Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Chromatogr A ; 1652: 462353, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34237484

RESUMO

Poloxamer 188 (P188) is formulated in proteinaceous therapeutics as an alternative surfactant to polysorbate because of its good chemical stability and surfactant properties, which enable interfacial protection, preventing visible and sub-visible particle formation. However, due to the nature of polymer heterogeneity and limited analytical approaches to resolve the superimposed components of P188, the impact of its quality variance on protein stability is still not well understood. In this study, we developed an analytical method to evaluate the components of P188 as a function of the length of polypropylene oxide (PPO), by maintaining polyethylene oxide (PEO) at the critical point of adsorption (CPA) to eliminate its chromatographic interference. The effectiveness of the separation was confirmed by nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy (MS) of the individual fractions corresponding to each peak. Additionally, a design of experiments (DoE) and method qualification were carried out to identify and optimize the key operation parameters, including column temperature and evaporative light scattering detector (ELSD) settings that need to be strictly controlled for reliable analytical results. In conclusion, this method is sensitive and reliable to compare the quality variance of commercial P188 and is suitable for routine quality control purposes. The application of this method could help in further understanding the Critical Material Attributes (CMA) that may affect the quality attributes of proteins in formulations.


Assuntos
Cromatografia Líquida/métodos , Poloxâmero/química , Tensoativos/química , Adsorção , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Poloxâmero/isolamento & purificação , Polietilenoglicóis/química , Polímeros/química , Propilenoglicóis/química , Proteínas/uso terapêutico , Tensoativos/isolamento & purificação
2.
Anal Bioanal Chem ; 413(16): 4311-4320, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34003328

RESUMO

Biosurfactants have been investigated as potential alternatives for synthetic surfactants in several areas, for example, in environmental and pharmaceutical fields. In that regard, extensive research has been carried out with sophorolipids and rhamnolipids that also present various biological properties with therapeutic significance. These biosurfactants are obtained as complex mixtures of slightly different molecules, and thus when studying these microbial glycolipids, the ability to identify and purify the produced compounds is of extreme importance. This study aimed to develop improved methodologies for the identification, separation, and purification of sophorolipids and rhamnolipids. Therefore, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was modified to ensure faster characterization of both sophorolipids and rhamnolipids, enabling the identification and fragmentation pattern description of 10 and 13 congeners, respectively. The separation and purification of these biosurfactants was achieved with novel reversed-phase solid-phase extraction methods guaranteeing the isolation of different glycolipids, including those considered for their significant biological activity (e.g. antimicrobial, anticancer). It was possible to isolate sophorolipids and rhamnolipids with purity of 94% and 99%, respectively. The methods presented herein can be easily implemented and are expected to make purification of these biosurfactants easier, facilitating the study of their individual properties in further works.


Assuntos
Glicolipídeos/análise , Ácidos Oleicos/análise , Tensoativos/análise , Cromatografia Líquida de Alta Pressão , Glicolipídeos/isolamento & purificação , Ácidos Oleicos/isolamento & purificação , Pseudomonas aeruginosa/química , Saccharomycetales/química , Extração em Fase Sólida , Tensoativos/isolamento & purificação , Espectrometria de Massas em Tandem
3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673549

RESUMO

Surface active agents (SAAs), currently used in modern industry, are synthetic chemicals produced from non-renewable sources, with potential toxic impacts on humans and the environment. Thus, there is an increased interest for the identification and utilization of natural derived SAAs. As such, the marine environment is considered a promising source of biosurfactants with low toxicity, environmental compatibility, and biodegradation compared to their synthetic counterparts. MARISURF is a Horizon 2020 EU-funded project aiming to identify and functionally characterize SAAs, derived from a unique marine bacterial collection, towards commercial exploitation. Specifically, rhamnolipids produced by Marinobacter MCTG107b and Pseudomonas MCTG214(3b1) strains were previously identified and characterized while currently their toxicity profile was assessed by utilizing well-established methodologies. Our results showed a lack of cytotoxicity in in vitro models of human skin and liver as indicated by alamar blue and propidium iodide assays. Additionally, the use of the single gel electrophoresis assay, under oxidative stress conditions, revealed absence of any significant mutagenic/anti-mutagenic potential. Finally, both 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) cell-free assays, revealed no significant anti-oxidant capacity for neither of the tested compounds. Consequently, the absence of significant cytotoxicity and/or mutagenicity justifies their commercial exploitation and potential development into industrial end-user applications as natural and environmentally friendly biosurfactants.


Assuntos
Bactérias/metabolismo , Queratinócitos/patologia , Neoplasias/patologia , Tensoativos/efeitos adversos , Tensoativos/isolamento & purificação , Apoptose , Proliferação de Células , Humanos , Queratinócitos/efeitos dos fármacos , Neoplasias/induzido quimicamente , Testes de Toxicidade , Células Tumorais Cultivadas
4.
Microb Cell Fact ; 20(1): 26, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509221

RESUMO

Engine oil used in automobiles is a threat to soil and water due to the recalcitrant properties of its hydrocarbons. It pollutes surrounding environment which affects both flora and fauna. Microbes can degrade hydrocarbons containing engine oil and utilize it as a substrate for their growth. Our results demonstrated that cell-free broth of Bacillus velezensis KLP2016 (Gram + ve, endospore forming; Accession number KY214239) recorded an emulsification index (E24%) from 52.3% to 65.7% against different organic solvents, such as benzene, pentane, cyclohexane, xylene, n-hexane, toluene and engine oil. The surface tension of the cell-free broth of B. velezensis grown in Luria-Bertani broth at 35 °C decreased from 55 to 40 mN m-1at critical micelle concentration 17.2 µg/mL. The active biosurfactant molecule of cell-free broth of Bacillus velezensis KLP2016 was purified by Dietheylaminoethyl-cellulose and size exclusion chromatography, followed by HPLC (RT = 1.130), UV-vis spectrophotometry (210 nm) and thin layer chromatography (Rf = 0.90). The molecular weight of purified biosurfactant was found to be ~ 1.0 kDa, based on Electron Spray Ionization-MS. A concentration of 1980 × 10-2 parts per million of CO2 was trapped in a KOH solution after 15 days of incubation in Luria-Bertani broth containing 1% engine oil. Our results suggest that bacterium Bacillus velezensis KLP2016 may promise a new dimension to solving the engine oil pollution problem in near future.


Assuntos
Bacillus/metabolismo , Lipopeptídeos/isolamento & purificação , Poluição por Petróleo , Tensoativos/isolamento & purificação , Bacillus/crescimento & desenvolvimento , Biodegradação Ambiental , Dióxido de Carbono/química , Cromatografia em Gel , Emulsões , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/análise , Micelas , Padrões de Referência , Tensão Superficial
5.
Int J Biol Macromol ; 170: 94-106, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33358950

RESUMO

Considering the need of new lactic acid bacteria (LAB) for the production of novel biosurfactant (BS) molecules, the current study brings out a new insight on the exploration of cheese samples for BS producers and process optimization for industrial applications. In view of this, Lactobacillus plantarum 60FHE, Lactobacillus paracasei 75FHE, and Lactobacillus paracasei 77FHE were selected as the most operative strains. The biosurfactants (BSs) described as glycolipoproteins via Fourier-transform infrared spectroscopy (FTIR) exhibited antimicrobial activity against the food-borne pathogens. L. plantarum 60FHE BS showed an anticancer activity against colon carcinoma cells and had a week antiviral activity against Hepatitis A virus. Furthermore, glycolipoprotein production was enhanced by 1.42-fold through the development of an optimized process using central composite design (CCD). Emulsifying activities were stable after 60-min incubation from 4 to 120 °C, at pH 2-12, and after the addition of NaCl (2-14%). Characterization by nuclear magnetic resonance spectroscopy (1H NMR) revealed that BS produced from strain 60FHE was glycolipoprotein. L. plantarum produced mixed BSs determined by Liquid Chromatography/Mass Spectrometry (LC-MS). Thus, indicating that BS was applied as a microbial food prevention and biomedical. Also, L. plantarum 60FHE BS was achieved with the use of statistical optimization on inexpensive food wastes.


Assuntos
Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Queijo/microbiologia , Glicoproteínas/isolamento & purificação , Lactobacillus plantarum/química , Lipoproteínas/isolamento & purificação , Tensoativos/isolamento & purificação , Anti-Infecciosos/química , Anti-Infecciosos/economia , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/economia , Antineoplásicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/economia , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida , Neoplasias do Colo/patologia , Glicoproteínas/química , Glicoproteínas/economia , Glicoproteínas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Vírus da Hepatite A/efeitos dos fármacos , Humanos , Lacticaseibacillus paracasei/química , Lacticaseibacillus paracasei/isolamento & purificação , Lactobacillus plantarum/isolamento & purificação , Lipoproteínas/química , Lipoproteínas/economia , Lipoproteínas/farmacologia , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Filogenia , Ribotipagem , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Tensoativos/economia , Tensoativos/farmacologia , Resíduos/análise
6.
Colloids Surf B Biointerfaces ; 184: 110553, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31627100

RESUMO

Classical extraction methods used for an isolation of active substances from the plant material are expensive, complicated and often environmentally unfriendly. The ultrasonic assistance micelle-mediated extraction method (UAMME) seems to be an interesting alternative. The aim of this work was to compare an efficiency of water solutions of three non-ionic surfactants: C9-11 Pareth-5, PPG-6 Steareth-7 and PPG-4 Laureth-5 in UAMME of Bidens tripartita. Subsequently, the obtained extracts were separated into two immiscible phases, a polyphenols rich surfactants phase and an aqueous phase by its heating above surfactants cloud points (CPC) or by salting out with NaCl. Along with decreasing the Hydrophilic/Lipophilic Balance (HLB) factor value of surfactants, i.e. increase of the hydrophobicity, a significant decreasing of the flavonoid content was observed. While polyphenols content and antioxidant activity increased. The good surface properties of all surfactants correspond to the high content of phenolic compounds in extracts and both concentration methods resulted in even a 50-fold increase of polyphenols content. Dynamic light scattering measurements (DLS) provided that solubilization of polyphenols, i.e. their incorporation into surfactants' micelles, occurred with significant enlarging of particle size. Based on the molecular dynamic simulations, the mechanism of polyphenols incorporation into micelles was discussed.


Assuntos
Antioxidantes/química , Bidens/química , Flavonoides/química , Simulação de Dinâmica Molecular , Tensoativos/química , Antioxidantes/isolamento & purificação , Flavonoides/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Micelas , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/isolamento & purificação
7.
Molecules ; 24(14)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323813

RESUMO

Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation.


Assuntos
Bacillus/metabolismo , Biodegradação Ambiental , Gorduras Insaturadas na Dieta/metabolismo , Metais Pesados/química , Tensoativos/química , Tensoativos/metabolismo , Adsorção , Bacillus/classificação , Bacillus/genética , Proteínas de Bactérias/genética , Filogenia , Tensoativos/isolamento & purificação
8.
Methods Mol Biol ; 1995: 383-393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148140

RESUMO

Biosurfactants, surface active molecules synthesized by microorganisms, represent a promising alternative to the synthetic surfactants in many different applications. Among them, rhamnolipids have attracted considerable attention in the last years due to their extraordinary surface-active properties and biological activities. Rhamnolipids are usually synthesized by the gram-negative bacterium Pseudomonas aeruginosa as complex mixtures of different congeners. In this chapter, we describe the most common techniques that can be used for the production, recovery and purification of rhamnolipids, using two sequential chromatographic techniques to recover and separate the monorhamnolipid and dirhamnolipid congeners.


Assuntos
Glicolipídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Tensoativos/metabolismo , Técnicas de Cultura de Células/métodos , Cromatografia em Camada Fina/métodos , Glicolipídeos/análise , Glicolipídeos/isolamento & purificação , Microbiologia Industrial/métodos , Óleos de Plantas/química , Plantas/química , Pseudomonas aeruginosa/química , Tensoativos/análise , Tensoativos/isolamento & purificação
9.
Hig. aliment ; 33(288/289): 530-534, abr.-maio 2019. tab, ilus
Artigo em Português | LILACS, VETINDEX | ID: biblio-1481990

RESUMO

Biossurfactantes são compostos com características tensoativas, produzidos por diversas espécies de microrganismos. Nesse estudo, a composição de ácidos graxos de biossurfactantes produzidos por fungos filamentosos endofíticos foram analisados. Para a produção dos biossurfactantes, empregou-se fontes de carbono (óleo vegetal de milho) e nitrogênio (ureia) de baixo custo no meio de cultivo. A composição de ácidos graxos foi determinada a partir da cromatografia gasosa. Foram identificados seis picos de ésteres metílicos de ácidos graxos, com predominância do ácido linoleico (C18:2n-6c) e ácido oleico (C18:1n-9c). Tanto os ácidos graxos saturados quanto os insaturados foram encontrados na estrutura dos biossurfactantes. Estes resultados demonstraram a importância destes compostos para potenciais aplicações em várias áreas industriais.


Assuntos
Fungos , Tensoativos/isolamento & purificação , Tensoativos/química , Ácidos Graxos/análise , Ácidos Graxos/química , Cromatografia Gasosa , Ureia , Óleo de Milho
10.
Microb Pathog ; 132: 66-72, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028863

RESUMO

Biosurfactants are surface-active compounds that display a range of physiological functions. The present study investigated the antioxidant, antimicrobial, and anti-adhesive or anti-biofilm potential of biosurfactants isolated from Bacillus subtilis VSG4 and Bacillus licheniformis VS16. The antioxidant activity of the biosurfactants was studied in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals. At 5 mg/mL of the biosurfactant concentration, the scavenging of DPPH and hydroxyl radicals was found to be between 69.1-73.5% and 63.3-69.8%, respectively. The biosurfactants also displayed significant antibacterial activities against both Gram-positive and Gram-negative bacteria. The anti-adhesive activities of the biosurfactants were evaluated against Staphylococcus aureus ATCC 29523, Salmonella typhimurium ATCC 19430, and Bacillus cereus ATCC 11778. The biosurfactants exhibited anti-adhesive activity, even at concentrations of 3-5 mg/mL. Moreover, both biosurfactants displayed notable anti-biofilm activities with a biofilm eradication percentage ranging from 63.9 to 80.03% for VSG4 biosurfactant, and from 61.1-68.4% for VS16 biosurfactant. Furthermore, VSG4 biosurfactant exhibited emulsification and surface tension stability over a wide range of pH (4-10) and temperature up to 100 °C. These results show that VSG4 and VS16 biosurfactants can be potentially used as natural antioxidants, antimicrobials, and/or anti-adhesive agents for food and biomedical applications.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bacillus licheniformis/metabolismo , Bacillus subtilis/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Tensoativos/farmacologia , Antibacterianos/isolamento & purificação , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Radical Hidroxila/isolamento & purificação , Picratos/isolamento & purificação , Tensoativos/isolamento & purificação , Temperatura
11.
Colloids Surf B Biointerfaces ; 173: 486-492, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30336410

RESUMO

In the present work aqueous-based emulsions formulated with bio-based solvents and surfactants were studied. The droplet size distribution, rheology and physical stability of rosemary essential oil/water emulsions formulated with an emulsifier derived from wheat waste (alkyl polypentoside) were investigated as a function of the dispersed phase concentration (10-50 wt%) by means of laser diffraction, multiple light scattering and rheology measurements. Subsequently, processing variables, such as the pressure and the number of microfluidization passes, were studied to the best formulation (20 wt% rosemary oil). The laser diffraction technique revealed that monodispersed submicron emulsions were obtained for oil phase concentrations below 20 wt%. All emulsions showed Newtonian behavior, except for the emulsion containing 50 wt% oil, which exhibited shear-thinning properties. Moreover, the main destabilization mechanism of all the emulsions was creaming. The combination of techniques used demonstrated that the emulsion containing 20 wt% rosemary essential oil (REO) and prepared by microfluidization at 2500 psi (17.2 MPa) exhibited the longest physical stability and the smallest droplet size after 3passes. This research is a contribution to sustainable development not only by using chemicals derived from renewable raw materials but also by achieving stable emulsions with a low surfactant/oil mass ratio.


Assuntos
Química Verde , Nanoestruturas/química , Óleos Voláteis/química , Tensoativos/química , Água/química , Emulsões , Humanos , Reologia , Tensoativos/isolamento & purificação , Triticum/química
12.
Colloids Surf B Biointerfaces ; 175: 256-263, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544045

RESUMO

The ability of some microorganisms to use clarified cashew apple juice as carbon and energy source for biosurfactant production was assessed under strict controlled conditions. Twelve strains of Bacillus were isolated and evaluated regarding their biosurfactant production capabilities. The biosurfactant obtained with these selected strains showed the capacity of decreasing the surface tension of water from 72.0 to 31.8 mN.m-1 and the interfacial tension of n-hexadecane to 27.2 mN.m-1, with a critical micelle concentration of 12.5 mg.L-1. Not only did the biosurfactant present excellent stability to pH, temperature and salinity, it also showed emulsifying properties in different hydrocarbons. The behavior of the phase diagrams showed the potential of the produced biosurfactant to obtain relatively-stable emulsions for up to 96 h, which allows for its application in several areas. The semi-purified biosurfactant did not show toxicity against Lactuca sativa (lettuce) or Artemia salina (microcrustacean), presenting an LC50 of 612.27 µ mL-1. The surfactant was characterized as being a cyclic lipopeptide with molecular structure similar to that of surfactin. Furthermore, through the employment of the surfactant produced, the remediation effect in oil-contaminated soil could be significantly improved.


Assuntos
Bacillus subtilis/metabolismo , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Sucos de Frutas e Vegetais/microbiologia , Poluição por Petróleo/prevenção & controle , Tensoativos/farmacologia , Anacardium/química , Animais , Artemia/efeitos dos fármacos , Artemia/crescimento & desenvolvimento , Emulsões , Concentração de Íons de Hidrogênio , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Tensão Superficial/efeitos dos fármacos , Tensoativos/isolamento & purificação , Tensoativos/metabolismo , Temperatura
13.
Bull Exp Biol Med ; 165(3): 368-372, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30003418

RESUMO

The glycolipid biosurfactant complex from actinobacterium Rhodococcus ruber IEGM 231 inhibits the innate and adaptive immunity parameters after intraperitoneal and intramuscular injection. Marked suppression of antibody production, bactericidal potential, and production of proinflammatory cytokines by peritoneal macrophages, detected in vivo, do not agree with the previously detected immunostimulatory activity of biosurfactants towards the immunocompetent cell cultures; this fact indicates an important role of the cell environment in the formation of immune response under the effect of bacterial glycolipids.


Assuntos
Glicolipídeos/farmacologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Rhodococcus/química , Tensoativos/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Contagem de Células , Relação Dose-Resposta Imunológica , Glicolipídeos/isolamento & purificação , Injeções Intramusculares , Injeções Intravenosas , Interleucina-1beta/biossíntese , Interleucina-1beta/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Cultura Primária de Células , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Tensoativos/isolamento & purificação , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia , Zimosan/farmacologia
14.
Mar Drugs ; 16(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29882934

RESUMO

Producing antimicrobials is a common adaptive behavior shared by many microorganisms, including marine bacteria. We report that SF214, a marine-isolated strain of Bacillus pumilus, produces at least two different molecules with antibacterial activity: a molecule smaller than 3 kDa active against Staphylococcus aureus and a molecule larger than 10 kDa active against Listeria monocytogenes. We focused our attention on the anti-Staphylococcus molecule and found that it was active at a wide range of pH conditions and that its secretion was dependent on the growth phase, medium, and temperature. A mass spectrometry analysis of the size-fractionated supernatant of SF214 identified the small anti-Staphylococcus molecule as a pumilacidin, a nonribosomally synthesized biosurfactant composed of a mixture of cyclic heptapeptides linked to fatty acids of variable length. The analysis of the SF214 genome revealed the presence of a gene cluster similar to the srfA-sfp locus encoding the multimodular, nonribosomal peptide synthases found in other surfactant-producing bacilli. However, the srfA-sfp cluster of SF214 differed from that present in other surfactant-producing strains of B. pumilus by the presence of an insertion element previously found only in strains of B. safensis.


Assuntos
Antibacterianos/farmacologia , Bacillus pumilus/fisiologia , Lipopeptídeos/farmacologia , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Lipopeptídeos/biossíntese , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Tensoativos/isolamento & purificação , Tensoativos/metabolismo , Tensoativos/farmacologia
15.
Ecotoxicol Environ Saf ; 154: 100-107, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29454985

RESUMO

This study aims to investigate the ability of a biosurfactant produced by Marinobacter hydrocarbonoclasticus strain SdK644 isolated from hydrocarbon contaminated sediment to enhance the solubilization rate of crude oil contaminated seawater. Phylogenetic analysis shows that strain SdK644 was very closely related to M. hydrocarbonoclasticus with 16S rRNA gene sequence similarity of 97.44%. Using waste frying oil as inducer carbon source, the producing biosurfactant by strain SdK644 was applied to improve crude oil solubilization in seawater. The preliminary characterization of the produced biosurfactant by FT-IR analysis indicates its possible classification in a glycolipids group. Results from crude oil solubilization assay showed that SdK644 strain biosurfactant was 2-fold greater than Tween 80 surfactant in crude oil solubilization and 12-fold higher than seawater control, as shown by GC-MS analysis of aliphatic compounds. Furthermore, this bioactive compound was shown to be nontoxic against Artemia larvae in short-term acute toxicity bioassay. Generally, the results showed the possible use of M. hydrocarbonoclasticus strain SdK644 biosurfactant in bioremediation processes of the marine environments.


Assuntos
Marinobacter/crescimento & desenvolvimento , Poluição por Petróleo/prevenção & controle , Petróleo/análise , Água do Mar/química , Tensoativos/química , Poluentes Químicos da Água/análise , Animais , Artemia/efeitos dos fármacos , Biodegradação Ambiental , Marinobacter/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/isolamento & purificação , Tensoativos/toxicidade
16.
World J Microbiol Biotechnol ; 34(2): 20, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302805

RESUMO

Production of trehalolipid biosurfactants by Rhodococcus erythropolis S67 depending on the growth temperature was studied. R. erythropolis S67 produced glycolipid biosurfactants such as 2,3,4-succinoyl-octanoyl-decanoyl-2'-decanoyl trehalose and 2,3,4-succinoyl-dioctanoyl-2'-decanoyl trehalose during the growth in n-hexadecane medium at 26 and 10 °C, despite the different aggregate state of the hydrophobic substrate at low temperature. The surface tension of culture medium was found being reduced from 72 to 27 and 45 mN m-1, respectively. Production of trehalolipid biosurfactants by R. erythropolis S67 at low temperature could be useful for the biodegradation of petroleum hydrocarbons at low temperatures by enhancing the bioremediation performance in cold regions.


Assuntos
Biodegradação Ambiental , Temperatura Baixa , Rhodococcus/crescimento & desenvolvimento , Rhodococcus/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Alcanos/metabolismo , Meios de Cultura/química , DNA Girase/genética , Ácidos Graxos/análise , Glicolipídeos/química , Glicolipídeos/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Filogenia , Rhodococcus/classificação , Rhodococcus/genética , Tensão Superficial , Tensoativos/isolamento & purificação , Trealose/metabolismo
17.
Microbiol Res ; 204: 40-47, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28870290

RESUMO

In this study, the biosurfactant production by an Aureobasidium thailandense LB01 was reported for the first time. Different agro-industrial by-products (corn steep liquor, sugarcane molasses, and olive oil mill wastewater) were evaluated as alternative low-cost substrates. The composition of the culture medium was optimized through response surface methodology. The highest biosurfactant production (139±16mg/L) was achieved using a culture medium containing yeast extract (2g/L); olive oil mill wastewater (1.5%, w/w); glucose (6g/L) and KH2PO4 (1g/L) after 48h of fermentation. The partially purified biosurfactant exhibited a critical micelle concentration of 550mg/L, reducing the surface tension of water up to 31.2mN/m. Its molecular structure was found to be similar to a lauric acid ester. The biosurfactant exhibited a better performance than the chemical surfactant sodium dodecyl sulfate (SDS) in oil dispersion assays, thus suggesting its potential application in bioremediation.


Assuntos
Ascomicetos/metabolismo , Azeite de Oliva/metabolismo , Tensoativos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Biodegradação Ambiental , Meios de Cultura/química , Fermentação , Dodecilsulfato de Sódio/química , Tensão Superficial , Tensoativos/química , Tensoativos/isolamento & purificação , Águas Residuárias , Água
18.
Pharm Res ; 34(12): 2779-2786, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28924739

RESUMO

PURPOSE: The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. METHODS: The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. RESULTS: The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. CONCLUSIONS: The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.


Assuntos
Portadores de Fármacos/química , Contaminação de Medicamentos/prevenção & controle , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Álcool de Polivinil/isolamento & purificação , Tensoativos/isolamento & purificação , Ultrafiltração/métodos , Antineoplásicos Hormonais/química , Emulsificantes/química , Desenho de Equipamento , Membranas Artificiais , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tamoxifeno/química , Ultrafiltração/instrumentação
19.
Mycopathologia ; 181(11-12): 799-806, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27567919

RESUMO

This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.


Assuntos
Antifúngicos/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Biopolímeros/farmacologia , Candida/efeitos dos fármacos , Candida/fisiologia , Tensoativos/farmacologia , Biofilmes/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/microbiologia , Voluntários Saudáveis , Humanos , Tensoativos/isolamento & purificação , Trichosporon/metabolismo
20.
J Basic Microbiol ; 56(11): 1140-1158, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27436796

RESUMO

Lactic acid bacteria are generally believed to have positive roles in maintaining good health and immune system in humans. A number of Lactobacilli spp. are known to produce important metabolites, among which biosurfactants in particular have shown antimicrobial activity against several pathogens in the intestinal tract and female urogenital tract partly through interfering with biofilm formation and adhesion to the epithelial cells surfaces. Around 46 reports are documented on biosurfactant production from Lactobacillus spp. of which six can be broadly classified as cell free biosurfactant and 40 as cell associated biosurfactants and only approximately 50% of those have reported on the structural composition which, in order of occurrence were mainly proteinaceous, glycolipidic, glycoproteins, or glycolipopeptides in nature. Due to the proteinaceous nature, most biosurfactant produced by strains of Lactobacillus are generally believed to be surlactin type with high potential toward impeding pathogens adherence. Researchers have recently focused on the anti-adhesive and antibiofilm properties of Lactobacilli-derived biosurfactants. This review briefly discusses the significance of Lactobacilli-derived biosurfactants and their potential applications in various fields. In addition, we highlight the exceptional prospects and challenges in fermentation economics of Lactobacillus spp.-derived biosurfactants' production processes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Lactobacillus/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Biofilmes , Pesquisa Biomédica , Células Epiteliais/microbiologia , Escherichia coli/efeitos dos fármacos , Feminino , Fermentação , Glicolipídeos/isolamento & purificação , Glicolipídeos/farmacologia , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Humanos , Lactobacillus/química , Tensoativos/isolamento & purificação , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA