Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Biol Chem ; 300(6): 107380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762178

RESUMO

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse-free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage-independent growth, invasion, and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin-positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases , Animais , Humanos , Masculino , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Adesões Focais/metabolismo , Adesões Focais/genética , Invasividade Neoplásica , Paxilina/metabolismo , Paxilina/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Tensinas/metabolismo , Tensinas/genética
2.
Mol Immunol ; 171: 1-11, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696904

RESUMO

Lung adenocarcinoma (LUAD) is a highly heterogeneous disease that threaten human life with serious incidence and high mortality. High heterogeneity of tumor microenvironment (TME) was reported in multiple studies. However, the factor of controlling the tumor migration progression between eary and late-stage LUAD is still not fully understood. In this study, we conducted a comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data of LUAD obtained from the GEO database. The identification of cell clusters revealed significant expansion of epithelial cells in late-stage patients. Interpretation of the cell-cell communication results between early-stage and late-stage patient samples indicated that early tumor cells may interact with epithelial cells through the TGF-ß pathway to promote tumor progression. The cell cycle analysis demonstrated a significant increase in the number of cells in the G2 and M phases in late-stage lung cancer. Further analysis using Non-negative Matrix Factorization (NMF) revealed early-stage cell-specific gene features involved in cell adhesion-related biological processes. Among these, the Tensin (TNS) gene family, particularly TNS1, showed high expression in epithelial cells and fibroblasts of early-stage samples, specifically associated with cell adhesion. Survival analysis using TCGA database for LUAD demonstrated that patients with high expression of TNS1 exhibited significantly higher overall survival rates compared to those with low expression. Immunofluorescence experiments have demonstrated co-expression of TNS1 with fibroblast and tumor cell markers (α-SMA and EPCAM). Immunohistochemistry experiments further validated the significantly higher expression levels of TNS1 in early-stage LUAD tissues compared to late-stage lung cancer tissues (P<0.05). Pathway experiments have shown that early-stage tumor patients with high expression of TNS1 exhibit stronger phosphorylation levels of Akt and mTOR, indicating a more potent activation of the Akt/mTOR signaling pathway. In conclusion, the results of this study demonstrate that TNS1 is an adhesive molecule in the immune microenvironment of early-stage tumor cells, and it may serve as a novel prognostic marker for lug cancer.


Assuntos
Adenocarcinoma de Pulmão , Adesão Celular , Neoplasias Pulmonares , Análise de Célula Única , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Análise de Célula Única/métodos , Adesão Celular/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Estadiamento de Neoplasias , Tensinas/metabolismo , Tensinas/genética , Regulação Neoplásica da Expressão Gênica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transdução de Sinais , Comunicação Celular
3.
Mol Cancer Res ; 22(7): 625-641, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588446

RESUMO

The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica , Proteína Proto-Oncogênica c-ets-1 , Proteína Proto-Oncogênica c-fli-1 , Proteína EWS de Ligação a RNA , Sarcoma de Ewing , Tensinas , Humanos , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Tensinas/metabolismo , Tensinas/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Sarcoma de Ewing/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Linhagem Celular Tumoral , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo
4.
J Biol Chem ; 300(5): 107234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552737

RESUMO

Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify 53 high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3)-a well-established molecular scaffold, regulator of cell migration, and a component of focal and fibrillar adhesions-as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Adesões Focais , Tensinas , Animais , Humanos , Adesão Celular , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Adesões Focais/enzimologia , Fosforilação , Tensinas/metabolismo , Camundongos , Ratos , Linhagem Celular , Transdução de Sinais/genética
5.
Int J Biol Sci ; 20(1): 231-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164166

RESUMO

Head and neck squamous cell carcinoma (HNSCC) remains a formidable clinical challenge due to its high recurrence rate and limited targeted therapeutic options. This study aims to elucidate the role of tensin 4 (TNS4) in the pathogenesis of HNSCC across clinical, cellular, and animal levels. We found a significant upregulation of TNS4 expression in HNSCC tissues compared to normal controls. Elevated levels of TNS4 were associated with adverse clinical outcomes, including diminished overall survival. Functional assays revealed that TNS4 knockdown attenuated, and its overexpression augmented, the oncogenic capabilities of HNSCC cells both in vitro and in vivo. Mechanistic studies revealed that TNS4 overexpression promotes the interaction between integrin α5 and integrin ß1, thereby activating focal adhesion kinase (FAK). This TNS4-mediated FAK activation simultaneously enhanced the PI3K/Akt signaling pathway and facilitated the interaction between TGFßRI and TGFßRII, leading to the activation of the TGFß signaling pathway. Both of these activated pathways contributed to HNSCC tumorigenesis. Additionally, we found that hypoxia-inducible factor 1α (HIF-1α) transcriptionally regulated TNS4 expression. In conclusion, our findings provide the basis for innovative TNS4-targeted therapeutic strategies, which could potentially improve prognosis and survival rates for patients with HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Integrina alfa5beta1 , Fator de Crescimento Transformador beta , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Transformação Celular Neoplásica , Hipóxia , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Tensinas/metabolismo
6.
Br J Dermatol ; 190(2): 244-257, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37850885

RESUMO

BACKGROUND: Psoriasis is a common chronic skin disorder. Pathologically, it features abnormal epidermal proliferation, infiltrating inflammatory cells and increased angiogenesis in the dermis. Aberrant expression of E3 ubiquitin ligase and a dysregulated protein ubiquitination system are implicated in the pathogenesis of psoriasis. OBJECTIVES: To examine the potential role of S-phase kinase-associated protein 2 (Skp2), an E3 ligase and oncogene, in psoriasis. METHODS: Gene expression and protein levels were evaluated with quantitative reverse transcriptase polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence staining of skin samples from patients with psoriasis vulgaris and an imiquimod (IMQ)-induced mouse model, as well as from cultured endothelial cells (ECs). Protein interaction, substrate ubiquitination and degradation were examined using co-immunoprecipitation, Western blotting and a cycloheximide chase assay in human umbilical vein ECs. Angiogenesis was measured in vitro using human dermal microvascular ECs (HDMECs) for BrdU incorporation, migration and tube formation. In vivo angiogenesis assays included chick embryonic chorioallantoic membrane, the Matrigel plug assay and quantification of vasculature in the mouse lesions. Skp2 gene global knockout (KO) mice and endothelial-specific conditional KO mice were used. RESULTS: Skp2 was increased in skin samples from patients with psoriasis and IMQ-induced mouse lesions. Immunofluorescent double staining indicated a close association of Skp2 expression with excessive vascularity in the lesional dermal papillae. In HDMECs, Skp2 overexpression was enhanced, whereas Skp2 knockdown inhibited EC proliferation, migration and tube-like structure formation. Mechanistically, phosphatase and tensin homologue (PTEN), which suppresses the phosphoinositide 3-kinase/Akt pathway, was identified to be a novel substrate for Skp2-mediated ubiquitination. A selective inhibitor of Skp2 (C1) or Skp2 small interfering RNA significantly reduced vascular endothelial growth factor-triggered PTEN ubiquitination and degradation. In addition, Skp2-mediated ubiquitination depended on the phosphorylation of PTEN by glycogen synthase kinase 3ß. In the mouse model, Skp2 gene deficiency alleviated IMQ-induced psoriasis. Importantly, tamoxifen-induced endothelial-specific Skp2 KO mice developed significantly ameliorated psoriasis with diminished angiogenesis of papillae. Furthermore, topical use of the Skp2 inhibitor C1 effectively prevented the experimental psoriasis. CONCLUSIONS: The Skp2/PTEN axis may play an important role in psoriasis-associated angiogenesis. Thus, targeting Skp2-driven angiogenesis may be a potential approach to treating psoriasis.


Assuntos
Psoríase , Proteínas Quinases Associadas a Fase S , Humanos , Animais , Camundongos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Tensinas/metabolismo , Células Endoteliais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Angiogênese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Psoríase/patologia , Ubiquitina-Proteína Ligases/metabolismo
7.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37857485

RESUMO

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Assuntos
Córtex Auditivo , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Córtex Auditivo/metabolismo , Espinhas Dendríticas/metabolismo , Tensinas/metabolismo , Memória de Longo Prazo/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Memória de Curto Prazo/fisiologia , Sirolimo/farmacologia , Medo/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Mamíferos
8.
Turk J Gastroenterol ; 34(11): 1124-1133, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737217

RESUMO

BACKGROUND/AIMS: Recent studies that reveal the molecular profiles of colorectal carcinomas have demonstrated tumor heterogeneity. Characterization of colorectal carcinoma-specific genomic alterations is essential for developing more successful and targeted treat- ment protocols. Moreover, it is vital in elucidating the pathogenesis and mechanisms of resistance against treatment and predicting prognosis. MATERIALS AND METHODS: The study included 73 cases diagnosed with colorectal carcinomas and subjected to molecular analysis by the next-generation sequencing. The association between the clinicopathologic parameters and pathogenic mutations detected in 32 genes was evaluated. RESULTS: Pathogenic mutations were determined in a total of 24 genes. The Cell Division Cycle 27 (CDC27), Kirsten rat sarcoma viral proto-oncogene (KRAS), serine/threonine protein kinase B-raf (BRAF), phosphatase and tensin homolog, breast cancer 2 (BRCA2), and phosphotidylinositol-4,5-biphosphate 3-kinase (PIK3CA) mutations were determined at higher rates, with the adenomatous polypo- sis coli mutation determined at a lower rate than in the literature. There were significant positive correlations between CDC27 and phosphatase and tensin homolog (PTEN), PTEN and BRCA2, and PTEN and adenomatous polyposis coli (APC) concomitant muta- tions, whereas negative correlations were present between BRAF and KRAS. Statistically significant relationships were present between KRAS exon 2 and mucinous morphology, PIK3CA and absence of perineural invasion, BRAF and tumor differentiation/localization, MutS homolog 3 (MSH3) and tumor diameter, and BRCA2 and absence of lymph node metastasis. CONCLUSION: It is necessary to have a comprehensive database of genomic alterations of colorectal carcinomas to interpret mutations more accurately clinically. There are no studies on the frequency of mutations in colorectal carcinomas in the Turkish population; thus, follow-up and treatment protocols are organized following the European and American databases and guidelines. A comprehensive study of the colorectal carcinoma patients' mutation profile in the Turkish patient cohort by the next-generation sequencing method will help to provide significant therapeutic, prognostic, and predictive data and design more successful treatment and follow-up strategies.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tensinas/genética , Tensinas/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
9.
Mutagenesis ; 38(6): 295-304, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37712764

RESUMO

Hepatic leukemia factor (HLF), a transcription factor, is dysregulated in many cancers. This study investigates the function of HLF in prostate cancer (PCa) and its relation to tensin 1 (TNS1). Clinical tissues were collected from 24 PCa patients. Duke University 145 (DU145) and PC3 cells overexpressing HLF were established. HLF signaling was downregulated in PCa tissues compared to adjacent tissues and in DU145 and PC3 cells compared to prostate epithelial cells RWPE-1 or prostate stromal cells (WPMY-1). PCa cell lines with overexpression of HLF had reduced proliferative, migratory, and invasive activity, increased apoptosis, and cell mitosis mostly in the G0/G1 phase. HLF induced the TNS1 transcription to activate the p53 pathway. Depletion of TNS1 reversed the anti-tumor effects of HLF on PCa cells and tumor growth and metastasis in vivo. In summary, our findings suggest that HLF suppressed PCa progression by upregulating TNS1 expression and inducing the p53 pathway activation, which might provide insights into novel strategies for combating PCa.


Assuntos
Leucemia , Neoplasias da Próstata , Humanos , Masculino , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Tensinas/genética , Tensinas/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
J Cell Mol Med ; 27(13): 1763-1774, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37296531

RESUMO

Tensin 1 was originally described as a focal adhesion adaptor protein, playing a role in extracellular matrix and cytoskeletal interactions. Three other Tensin proteins were subsequently discovered, and the family was grouped as Tensin. It is now recognized that these proteins interact with multiple cell signalling cascades that are implicated in tumorigenesis. To understand the role of Tensin 1-3 in neoplasia, current molecular evidence is categorized by the hallmarks of cancer model. Additionally, clinical data involving Tensin 1-3 are reviewed to investigate the correlation between cellular effects and clinical phenotype. Tensin proteins commonly interact with the tumour suppressor, DLC1. The ability of Tensin to promote tumour progression is directly correlated with DLC1 expression. Members of the Tensin family appear to have tumour subtype-dependent effects on oncogenesis; despite numerous data evidencing a tumour suppressor role for Tensin 2, association of Tensins 1-3 with an oncogenic role notably in colorectal carcinoma and pancreatic ductal adenocarcinoma is of potential clinical relevance. The complex interplay between these focal adhesion adaptor proteins and signalling pathways are discussed to provide an up to date review of their role in cancer biology.


Assuntos
Proteínas dos Microfilamentos , Transdução de Sinais , Humanos , Tensinas/genética , Tensinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto/metabolismo , Transformação Celular Neoplásica , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Supressoras de Tumor/genética
11.
Reprod Biol ; 23(2): 100764, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084543

RESUMO

Mounting literatures suggest that follicular fluid-derived exosomes (FF-Evs) influence the progression of progression of polycystic ovary syndrome (PCOS). The present study was designed to dissect the underlying mechanisms by which FF-Evs affect the PCOS. A rat model of PCOS was established using Letrozole induction. After treatment with FF-Evs, rats were examined for alterations in hormones, blood glucose, and lipid levels in serum, oestrus cycle, pathology in the ovaries, and apoptosis of ovarian cells. The functional rescue assays were performed to analyze the impact of long non-coding RNA 00092 (LINC00092) on PCOS rats. The cis-regulatory elements involved in the regulation of phosphatase and tensin homolog (PTEN) expression were analyzed using bioinformatic analysis, followed by verification of the mechanism. FF-Evs treatment ameliorated Letrozole-induced enhancement of weight, insulin resistance, dyslipidemia, and LH/FSH ratio, reduction of luteal cells, granulosa cells, and healthy follicles, prolonged oestrus, oestrous cycle arrest, ovarian tissue fibrosis, and ovarian cell apoptosis in rats, which were counteracted by treatment with shRNA targeting LINC00092. Regarding the mechanism, FF-Evs augmented LINC00092 expression in rats. LINC00092 bound to lysine demethylase 5 A (KDM5A), and KDM5A facilitated the demethylation of H3K4me3 to restrain the transcriptional activity of PTEN. Taken together, FF-Evs delivered LINC00092 repressed the transcriptional activity of PTEN by binding to KDM5A to enhance demethylation of H3K4me3, thereby reducing apoptosis in ovarian cells and alleviating PCOS symptoms.


Assuntos
Síndrome do Ovário Policístico , RNA Longo não Codificante , Animais , Feminino , Ratos , Líquido Folicular/metabolismo , Letrozol/metabolismo , Síndrome do Ovário Policístico/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tensinas/metabolismo
12.
Mol Cells ; 46(5): 298-308, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36896596

RESUMO

Gastric cancer (GC) is a complex disease influenced by multiple genetic and epigenetic factors. Chronic inflammation caused by Helicobacter pylori infection and dietary risk factors can result in the accumulation of aberrant DNA methylation in gastric mucosa, which promotes GC development. Tensin 4 (TNS4), a member of the Tensin family of proteins, is localized to focal adhesion sites, which connect the extracellular matrix and cytoskeletal network. We identified upregulation of TNS4 in GC using quantitative reverse transcription PCR with 174 paired samples of GC tumors and adjacent normal tissues. Transcriptional activation of TNS4 occurred even during the early stage of tumor development. TNS4 depletion in GC cell lines that expressed high to moderate levels of TNS4, i.e., SNU-601, KATO III, and MKN74, reduced cell proliferation and migration, whereas ectopic expression of TNS4 in those lines that expressed lower levels of TNS4, i.e., SNU-638, MKN1, and MKN45 increased colony formation and cell migration. The promoter region of TNS4 was hypomethylated in GC cell lines that showed upregulation of TNS4. We also found a significant negative correlation between TNS4 expression and CpG methylation in 250 GC tumors based on The Cancer Genome Atlas (TCGA) data. This study elucidates the epigenetic mechanism of TNS4 activation and functional roles of TNS4 in GC development and progression and suggests a possible approach for future GC treatments.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/genética , Helicobacter pylori/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Tensinas/genética , Tensinas/metabolismo
13.
J Gene Med ; 25(8): e3510, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36998238

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative articular disease for which there is no effective treatment. Progress has been made in mesenchymal stem cell (MSC)-based therapy in OA, and the efficacy has been demonstrated to be a result of paracrine exosomes from MSCs. Decellularized extracellular matrix (dECM) provides an optimum microenvironment for the expansion of MSCs. In the present study, we aimed to investigate whether exosomes isolated from bone marrow mesenchymal stem cells (BMSCs) with dECM pretreatment (dECM-BMSC-Exos) enhance the amelioration of OA. METHODS: Exosomes from BMSCs with or without dECM pretreatment were isolated. We measured and compared the effect of the BMSC-Exo and dECM-BMSC-Exo on interleukin (IL)-1ß-induced chondrocytes by analyzing proliferation, anabolism and catabolism, migration and apoptosis in vitro. The in vivo experiment was performed by articular injection of exosomes into DMM mice, followed by histological evaluation of cartilage. MicroRNA sequencing of exosomes was performed on BMSC-Exo and dECM-BMSC-Exo to investigate the underlying mechanism. The function of miR-3473b was validated by rescue studies in vitro and in vivo using antagomir-3473b. RESULTS: IL-1ß-treated chondrocytes treated with dECM-BMSC-Exos showed enhanced proliferation, anabolism, migration and anti-apoptosis properties compared to BMSC-Exos. DMM mice injected with dECM-BMSC-Exo showed better cartilage regeneration than those injected with BMSC-Exo. Interestingly, miR-3473b was significantly elevated in dECM-BMSC-Exos and was found to mediate the protective effect in chondrocytes by targeting phosphatase and tensin homolog (PTEN), which activated the PTEN/AKT signaling pathway. CONCLUSIONS: dECM-BMSC-Exo can enhance the alleviation of osteoarthritis via promoting migration, improving anabolism and inhibiting apoptosis of chondrocytes by upregulating miR-3473b, which targets PTEN.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Matriz Extracelular Descelularizada , Tensinas/metabolismo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismo
14.
Lab Invest ; 103(5): 100053, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801645

RESUMO

Gliomas are the most common and lethal primary brain tumors in adults. Glioblastomas, the most frequent and aggressive form of gliomas, represent a therapeutic challenge as no curative treatment exists to date, and the prognosis remains extremely poor. Recently, the transcriptional cofactors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) belonging to the Hippo pathway have emerged as a major determinant of malignancy in solid tumors, including gliomas. However, the mechanisms involved in its regulation, particularly in brain tumors, remain ill-defined. In glioblastomas, EGFR represents one of the most altered oncogenes affected by chromosomal rearrangements, mutations, amplifications, and overexpression. In this study, we investigated the potential link between epidermal growth factor receptor (EGFR) and the transcriptional cofactors YAP and TAZ by in situ and in vitro approaches. We first studied their activation on tissue microarray, including 137 patients from different glioma molecular subtypes. We observed that YAP and TAZ nuclear location was highly associated with isocitrate dehydrogenase 1/2 (IDH1/2) wild-type glioblastomas and poor patient outcomes. Interestingly, we found an association between EGFR activation and YAP nuclear location in glioblastoma clinical samples, suggesting a link between these 2 markers contrary to its ortholog TAZ. We tested this hypothesis in patient-derived glioblastoma cultures by pharmacologic inhibition of EGFR using gefinitib. We showed an increase of S397-YAP phosphorylation associated with decreased AKT phosphorylation after EGFR inhibition in phosphatase and tensin homolog (PTEN) wild-type cultures, unlike PTEN-mutated cell lines. Finally, we used bpV(HOpic), a potent PTEN inhibitor, to mimic the effect of PTEN mutations. We found that the inhibition of PTEN was sufficient to revert back the effect induced by Gefitinib in PTEN-wild-type cultures. Altogether, to our knowledge, these results show for the first time the regulation of pS397-YAP by the EGFR-AKT axis in a PTEN-dependent manner.


Assuntos
Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Proteínas de Sinalização YAP , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tensinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Receptores ErbB/metabolismo
15.
J Physiol Biochem ; 79(1): 163-174, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399312

RESUMO

C-terminal tensin-like (CTEN) is a tensin family protein typically localized to the cytoplasmic side of focal adhesions, and primarily contributes to cell adhesion and migration. Elevated expression and nuclear accumulation of CTEN have been reported in several types of cancers and found to be associated with malignant behaviors. However, the function of nuclear CTEN remains elusive. In this study, we report for the first time that nuclear CTEN associates with chromatin DNA and occupies the region proximal to the transcription start site in several genes. The mRNA expression level of CTEN positively correlates with that of one of its putative target genes, cell division cycle protein 27 (CDC27), in a clinical colorectal cancer dataset, suggesting that CTEN may play a role in the regulation of CDC27 gene expression. Furthermore, we demonstrated that CTEN is recruited to the promoter region of the CDC27 gene and that the mRNA expression and promoter activity of CDC27 are both reduced when CTEN is downregulated. In addition, we found that enhanced nuclear accumulation of CTEN in HCT116 cells by overexpression of CTEN fused with nuclear localization signals increases CDC27 transcript levels and promoter activity. The increased nuclear-localized CTEN also significantly promotes cell migration, and the migratory ability is suppressed when CDC27 is knocked down. These results demonstrate that nuclear CTEN regulates CDC27 expression transcriptionally and promotes cell migration through CDC27. Our findings provide new insights into CTEN moonlighting in the nucleus as a DNA-associated protein and transcriptional regulator involved in modulating cancer cell migration.


Assuntos
Proteínas dos Microfilamentos , Neoplasias , Humanos , Tensinas/genética , Tensinas/metabolismo , Proteínas dos Microfilamentos/genética , Movimento Celular , Adesão Celular/fisiologia , RNA Mensageiro/genética , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase
16.
Mol Cancer ; 21(1): 229, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581942

RESUMO

RATIONALE: Lung cancer is the most prevalent form of cancer and has a high mortality rate, making it a global public health concern. The N6-methyladenosine (m6A) modification is a highly dynamic and reversible process that is involved in a variety of essential biological processes. Using in vitro, in vivo, and multi-omics bioinformatics, the present study aims to determine the function and regulatory mechanisms of the long non-coding (lnc)RNA zinc ribbon domain-containing 1-antisense 1 (ZNRD1-AS1). METHODS: The RNAs that were bound to the m6A 'reader' were identified using YTH domain-containing 2 (YTHDC2) RNA immunoprecipitation (RIP)-sequencing. Utilizing methylated RIP PCR/quantitative PCR, pull-down, and RNA stability assays, m6A modification and ZNRD1-AS1 regulation were analyzed. Using bioinformatics, the expression levels and clinical significance of ZNRD1-AS1 in lung cancer were evaluated. Using fluorescent in situ hybridization and quantitative PCR assays, the subcellular location of ZNRD1-AS1 was determined. Using cell migration, proliferation, and angiogenesis assays, the biological function of ZNRD1-AS1 in lung cancer was determined. In addition, the tumor suppressor effect of ZNRD1-AS1 in vivo was validated using a xenograft animal model. Through bioinformatics analysis and in vitro assays, the downstream microRNAs (miRs) and competing endogenous RNAs were also predicted and validated. RESULTS: This study provided evidence that m6A modification mediates YTHDC2-mediated downregulation of ZNRD1-AS1 in lung cancer and cigarette smoke-exposed cells. Low levels of ZNRD1-AS1 expression were linked to adverse clinicopathological characteristics, immune infiltration, and prognosis. ZNRD1-AS1 overexpression was shown to suppress lung cancer cell proliferation, migration, and angiogenesis in vitro and in vivo, and to reduce tumor growth in nude mice. ZNRD1-AS1 expression was shown to be controlled by treatment of cells with either the methylation inhibitor 3-Deazaadenosine or the demethylation inhibitor Meclofenamic. Furthermore, the miR-942/tensin 1 (TNS1) axis was demonstrated to be the downstream regulatory signaling pathway of ZNRD1-AS1. CONCLUSIONS: ZNRD1-AS1 serves an important function and has clinical relevance in lung cancer. In addition, the findings suggested that m6A modification could mediate the regulation of the ZNRD1-AS1/miR-942/TNS1 axis via the m6A reader YTHDC2.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos Nus , Zinco/metabolismo , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/genética , Movimento Celular/genética , Pulmão/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , RNA Helicases/genética , Tensinas/genética , Tensinas/metabolismo
17.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235125

RESUMO

The estrogenic receptor beta (ERß) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERß. Naringenin in the colon is metabolized by the microbiota. Cancer involves genetic and epigenetic mechanisms, including miRNAs. The objective of the present study was to evaluate the co-exposure effect of colonic in vitro fermented extract of naringenin (FEN) and BPA, to elucidate molecular effects in HT-29 colon cancer cell line. For this, we quantified genes related to the p53 signaling pathway as well as ERß, miR-200c, and miR-141. As an important result, naringenin (IC50 250 µM) and FEN (IC50 37%) promoted intrinsic pathways of apoptosis through phosphatase and tensin homolog (PTEN) (+2.70, +1.72-fold, respectively) and CASP9 (+3.99, +2.03-fold, respectively) expression. BPA decreased the expression of PTEN (-3.46-fold) gene regulated by miR-200. We suggest that once co-exposed, cells undergo a greater stress forcing them to mediate other extrinsic apoptosis mechanisms associated with death domain FASL. In turn, these findings are related to the increase of ERß (5.3-fold with naringenin and 13.67-fold with FEN) gene expression, important in the inhibition of carcinogenic development.


Assuntos
Neoplasias do Colo , MicroRNAs , Compostos Benzidrílicos , Proliferação de Células , Neoplasias do Colo/genética , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fermentação , Flavanonas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenóis , Transdução de Sinais , Tensinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Medicine (Baltimore) ; 101(42): e31120, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36281194

RESUMO

To investigate the clinical significance of Tensin4 (TNS4) in human cancers, particularly lung cancer, we mined the Cancer Genome Atlas database for lung adenocarcinoma (TCGA-LUAD) and the Gene Expression Omnibus database to predict poor prognosis based on the up-regulated expression of TNS4 in LUAD. The correlation between the clinical pathologic features of patients and TNS4 gene expression was analyzed using the Wilcoxon signed-rank test. Cox regression analysis was used to evaluate the association of clinicopathologic characteristics with the overall survival (OS) of cancer patients using TCGA data. The relationship between TNS4 expression and cancer patient survival was evaluated with Kaplan-Meier survival curves and meta-analyses. GO and KEGG were also included in the data mining methods. The expression level of TNS4 in LUAD tissue was higher than that in adjacent normal tissue (P < .001). According to the Kaplan-Meier survival curve, LUAD patients with high TNS4 expression had worse prognosis than those with low TNS4 expression (P < .001 for OS; P = .028 for progression-free survival). A positive correlation between TNS4 expression and poor OS was found with both univariate and multivariate analyses. Increased TNS4 expression in LUAD was closely correlated with a higher disease stage (P = .007), positive lymph nodes (P = .005), and larger tumor size (P = .002). Moreover, meta-analysis including seven independent datasets showed LUAD patients with higher TNS4 had poorer OS (combined hazard ratio = 1.27, 95% confidence interval 1.16-1.39). In the high-TNS4 population, regulation of the actin cytoskeleton, extracellular matrix receptor interactions, and focal adhesion were differentially enriched. Integrin α6ß4 and laminin-5 genes were also associated with TNS4. TNS4 expression may be a potential biomarker for predicting poor survival in LUAD. Moreover, the correlation between TNS4 and integrin α6ß4 may be attributed to the role of TNS4 in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Tensinas/genética , Tensinas/metabolismo
19.
World J Gastroenterol ; 28(32): 4600-4619, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36157928

RESUMO

BACKGROUND: Glycolysis caused by hypoxia-induced abnormal activation of hypoxia inducible factor-1α (HIF-1α) in the immune microenvironment promotes the progression of hepatocellular carcinoma (HCC), leading to enhanced drug resistance in cancer cells. Therefore, altering the immunosuppressive microenvironment by imp-roving the hypoxic state is a new goal in improving cancer treatment. AIM: To analyse the role of HIF-1α, which is closely related to tumour proliferation, invasion, metastasis, and angiogenesis, in the proliferation and invasion of liver cancer, and to explore the HIF-1α pathway-mediated anti-cancer mechanism of sirolimus (SRL) combined with Huai Er. METHODS: Previous studies on HCC tissues identified the importance of HIF-1α, glucose transporter 1 (GLUT1), and lactate dehydrogenase A (LDHA) expression. In this study, HepG2 and Huh7 cell lines were treated, under hypoxic and normoxic conditions, with a combination of SRL and Huai Er. The effects on proliferation, invasion, cell cycle, and apoptosis were analysed. Proteomics and genomics techniques were used to analyze the HIF-1α-related signalling pathway during SRL combined with Huai Er treatment and its inhibition of the proliferation of HCC cells. RESULTS: High levels of HIF-1α, LDHA, and GLUT-1 were found in poorly differentiated HCC, with lower patient survival rates. Hypoxia promoted the proliferation of HepG2 and Huh7 cells and weakened the apoptosis and cell cycle blocking effects of the SRL/Huai Er treatment. This was achieved by activation of HIF-1α and glycolysis in HCC, leading to the upregulation of LDHA, GLUT-1, Akt/mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and Forkhead box P3 and downregulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and p27. The hypoxia-induced activation of HIF-1α showed the greatest attenuation in the SRL/Huai Er (S50 + H8) group compared to the drug treatments alone (P < 0.001). The S50 + H8 treatment significantly downregulated the expression of mTOR and HIF-1α, and significantly reduced the expression of VEGF mRNA. Meanwhile, the combined blocking of mTOR and HIF-1α enhanced the downregulation of Akt/mTOR, HIF-1α, LDHA, and GLUT-1 mRNA and resulted in the downregulation of PTEN, p27, and VEGF mRNA (P < 0.001). CONCLUSION: SRL increases the anti-cancer effect of Huai Er, which reduces the promotion of hypoxia-induced HIF-1α on the Warburg effect by inhibition of the PI3K/Akt/mTOR-HIF-1α and HIF-1α-PTEN signalling pathways in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5 , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Sirolimo , Tensinas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
J Hypertens ; 40(12): 2502-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093879

RESUMO

BACKGROUND: Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD: In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS: The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION: Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.


Assuntos
Hipertensão , MicroRNAs , Ratos , Animais , Angiotensina II/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Tensinas/metabolismo , Ratos Endogâmicos SHR , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Ratos Endogâmicos WKY , Apoptose , Miócitos Cardíacos/metabolismo , Hipertensão/metabolismo , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA