, with or without rTmCad1p, against damaging chrysomelid vegetable pests of China was evaluated. RESULTS: Cry3Aa toxicity was evaluated in the spotted asparagus beetle (Crioceris quatuordecimpunctata), cabbage leaf beetle (Colaphellus bowringi) and daikon leaf beetle (Phaedon brassicae). To assess the effect of rTmCad1p on Cry3Aa toxicity, neonate larvae were fed Cry3Aa toxin alone or in combination with increasing amounts of rTmCad1p. The data demonstrated that Cry3Aa toxicity was significantly increased in all three vegetable pests, resulting in as much as a 15.3-fold increase in larval mortality. CONCLUSION: The application of rTmCad1p to enhance Cry3Aa insecticidal activity has potential for use in increasing range and activity levels against coleopteran pests displaying low susceptibility to Bt-based biopesticides.


Assuntos
Proteínas de Bactérias/toxicidade , Caderinas/toxicidade , Besouros/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/toxicidade , Tenebrio/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caderinas/genética , Caderinas/metabolismo , Besouros/crescimento & desenvolvimento , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/toxicidade
16.
Insect Mol Biol ; 16(4): 455-68, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17651235

RESUMO

Peptidase sequences were analysed in randomly picked clones from cDNA libraries of the anterior or posterior midgut or whole larvae of the yellow mealworm, Tenebrio molitor Linnaeus. Of a total of 1528 sequences, 92 encoded potential peptidases, from which 50 full-length cDNA sequences were obtained, including serine and cysteine proteinases and metallopeptidases. Serine proteinase transcripts were predominant in the posterior midgut, whereas transcripts encoding cysteine and metallopeptidases were mainly found in the anterior midgut. Alignments with other proteinases indicated that 40% of the serine proteinase sequences were serine proteinase homologues, and the remaining ones were identified as either trypsin, chymotrypsin or other serine proteinases. Cysteine proteinase sequences included cathepsin B- and L-like proteinases, and metallopeptidase transcripts were similar to carboxypeptidase A. Northern blot analysis of representative sequences demonstrated the differential expression profile of selected transcripts across five developmental stages of Te. molitor. These sequences provide insights into peptidases in coleopteran insects as a basis to study the response of coleopteran larvae to external stimuli and to evaluate regulatory features of the response.


Assuntos
DNA Complementar/genética , Peptídeo Hidrolases/genética , Tenebrio/enzimologia , Tenebrio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Trato Gastrointestinal , Regulação da Expressão Gênica , Larva/genética , Larva/metabolismo , Dados de Sequência Molecular , Peptídeo Hidrolases/química
17.
Insect Biochem Mol Biol ; 36(10): 789-800, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17027845

RESUMO

Insect chitinases are involved in degradation of chitin from the exoskeleton cuticle or from midgut peritrophic membrane during molts. cDNAs coding for insect cuticular and gut chitinases were cloned, but only chitinases from moulting fluid were purified and characterized. In this study the major digestive chitinase from T. molitor midgut (TmChi) was purified to homogeneity, characterized and sequenced after cDNA cloning. TmChi is secreted by midgut epithelial cells, has a molecular weight of 44 kDa and is unstable in the presence of midgut proteinases. TmChi shows strong substrate inhibition when acting on umbelliferyl-derivatives of chitobio- and chitotriosaccharides, but has normal Michaelis kinetics with the N-acetylglucosamine derivative as substrate. TmChi has very low activity against colloidal chitin, but effectively converts oligosaccharides to shorter fragments. The best substrate for TmChi is chitopentaose, with highest k(cat)/K(M) value. Sequence analysis and chemical modification experiments showed that the TmChi active site contains carboxylic groups and a tryptophane, which are known to be important for catalysis in family 18 chitinases. Modification with p-hidroximercuribenzoate of a cysteine residue, which is exposed after substrate binding, leads to complete inactivation of the enzyme. TmChi mRNA encodes a signal peptide plus a protein with 37 kDa and high similarity with other insect chitinases from family 18. Surprisingly, this gene does not encode the C-terminal Ser-Thr-rich connector and chitin-binding domain normally present in chitinases. The special features of TmChi probably result from its adaptation to digest chitin-rich food without damaging the peritrophic membrane.


Assuntos
Quitinases/metabolismo , Proteínas de Insetos/metabolismo , Tenebrio/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Quitinases/genética , Quitinases/isolamento & purificação , Clonagem Molecular , DNA Complementar/química , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Cinética , Larva/enzimologia , Larva/genética , Dados de Sequência Molecular , Oligossacarídeos/metabolismo , Alinhamento de Sequência , Tenebrio/genética , Tenebrio/crescimento & desenvolvimento
18.
Protein Expr Purif ; 48(2): 243-52, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16542851

RESUMO

The Tenebrio molitor thermal hysteresis protein has a cysteine content of 19%. This 84-residue protein folds as a compact beta-helix, with eight disulfide bonds buried in its core. Exposed on one face of the protein is an array of threonine residues, which constitutes the ice-binding face. Previous protocols for expression of this protein in recombinant expression systems resulted in inclusion bodies or soluble but largely inactive material. A long and laborious refolding procedure was performed to increase the fraction of active protein and isolate it from inactive fractions. We present a new protocol for production of fully folded and active T. molitor thermal hysteresis protein in bacteria, without the need for in vitro refolding. The protein coding sequence was fused to those of various carrier proteins and expressed at low temperature in a bacterial strain specially suited for production of disulfide-bonded proteins. The product, after a simple and robust purification procedure, was analyzed spectroscopically and functionally and was found to compare favorably to previously published data on refolded protein and protein obtained from its native source.


Assuntos
Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Dissulfetos/química , Escherichia coli/genética , Expressão Gênica , Dobramento de Proteína , Tenebrio/química , Sequência de Aminoácidos , Animais , Proteínas Anticongelantes/biossíntese , Proteínas Anticongelantes/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Tenebrio/genética
20.
Chromosoma ; 109(6): 415-25, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11072797

RESUMO

The karyosphere and nuclear bodies (NBs) were studied in Tenebrio molitor oocytes using immunoelectron cytochemistry. During early diplotene (previtellogenic stage), oocyte chromosomes begin to unite in a small nuclear volume forming the karyosphere. In vitellogenic oocyte nuclei, the chromatin undergoes condensation, and the karyosphere acquires a ring-shaped structure. The karyosphere is the only structure containing DNA in the oocyte nucleus. Pre-mRNA splicing factors [small nuclear ribonucleoproteins (snRNPs) and SC35] are not found in the karyosphere itself. In previtellogenic oocyte nuclei, these factors are present in NBs and in a fibrogranular substance surrounding the chromosomes in the early stages of karyosphere formation. At this stage, larger fibrillar NBs contain the non-snRNP splicing factor SC35. Smaller roundish NBs were shown to contain snRNPs. Some NBs with the same morphology contain neither snRNPs nor SC35. In the vitellogenic oocyte, there are fibrogranular NBs containing both snRNPs and SC35 splicing factors, fibrillar NBs containing snRNPs only, and complex NBs containing both. Complex NBs are often connected with the ring-shaped karyosphere. Based on the obtained immunoelectron data, we suggest that T. molitor oocyte NBs containing both snRNPs and the non-snRNP splicing factor SC35 are homologs of the well-characterized B-snurposomes in amphibian germinal vesicles and clusters of interchromatin granules in mammalian oocyte nuclei. Other NBs containing only snRNPs are suggested to represent a special class of insect oocyte snurposomes. The nuclear organelles mentioned seem to play a role as storage domains for pre-mRNA splicing factors during T. molitor oogenesis.


Assuntos
Estruturas do Núcleo Celular/ultraestrutura , Oócitos/ultraestrutura , Ribonucleoproteínas , Tenebrio/genética , Animais , Anticorpos Monoclonais , Estruturas do Núcleo Celular/metabolismo , Feminino , Heterocromatina/ultraestrutura , Microscopia Imunoeletrônica/métodos , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , RNA Nuclear Pequeno/imunologia , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/imunologia , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA