Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
2.
J Basic Microbiol ; 64(5): e2300744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466146

RESUMO

Tenebrio molitor L., also known as the mealworm, is a polyphagous insect pest that infests various stored grains worldwide. Both the adult and larval stages can cause significant damage to stored grains. The present study focused on isolating entomopathogenic fungi from an infected larval cadaver under environmental conditions. Fungal pathogenicity was tested on T. molitor larvae and pupae for 12 days. Entomopathogenic fungi were identified using biotechnological methods based on their morphology and the sequence of their nuclear ribosomal internal transcribed spacer (ITS). The results of the insecticidal activity indicate that the virulence of fungi varies between the larval and pupal stages. In comparison to the larval stage, the pupal stage is highly susceptible to Metarhizium rileyi, exhibiting 100% mortality rates after 12 days (lethal concentration 50 [LC50] = 7.8 × 106 and lethal concentration 90 (LC90) = 2.1 × 1013 conidia/mL), whereas larvae showed 92% mortality rates at 12 days posttreatment (LC50 = 1.0 × 106 and LC90 = 3.0 × 109 conidia/mL). The enzymatic analyses revealed a significant increase in the levels of the insect enzymes superoxide dismutase (4.76-10.5 mg-1) and glutathione S-transferase (0.46-6.53 mg-1) 3 days after exposure to M. rileyi conidia (1.5 × 105 conidia/mL) compared to the control group. The findings clearly show that M. rileyi is an environmentally friendly and effective microbial agent for controlling the larvae and pupae of T. molitor.


Assuntos
Larva , Metarhizium , Controle Biológico de Vetores , Pupa , Tenebrio , Animais , Tenebrio/microbiologia , Metarhizium/patogenicidade , Metarhizium/crescimento & desenvolvimento , Larva/microbiologia , Pupa/microbiologia , Virulência , Superóxido Dismutase/metabolismo , Glutationa Transferase/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-35156915

RESUMO

A Gram-negative, white-pigmented, motile and rod-shaped strain, BIT-L3T, was isolated from the gut of plastic-eating mealworm Tenebrio molitor L. Its taxonomic position was determined by using a polyphasic approach. A preliminary analysis based on the 16S rRNA gene sequence (1445 bp) revealed that this strain was closely related to the members within the family Enterobacteriaceae. Phylogenetic trees based on the concatenated partial sequences of seven housekeeping genes (atpD, gyrB, infB, rpoB, pyrG, fusA, leuS) and genome sequences further showed that strain BIT-L3T constituted a separate lineage within the family Enterobacteriaceae. In silico DNA-DNA hybridization values and average nucleotide identity values between strain BIT-L3T and its closest related species within the family Enterobacteriaceae were less than 21.8 and 76.7 %, respectively. The major fatty acids (>5 %) of strain BIT-L3T were C16 : 0, C14 : 0, C17 : 0 cyclo, summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c and/or iso-C15 : 0 2-OH) and summed feature 2 (comprising iso-C16 : 1 I/C14 : 0 3-OH and/or C12 : 0 aldehyde and/or an unknown fatty acid of equivalent chain length 10.9525). Its genomic DNA G+C content was 53.7 mol%. Based on the results of phylogenetic, physiological and biochemical analyses, strain BIT-L3T is considered to represent a novel species of a novel genus within the family Enterobacteriaceae, for which the name Tenebrionibacter intestinalis gen. nov., sp. nov. is proposed. The type strain is BIT-L3T (=CCTCC AB 2020371T=LMG 32222T=TBRC 14825T).


Assuntos
Enterobacteriaceae/classificação , Filogenia , Plásticos , Tenebrio , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Enterobacteriaceae/isolamento & purificação , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tenebrio/microbiologia
4.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639230

RESUMO

The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/metabolismo , Staphylococcus aureus/imunologia , Tenebrio/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva/genética , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Filogenia , Homologia de Sequência de Aminoácidos , Infecções Estafilocócicas , Tenebrio/genética , Tenebrio/metabolismo , Tenebrio/microbiologia
5.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937897

RESUMO

IKKγ/NEMO is the regulatory subunit of the IκB kinase (IKK) complex, which regulates the NF-κB signaling pathway. Within the IKK complex, IKKγ/NEMO is the non-catalytic subunit, whereas IKKα and IKKß are the structurally related catalytic subunits. In this study, TmIKKγ was screened from the Tenebrio molitor RNA-Seq database and functionally characterized using RNAi screening for its role in regulating T. molitor antimicrobial peptide (AMP) genes after microbial challenges. The TmIKKγ transcript is 1521 bp that putatively encodes a polypeptide of 506 amino acid residues. TmIKKγ contains a NF-κB essential modulator (NEMO) and a leucine zipper domain of coiled coil region 2 (LZCC2). A phylogenetic analysis confirmed its homology to the red flour beetle, Tribolium castaneum IKKγ (TcIKKγ). The expression of TmIKKγ mRNA showed that it might function in diverse tissues of the insect, with a higher expression in the hemocytes and the fat body of the late-instar larvae. TmIKKγ mRNA expression was induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenges in the whole larvae and in tissues such as the hemocytes, gut and fat body. The knockdown of TmIKKγ mRNA significantly reduced the survival of the larvae after microbial challenges. Furthermore, we investigated the tissue-specific induction patterns of fourteen T. molitor AMP genes in TmIKKγ mRNA-silenced individuals after microbial challenges. In general, the mRNA expression of TmTenecin1, -2, and -4; TmDefensin1 and -2; TmColeoptericin1 and 2; and TmAttacin1a, 1b, and 2 were found to be downregulated in the hemocytes, gut, and fat body tissues in the TmIKKγ-silenced individuals after microbial challenges. Under similar conditions, TmRelish (NF-κB transcription factor) mRNA was also found to be downregulated. Thus, TmIKKγ is an important factor in the antimicrobial innate immune response of T. molitor.


Assuntos
Anti-Infecciosos/imunologia , Quinase I-kappa B/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/imunologia , Tenebrio/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Candida albicans/imunologia , Regulação para Baixo/imunologia , Escherichia coli/imunologia , Expressão Gênica/imunologia , Hemócitos/imunologia , Hemócitos/microbiologia , Larva/imunologia , Larva/microbiologia , RNA Mensageiro/imunologia , Staphylococcus aureus/imunologia , Tenebrio/microbiologia
6.
Int J Syst Evol Microbiol ; 70(2): 790-796, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31675291

RESUMO

A bacterial strain, BIT-26T, was isolated from the gut of plastic-eating mealworm Tenebrio molitor L. The taxonomic position of this new isolate was investigated by using a polyphasic approach. Cells of the strain were Gram-stain-negative, facultatively anaerobic, motile rods with peritrichous flagella. The 16S rRNA gene sequence (1412 bp) of strain BIT-26T showed the highest similarity (97.4 %) to Erwinia piriflorinigrans CFBP 5888T, followed by Citrobacter sedlakii NBRC 105722T (97.3 %), Mixta calida LMG 25383T (97.3 %), Cronobacter muytjensii ATCC 51329T (97.2 %) and Mixta theicola QC88-366 T (97.2 %). The results of phylogenetic analyses, based on the 16S rRNA gene and concatenated sequences of four housekeeping genes (atpD, gyrB, infB and rpoB), placed strain BIT-26T within the genus Mixta of the family Erwiniaceae. This affiliation was also supported by the chemotaxonomic data. Strain BIT-26T had similar predominant fatty acids, including C12 : 0, C14 : 0, C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c, to species of the genus Mixta. In silico DNA-DNA hybridization and average nucleotide identity calculations plus physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain BIT-26T from other species of the genus Mixta with validly published names. Therefore, strain BIT-26T is considered to represent a novel species, for which the name Mixta tenebrionis sp. nov is proposed. The type strain is BIT-26T (=CGMCC 1.17041T=KCTC 72449T).


Assuntos
Gammaproteobacteria/classificação , Trato Gastrointestinal/microbiologia , Filogenia , Plásticos , Tenebrio/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Sci Rep ; 9(1): 16878, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728023

RESUMO

Dorsal, a member of the nuclear factor-kappa B (NF-κB) family of transcription factors, is a critical downstream component of the Toll pathway that regulates the expression of antimicrobial peptides (AMPs) against pathogen invasion. In this study, the full-length ORF of Dorsal was identified from the RNA-seq database of the mealworm beetle Tenebrio molitor (TmDorX2). The ORF of TmDorX2 was 1,482 bp in length, encoding a polypeptide of 493 amino acid residues. TmDorX2 contains a conserved Rel homology domain (RHD) and an immunoglobulin-like, plexins, and transcription factors (IPT) domain. TmDorX2 mRNA was detected in all developmental stages, with the highest levels observed in 3-day-old adults. TmDorX2 transcripts were highly expressed in the adult Malpighian tubules (MT) and the larval fat body and MT tissues. After challenging the larvae with Staphylococcus aureus and Escherichia coli, the TmDorX2 mRNA levels were upregulated 6 and 9 h post infection in the whole body, fat body, and hemocytes. Upon Candida albicans challenge, the TmDorX2 mRNA expression were found highest at 9 h post-infection in the fat body. In addition, TmDorX2-knockdown larvae exposed to E. coli, S. aureus, or C. albicans challenge showed a significantly increased mortality rate. Furthermore, the expression of 11 AMP genes was downregulated in the gut and fat body of dsTmDorX2-injected larvae upon E. coli challenge. After C. albicans and S. aureus challenge of dsTmDorX2-injected larvae, the expression of 11 and 10 AMPs was downregulated in the gut and fat body, respectively. Intriguingly, the expression of antifungal transcripts TmTenecin-3 and TmThaumatin-like protein-1 and -2 was greatly decreased in TmDorX2-silenced larvae in response to C. albicans challenge, suggesting that TmDorX2 regulates antifungal AMPs in the gut in response to C. albicans infection. The AMP expression profiles in the fat body, hemocytes, gut, and MTs suggest that TmDorX2 might have an important role in promoting the survival of T. molitor larvae against all mentioned pathogens.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Corpo Adiposo/imunologia , Hemócitos/imunologia , Proteínas de Insetos/imunologia , Tenebrio/imunologia , Fatores de Transcrição/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/patogenicidade , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Corpo Adiposo/microbiologia , Hemócitos/microbiologia , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Intestinos/imunologia , Intestinos/microbiologia , Larva/genética , Larva/imunologia , Larva/microbiologia , Túbulos de Malpighi/imunologia , Túbulos de Malpighi/metabolismo , Túbulos de Malpighi/ultraestrutura , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Tenebrio/genética , Tenebrio/microbiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
8.
Insect Biochem Mol Biol ; 114: 103231, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479697

RESUMO

Mycoplasmas, the smallest self-replicating organisms, are unique in that they lack cell walls but possess distinctive plasma membranes containing sterol acquired from their growth environment. Although mycoplasmas are known to be successful pathogens in a wide range of animal hosts, including humans, the molecular basis for their virulence and interaction with the host immune systems remains largely unknown. This study was conducted to elucidate the biochemical relationship between mycoplasma and the insect immune system. We investigated defense reactions of Tenebrio molitor that were activated in response to infection with Mycoplasma pulmonis. The results revealed that T. molitor larvae were more resistant to mycoplasma infection than normal bacteria equipped with cell walls. Intruding M. pulmonis cells were effectively killed by toxins generated from activation of the proPO cascade in hemolymph, but not by cellular reactions or antimicrobial peptides. It was determined that these different anti-mycoplasma effects of T. molitor immune components were primarily attributable to surface molecules of M. pulmonis such as phospholipids occurring in the outer leaflet of the membrane lipid bilayer. While phosphatidylcholine, a phospholipid derived from the growth environment, contributed to the resistance of M. pulmonis against antimicrobial peptides produced by T. molitor, phosphatidylglycerol was responsible for triggering activation of the proPO cascade.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Mycoplasma pulmonis/fisiologia , Tenebrio/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/sangue , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Larva/imunologia , Larva/microbiologia , Fagocitose , Fosfolipídeos/imunologia , Tenebrio/microbiologia
9.
Dev Comp Immunol ; 86: 26-33, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29698631

RESUMO

Antimicrobial peptides have been well studied in the context of bacterial infections. Antifungal peptides have received comparatively less attention. Fungal pathogens of insects and their hosts represent a unique opportunity to study host-pathogen interactions due to the million of years of co-evolution they share. In this study, we investigated role of a constitutively expressed thaumatin-like peptide with antifungal activity expressed by the mealworm beetle Tenebrio molitor, named Tenecin 3, during a natural infection with the entomopathogenic fungus Beauveria bassiana. We monitored the effect of the expression of Tenecin 3 on the survival of infected hosts as well as on the progression of the fungal infection inside the host. Finally, we tested the activity of Tenecin 3 against B. bassiana. These findings could help improving biocontrol strategies and help understanding the evolution of antifungal peptides as a defense mechanism.


Assuntos
Antifúngicos/farmacologia , Beauveria/efeitos dos fármacos , Proteínas de Insetos/farmacologia , Micoses/tratamento farmacológico , Peptídeos/farmacologia , Tenebrio/microbiologia , Animais , Besouros/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Micoses/microbiologia
10.
Arch Insect Biochem Physiol ; 88(1): 85-99, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403020

RESUMO

Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model.


Assuntos
Autofagia/genética , Tenebrio/genética , Tenebrio/imunologia , Tenebrio/microbiologia , Animais , DNA Complementar/genética , Imunidade Inata , Larva/imunologia , Larva/microbiologia , Listeria monocytogenes/imunologia , Listeria monocytogenes/fisiologia , Interferência de RNA , RNA de Cadeia Dupla , RNA Mensageiro/genética , Análise de Sequência de DNA , Análise de Sequência de Proteína
11.
Int J Mol Sci ; 14(11): 22462-82, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24240808

RESUMO

Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRP-LE, a member of the PGRP family, selectively binds to diaminopimelic acid (DAP)-type peptidoglycan to activate both the immune deficiency (Imd) and proPhenoloxidase (proPO) pathways in insects. A PGRP-LE-dependent induction of autophagy to control Listeria monocytogenes has also been reported. We identified and partially characterized a novel PGRP-LE homologue, from Tenebrio molitor and analyzed its functional role in the survival of the insect against infection by a DAP-type PGN containing intracellular pathogen, L. monocytogenes. The cDNA is comprised of an open reading frame (ORF) of 990 bp and encodes a polypeptide of 329 residues. TmPGRP-LE contains one PGRP domain, but lacks critical residues for amidase activity. Quantitative RT-PCR analysis showed a broad constitutive expression of the transcript at various stages of development spanning from larva to adult. RNAi mediated knockdown of the transcripts, followed by a challenge with L. monocytogenes, showed a significant reduction in survival rate of the larvae, suggesting a putative role of TmPGRP-LE in sensing and control of L. monocytogenes infection in T. molitor. These results implicate PGRP-LE as a defense protein necessary for survival of T. molitor against infection by L. monocytogenes.


Assuntos
Proteínas de Transporte/genética , Listeria monocytogenes/genética , Tenebrio/microbiologia , Animais , Proteínas de Transporte/isolamento & purificação , Clonagem Molecular , Inativação Gênica , Listeria monocytogenes/patogenicidade , Listeriose/genética , Listeriose/microbiologia , Tenebrio/genética
12.
PLoS One ; 5(12): e15728, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21206752

RESUMO

Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium.


Assuntos
Aeromonas hydrophila/metabolismo , Aeromonas hydrophila/patogenicidade , Crustáceos/metabolismo , Crustáceos/microbiologia , Melaninas/metabolismo , Tenebrio/metabolismo , Tenebrio/microbiologia , Animais , Catecol Oxidase/química , Precursores Enzimáticos/química , Regulação da Expressão Gênica , Insetos , Melaninas/química , Modelos Genéticos , Mutação , Antígenos O/metabolismo , Proteínas/metabolismo , Células-Tronco , Virulência , Fatores de Virulência
13.
Mycol Res ; 112(Pt 11): 1362-72, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18938068

RESUMO

Elevated tolerance to UV-B radiation and heat may be induced in conidia produced on fungi exposed during mycelial growth to sublethal stresses other than heat or UV-B. This is due to a phenomenon referred to as 'cross-protection'. Several mechanisms are associated with this increased conidial tolerance, one of which is the accumulation of trehalose and mannitol within conidia. In the present study, conidia of the insect-pathogenic fungus Metarhizium anisopliae var. anisopliae were produced on mycelium subjected to nutritive, heat-shock, osmotic, or oxidative stress. The tolerance levels to UV-B radiation and heat of the conidia from stressed mycelium were evaluated, and the amounts of trehalose and mannitol accumulated in conidia were quantified. Conidia produced under nutritive stress (carbon and nitrogen starvation) were two-times more heat and UV-B tolerant than conidia produced under rich (non-stress) nutrient conditions [potato-dextrose agar with yeast extract (PDAY)], and they also accumulated the highest concentrations of trehalose and mannitol. Conidia produced on heat-shock stressed PDAY cultures had higher tolerance to UV-B radiation and heat than conidia produced without heat shock; however, both the UV-B tolerance and trehalose/mannitol concentrations in conidia produced on heat-shocked mycelium were less than those of conidia produced under nutritive stress. Conidia produced under osmotic stress (sodium or potassium chloride added to PDAY) had elevated heat and UV-B tolerances similar to those of conidia produced under nutritive stress; however, they had the lowest levels of mannitol and trehalose, which indicates that accumulation of these compounds is not the only mechanism used by M. anisopliae for protection from heat and UV-B radiation. Oxidative stress from UV-A irradiation or hydrogen peroxide did not produce conidia with elevated UV-B or heat tolerances. Conidia produced under oxidative stress generated by menadione had increased or unchanged tolerances to heat or UV-B, respectively. The levels of mannitol or trehalose in conidia were similar to those in the unstressed controls. Conidial yield was reduced, in some cases severely, by nutritive and osmotic stress; whereas oxidative and heat-shock stress did not alter levels of spore production.


Assuntos
Metarhizium/fisiologia , Metarhizium/efeitos da radiação , Micélio/fisiologia , Micélio/efeitos da radiação , Esporos Fúngicos/fisiologia , Esporos Fúngicos/efeitos da radiação , Animais , Temperatura Alta , Manitol/metabolismo , Dados de Sequência Molecular , Tenebrio/microbiologia , Trealose/metabolismo , Raios Ultravioleta
14.
J Insect Physiol ; 54(6): 1090-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18513740

RESUMO

Much work has elucidated the pathways and mechanisms involved in the production of insect immune effector systems. However, the temporal nature of these responses with respect to different immune insults is less well understood. This study investigated the magnitude and temporal variation in phenoloxidase and antimicrobial activity in the mealworm beetle Tenebrio molitor in response to a number of different synthetic and real immune elicitors. We found that antimicrobial activity in haemolymph increased rapidly during the first 48h after a challenge and was maintained at high levels for at least 14 days. There was no difference in the magnitude of responses to live or dead Escherichia coli or Bacillus subtilis. While peptidoglylcan also elicited a long-lasting antimicrobial response, the response to LPS was short lived. There was no long-lasting upregulation of phenoloxidase activity, suggesting that this immune effector system is not involved in the management of microbial infections over a long time scale.


Assuntos
Peptídeos Catiônicos Antimicrobianos/análise , Hemolinfa/metabolismo , Interações Hospedeiro-Patógeno , Monofenol Mono-Oxigenase/análise , Tenebrio/imunologia , Animais , Bacillus subtilis/fisiologia , Catecol Oxidase/análise , Precursores Enzimáticos/análise , Escherichia coli/fisiologia , Tenebrio/microbiologia , Fatores de Tempo
15.
Neotrop. entomol ; 35(2): 231-240, Mar. -Apr. 2006. tab
Artigo em Português | LILACS | ID: lil-431906

RESUMO

Este trabalho teve por objetivo selecionar isolados de fungos entomopatogênicos, visando sua utilização no controle do cascudinho, Alphitobius diaperinus (Panzer). Larvas e adultos foram inoculados com suspensões de conídios de 99 isolados de Beauveria bassiana (Bals.) Vuill. e Metarhizium anisopliae (Metsch.) Sorok. em concentrações variáveis de 10(5) a 10(9) conídios/ml. Avaliou-se também o crescimento vegetativo em meio-de-cultura, produção de conídios em colônias, arroz e em cadáveres de larvas e adultos do inseto. Os isolados de B. bassiana foram mais eficientes que os isolados de M. anisopliae e as larvas foram mais suscetíveis que os adultos. Os isolados UNIOESTE 04 e UNIOESTE 02, ambos obtidos em cadáveres de cascudinho, foram mais eficientes. Além disso, UNIOESTE 04 apresentou elevada produção em diferentes meios-de-cultura, evidenciando o seu potencial para aplicação em aviários no controle do cascudinho.


Assuntos
Animais , Beauveria/fisiologia , Metarhizium/fisiologia , Controle Biológico de Vetores , Tenebrio/microbiologia , Beauveria/isolamento & purificação , Metarhizium/isolamento & purificação
16.
Neotrop. entomol ; 35(1): 75-82, Jan.-Feb. 2006. tab
Artigo em Português | LILACS | ID: lil-428196

RESUMO

O estudo avaliou a influência da temperatura e de cama nova e usada na germinação, crescimento vegetativo, virulência e produção de conídios de isolados de Beauveria bassiana (Bals.) Vuill. e Metarhizium anisopliae (Metsch.) sobre larvas e adultos do cascudinho Alphitobius diaperinus (Panzer). O crescimento vegetativo e a produção de conídios foram avaliados em meio de cultura. Para a avaliação da virulência os insetos foram tratados com suspensões contendo 1 x 10(8) conídios/ml. Os experimentos foram realizados em câmara B.O.D. (26°C e 32°C e 14h de fotofase). Diariamente os insetos mortos foram coletados para quantificação da produção de conídios. Para avaliação das camas, após a inoculação, insetos foram transferidos para recipientes contendo cama de aviário (nova e usada). Os isolados de B. bassiana foram mais sensíveis à temperatura elevada em relação aos isolados de M. anisopliae no que se refere à viabilidade, crescimento vegetativo e virulência (P < 0,05). A conidiogênese também foi maior para B. bassiana a 26°C (7 a 11 x 10(8) conídios/cadáver larval e 8 x 10(8) conídios/cadáver adulto) (P < 0,05). O estágio larval foi, em média, cerca de 10 vezes mais suscetível aos isolados de M. anisopliae, a 26°C, que os adultos. Em relação a B. bassiana, não foi observada diferença na suscetibilidade entre larvas e adultos nessa temperatura. Entretanto, a suscetibilidade a 32°C foi maior para as larvas, com os isolados CB116 e UEL50. A maior mortalidade ocorreu quando larvas e adultos foram tratados com B. bassiana e mantidos sobre a cama nova e a 26°C (15,7 por cento e 66,7 por cento, respectivamente) (P < 0,05).


Assuntos
Animais , Beauveria/patogenicidade , Tamanho da Ninhada , Metarhizium/patogenicidade , Aves Domésticas , Tenebrio/microbiologia , Temperatura , Virulência
17.
Appl Environ Microbiol ; 67(3): 1335-42, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11229929

RESUMO

Strains of insect-pathogenic fungi with high virulence toward certain pest insects have great potential for commercial biological control applications. Identifying such strains has been a central theme in using fungi for biological control. This theme is supported by a persistent paradigm in insect pathology which suggests that the host insect is the predominant influence on the population genetics of insect-pathogenic fungi. In this study, a population genetics analysis of the insect-pathogenic fungus Metarhizium anisopliae from forested and agricultural habitats in Ontario, Canada, showed a nonrandom association of alleles between two distinct, reproductively isolated groups (index of multilocus association = 1.2). Analyses of the mitochondrial DNA showed no differences between the groups. The two groups were associated with different habitat types, and associations with insect hosts were not found. The group from forested areas showed an ability for cold-active growth (i.e., 8 degrees C), while the group from the agricultural area showed an ability for growth at high temperatures (i.e., 37 degrees C) and resilience to UV exposure. These results represent a significant paradigm shift; habitat selection, not host insect selection, drives the population structure of these insect-pathogenic deuteromycetous fungi. With each group we observed recombining population structures as well as clonally reproducing lineages. We discuss whether these groups may represent cryptic species. Worldwide, M. anisopliae may be an assembly of cryptic species, each adapted to certain environmental conditions. The association of fungal genotypes with habitat but not with host insects has implications on the criteria for utility of this, and perhaps other, fungal biocontrol agents.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Insetos/microbiologia , Microbiologia do Solo , Agricultura , Animais , Ascomicetos/classificação , DNA Fúngico/análise , Microbiologia Ambiental , Genética Populacional , Gryllidae/microbiologia , Manduca/microbiologia , Ontário , Controle Biológico de Vetores , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Tenebrio/microbiologia , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA