Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Commun ; 15(1): 5626, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992046

RESUMO

As bacteriophages continue to gain regulatory approval for personalized human therapy against antibiotic-resistant infections, there is a need for transformative technologies for rapid target identification through multiple, large, decentralized therapeutic phages biobanks. Here, we design a high throughput phage screening platform comprised of a portable library of individual shelf-stable, ready-to-use phages, in all-inclusive solid tablets. Each tablet encapsulates one phage along with luciferin and luciferase enzyme stabilized in a sugar matrix comprised of pullulan and trehalose capable of directly detecting phage-mediated adenosine triphosphate (ATP) release through ATP bioluminescence reaction upon bacterial cell burst. The tablet composition also enhances desiccation tolerance of all components, which should allow easier and cheaper international transportation of phages and as a result, increased accessibility to therapeutic phages. We demonstrate high throughput screening by identifying target phages for select multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli, and Staphylococcus aureus with targets identified within 30-120 min.


Assuntos
Bacteriófagos , Escherichia coli , Ensaios de Triagem em Larga Escala , Terapia por Fagos , Medicina de Precisão , Staphylococcus aureus , Humanos , Terapia por Fagos/métodos , Ensaios de Triagem em Larga Escala/métodos , Escherichia coli/virologia , Escherichia coli/metabolismo , Escherichia coli/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Staphylococcus aureus/virologia , Medicina de Precisão/métodos , Pseudomonas aeruginosa/virologia , Trifosfato de Adenosina/metabolismo , Salmonella enterica/virologia , Farmacorresistência Bacteriana Múltipla/genética
2.
Microbiol Spectr ; 11(6): e0290723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819122

RESUMO

IMPORTANCE: As antimicrobial resistance becomes more prevalent, the application of (bacterio)phage therapy as an alternative treatment for difficult-to-treat infections is (re)gaining popularity. Over the past decade, numerous promising case reports and series have been published demonstrating the therapeutic potential of phage therapy. However, important questions remain regarding the optimal treatment protocol and, unlike for medicinal products, there are currently no predefined quality standards for the stability of phage preparations. Phage titers can be influenced by several factors which could lead to reduced titers after preparation and storage and, ultimately, subtherapeutic applications. Determining the stability of different phages in different recipients according to the route of administration is therefore one of the first important steps in establishing a standardized protocol for phage therapy.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Rinossinusite , Sepse , Humanos , Terapia por Fagos/métodos , Infecções Bacterianas/terapia
3.
Environ Microbiol ; 24(10): 4533-4546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35837865

RESUMO

Pseudomonas aeruginosa is an important Gram-negative pathogen with intrinsic resistance to many clinically used antibiotics. It is particularly troublesome in nosocomial infections, immunocompromised patients, and individuals with cystic fibrosis. Antimicrobial resistance (AMR) is a huge threat to global health, with a predicted 10 million people dying from resistant infections by 2050. A promising therapy for combatting AMR infections is phage therapy. However, more research is required to investigate mechanisms that may influence the efficacy of phage therapy. An important overlooked aspect is the impact of membrane lipid remodelling on phage binding ability. P. aeruginosa undergoes changes in membrane lipids when it encounters phosphorus stress, an environmental perturbation that is likely to occur during infection. Lipid changes include the substitution of glycerophospholipids with surrogate glycolipids and the over-production of ornithine-containing aminolipids. Given that membrane lipids are known to influence the structure and function of membrane proteins, we propose that changes in the composition of membrane lipids during infection may alter phage binding and subsequent phage infection dynamics. Consideration of such effects needs to be urgently prioritised in order to develop the most effective phage therapy strategies for P. aeruginosa infections.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Glicerofosfolipídeos , Glicolipídeos , Humanos , Lipídeos de Membrana , Proteínas de Membrana , Ornitina , Terapia por Fagos/métodos , Fósforo , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa
4.
Viruses ; 14(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746779

RESUMO

Proteus mirabilis is frequently associated with complicated urinary tract infections (UTIs) and is the main cause of catheter-associated urinary tract infections (CAUTIs). Treatment of such infections is complicated and challenging due to the biofilm forming abilities of P. mirabilis. If neglected or mistreated, infections may lead to life-threating conditions such as cystitis, pyelonephritis, kidney failure, and bacteremia that may progress to urosepsis. Treatment with antibiotics, especially in cases of recurring and persistent infections, leads to the development of resistant strains. Recent insights into phage therapy and using phages to coat catheters have been evaluated with many studies showing promising results. Here, we describe a highly lytic bacteriophage, Proteus_virus_309 (41,740 bp), isolated from a wastewater treatment facility in Cape Town, South Africa. According to guidelines of the International Committee on Taxonomy of Viruses (ICTV), bacteriophage 309 is a species within the genus Novosibovirus. Similar to most members of the genus, bacteriophage 309 is strain-specific and lyse P. mirabilis in less than 20 min.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções Urinárias , Biofilmes , Humanos , Terapia por Fagos/métodos , Proteus mirabilis , África do Sul
5.
Neumol. pediátr. (En línea) ; 17(4): 126-128, 2022.
Artigo em Espanhol | LILACS | ID: biblio-1438350

RESUMO

Las infecciones respiratorias representan una morbilidad y mortalidad significativas, con aumento progresivo de la resistencia a los antibióticos. La escasez de nuevos antibióticos disponibles y la pérdida de eficacia de los antiguos, ha impulsado a investigar otras alternativas de tratamiento. La terapia con bacteriófagos (fagos) representa uno de esos enfoques, la que ha demostrado ser eficaz contra una variedad de patógenos bacterianos, incluidas las cepas resistentes a los medicamentos. La administración puede ser tópica, intravenosa o inhalada, esta última requiere preparaciones estables de fagos y sistemas adecuados para proporcionar partículas que accedan al árbol respiratorio. En esta comunicación se revisan diversos aspectos de los bacteriófagos, los que podrían ser de gran utilidad para el tratamiento de las infecciones pulmonares en pacientes con diagnóstico de fibrosis quística.


Respiratory infections represent a significant morbidity and mortality, with a progressive increase in resistance to antibiotics. The scarcity of new antibiotics available and the loss of efficacy of the old ones has prompted investigation of other treatment alternatives. Bacteriophage (phage) therapy represents one such approach that has been shown to be effective against a variety of bacterial pathogens, including resistant strains to medications. Administration can be topical. Intravenous or inhaled, the latter requiring stable preparations of phages and adequate systems to provide particles that will access the respiratory tree. In this communication various aspects of bacteriophages and their clinical utility are reviewed, which could be very useful for the treatment of pulmonary infections in patients diagnosed with cystic fibrosis.


Assuntos
Humanos , Fibrose Cística/terapia , Terapia por Fagos/métodos , Farmacorresistência Bacteriana Múltipla
6.
Pathog Dis ; 79(8)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34601577

RESUMO

The fascinating discovery of the first giant virus, Acanthamoeba polyphaga mimivirus (APMV), belonging to the family Mimiviridae in 2008, and its associated virophage, Sputnik, have left the world of microbiology awestruck. To date, about 18 virophages have been isolated from different environmental sources. With their unique feature of resisting host cell infection and lysis by giant viruses, analogous to bacteriophage, they have been assigned under the family Lavidaviridae. Genome of T-27, icosahedral-shaped, non-enveloped virophages, consist of dsDNA encoding four proteins, namely, major capsid protein, minor capsid protein, ATPase and cysteine protease, which are essential in the formation and assembly of new virophage particles during replication. A few virophage genomes have been observed to contain additional sequences like PolB, ZnR and S3H. Another interesting characteristic of virophage is that Mimivirus lineage A is immune to infection by the Zamilon virophage through a phenomenon termed MIMIVIRE, resembling the CRISPR-Cas mechanism in bacteria. Based on the fact that giant viruses have been found in clinical samples of hospital-acquired pneumonia and rheumatoid arthritis patients, virophages have opened a novel era in the search for cures of various diseases. This article aims to study the prospective role of virophages in the future of human therapeutics.


Assuntos
Antibiose , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Virófagos/fisiologia , Amoeba/virologia , Evolução Biológica , Genoma Viral , Genômica/métodos , Vírus Gigantes/fisiologia , Humanos , Interações Microbianas , Terapia por Fagos/métodos , Virófagos/classificação , Virófagos/ultraestrutura
7.
Viruses ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696328

RESUMO

Phage therapy (PT) shows promising potential in managing biofilm infections, which include refractory orthopedic infections. We report the case of a 13-year-old girl who developed chronic polymicrobial biofilm infection of a pelvic bone allograft after Ewing's sarcoma resection surgery. Chronic infection by Clostridium hathewayi, Proteus mirabilis and Finegoldia magna was worsened by methicillin-susceptible Staphylococcus aureus exhibiting an inducible Macrolides-Lincosamides-Streptogramin B resistance phenotype (iMLSB). After failure of conventional conservative treatment, combination of in situ anti-S. aureus PT with surgical debridement and intravenous antibiotic therapy led to marked clinical and microbiological improvement, yet failed to prevent a recurrence of infection on the midterm. This eventually led to surgical graft replacement. Multiple factors can explain this midterm failure, among which incomplete coverage of the polymicrobial infection by PT. Indeed, no phage therapy against C. hathewayi, P. mirabilis or F. magna could be administered. Phage-antibiotic interactions were investigated using OmniLog® technology. Our results suggest that phage-antibiotic interactions should not be considered "unconditionally synergistic", and should be assessed on a case-by-case basis. Specific pharmacodynamics of phages and antibiotics might explain these differences. More than two years after final graft replacement, the patient remains cured of her sarcoma and no further infections occurred.


Assuntos
Aloenxertos/microbiologia , Antibacterianos/farmacologia , Osso e Ossos/microbiologia , Coinfecção/terapia , Terapia por Fagos/métodos , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Aloenxertos/efeitos dos fármacos , Biofilmes , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Criança , Interações Medicamentosas , Feminino , Humanos , Sarcoma de Ewing/tratamento farmacológico , Infecções Estafilocócicas/diagnóstico
9.
Viruses ; 13(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372537

RESUMO

The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.


Assuntos
Complexo Burkholderia cepacia/efeitos dos fármacos , Terapia por Fagos/métodos , Terapia por Fagos/tendências , Bacteriófagos/genética , Bacteriófagos/metabolismo , Complexo Burkholderia cepacia/metabolismo , Complexo Burkholderia cepacia/patogenicidade , Humanos
10.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445641

RESUMO

Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed. Modulations of cancer cells by bacteriophages are indicated. Direct and indirect effects of virulent and temperate phages are discussed. We conclude that interactions of bacteriophages with animal and human organisms are robust, and they must be taken under consideration when using these viruses in medicine, especially in phage therapy, and in biotechnological applications.


Assuntos
Bacteriófagos/fisiologia , Neoplasias/terapia , Terapia por Fagos/métodos , Receptores de Superfície Celular/metabolismo , Animais , Disponibilidade Biológica , Biotecnologia , Humanos , Neoplasias/virologia , Farmacocinética
11.
FASEB J ; 35(5): e21487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811705

RESUMO

Chondrosarcoma is a cartilage-forming bone tumor, well known for intrinsic resistance to chemotherapy and radiotherapy. We have designed a targeted chondrosarcoma gene therapy using a bacteriophage (phage) particle to deliver therapeutic genes. Phage has no tropism for mammalian cells, allowing engineered phage to be targeted to specific cell surface receptors in cancer. We modified the phage capsid to display the RGD4C ligand on the pIII minor coat proteins to specifically bind to αvß3 or αvß5 integrin receptors. The endosomal escape peptide, H5WYG, was also displayed on recombinant pVIII major coat proteins to enhance gene delivery. Finally, a human tumor necrosis factor alpha (TNFα) therapeutic transgene expression cassette was incorporated into the phage genome. First, we found that human chondrosarcoma cells (SW1353) have high expression of αvß3, αvß5 integrin receptors, and both TNFα receptors. Targeted particle encoding a luciferase reporter gene efficiently and selectively mediated gene delivery to these cells. When SW1353 cells were treated with the targeted particle encoding a TNFα transgene, significant cell killing was evident and was associated with high expression of TNFα and apoptosis-related genes. In vivo, mice with established human chondrosarcoma showed suppression of tumors upon repetitive intravenous administrations of the targeted phage. These data show that our phage-based particle is a promising, selective, and efficient tool for targeted chondrosarcoma therapy.


Assuntos
Bacteriófagos/genética , Neoplasias Ósseas/terapia , Condrossarcoma/terapia , Técnicas de Transferência de Genes , Terapia Genética , Terapia por Fagos/métodos , Fator de Necrose Tumoral alfa/genética , Adulto , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proliferação de Células , Condrossarcoma/genética , Condrossarcoma/patologia , Vetores Genéticos/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Bone Joint J ; 103-B(2): 234-244, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33517726

RESUMO

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article: Bone Joint J 2021;103-B(2):234-244.


Assuntos
Artrite Infecciosa/terapia , Infecções Bacterianas/terapia , Doenças Ósseas Infecciosas/terapia , Dispositivos de Fixação Ortopédica/efeitos adversos , Terapia por Fagos/métodos , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/terapia , Humanos , Resultado do Tratamento
13.
Pediatr Pulmonol ; 56 Suppl 1: S4-S9, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434411

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are bacterial pathogens frequently associated with pulmonary complications and disease progression in cystic fibrosis (CF). However, these bacteria increasingly show resistance to antibiotics, necessitating novel management strategies. One possibility is bacteriophage (phages; bacteria-specific viruses) therapy, where lytic phages are administered to kill target bacterial pathogens. Recent publications of case reports of phage therapy to treat antibiotic-resistant lung infections in CF have garnered significant attention. These cases exemplify the renewed interest in phage therapy, an older concept that is being newly updated to include rigorous collection and analysis of patient data to assess clinical benefit, which will inform the development of clinical trials. As outcomes of these trials become public, the results will valuable gauge the potential usefulness of phage therapy to address the rise in antibiotic-resistant bacterial infections. In addition, we highlight the further need for basic research to accurately predict the different responses of target bacterial pathogens when phages are administered alone, sequentially, or as mixtures (cocktails), and whether within-cocktail interactions among phages hold consequences for the efficacy of phage therapy in patient treatment.


Assuntos
Fibrose Cística/complicações , Terapia por Fagos/métodos , Infecções por Pseudomonas/terapia , Infecções Estafilocócicas/terapia , Farmacorresistência Bacteriana , Humanos , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia
14.
Pediatr Pulmonol ; 56 Suppl 1: S55-S68, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32609433

RESUMO

Respiratory infections caused by non-tuberculous mycobacteria (NTM) are a major cause of morbidity for patients living with cystic fibrosis (CF), as NTM pulmonary disease (NTM-PD) is challenging to both diagnose and eradicate. Despite the lengthy courses of the established regimens recommended by the Cystic Fibrosis Foundation (CFF) and European Cystic Fibrosis Society (ECFS) consensus guidelines, only about 50% to 60% of patients achieve culture conversion, and treatment regimens are often complicated by antibiotic resistance and toxicities. Since publication of the CFF/ECFS guidelines, several new or alternative antibiotic regimens have been described for patients with CF who have NTM-PD. These regimens offer new options for patients who do not clear NTM with standard therapies or cannot utilize the usual regimens due to toxicities or drug-drug interactions.


Assuntos
Antituberculosos/uso terapêutico , Fibrose Cística/complicações , Infecções por Mycobacterium não Tuberculosas/terapia , Terapia por Fagos/métodos , Adolescente , Antituberculosos/administração & dosagem , Criança , Ensaios Clínicos como Assunto , Vias de Administração de Medicamentos , Monitoramento de Medicamentos , Farmacorresistência Bacteriana , Quimioterapia Combinada , Humanos , Masculino , Infecções por Mycobacterium não Tuberculosas/complicações , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico
15.
Virol J ; 17(1): 142, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993724

RESUMO

Infections caused by protozoan parasites burden the world with huge costs in terms of human and animal health. Most parasitic diseases caused by protozoans are neglected, particularly those associated with poverty and tropical countries, but the paucity of drug treatments and vaccines combined with increasing problems of drug resistance are becoming major concerns for their control and eradication. In this climate, the discovery/repurposing of new drugs and increasing effort in vaccine development should be supplemented with an exploration of new alternative/synergic treatment strategies. Viruses, either native or engineered, have been employed successfully as highly effective and selective therapeutic approaches to treat cancer (oncolytic viruses) and antibiotic-resistant bacterial diseases (phage therapy). Increasing evidence is accumulating that many protozoan, but also helminth, parasites harbour a range of different classes of viruses that are mostly absent from humans. Although some of these viruses appear to have no effect on their parasite hosts, others either have a clear direct negative impact on the parasite or may, in fact, contribute to the virulence of parasites for humans. This review will focus mainly on the viruses identified in protozoan parasites that are of medical importance. Inspired and informed by the experience gained from the application of oncolytic virus- and phage-therapy, rationally-driven strategies to employ these viruses successfully against parasitic diseases will be presented and discussed in the light of the current knowledge of the virus biology and the complex interplay between the viruses, the parasite hosts and the human host. We also highlight knowledge gaps that should be addressed to advance the potential of virotherapy against parasitic diseases.


Assuntos
Interações Hospedeiro-Parasita , Terapia Viral Oncolítica/métodos , Parasitos/virologia , Doenças Parasitárias/terapia , Terapia por Fagos/métodos , Animais , Humanos , Terapia Viral Oncolítica/normas , Terapia por Fagos/normas
16.
Expert Opin Drug Discov ; 15(12): 1403-1423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32880507

RESUMO

INTRODUCTION: Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED: The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION: The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.


Assuntos
Antibacterianos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/efeitos adversos , Desenvolvimento de Medicamentos , Farmacorresistência Bacteriana Múltipla , Humanos , Imunoterapia , Terapia por Fagos/métodos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Virulência
20.
Int J Antimicrob Agents ; 56(1): 105997, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335278

RESUMO

Currently, topical antibiotic treatment is a major strategy for decolonisation of Staphylococcus aureus, although it may result in antibiotic resistance or recolonisation of the organism. Recently, application of bacteriophages in the treatment of S. aureus infection has attracted attention. However, a single administration of bacteriophages did not effectively decolonise S. aureus in our first trial in vivo. Using a bacteriophage (pSa-3) and surfactant combination in vitro, we showed an increased (>8%) adsorption rate of the bacteriophage on the host. Moreover, the combination increased the eradication of immunoglobulin E (IgE)-stimulated aggregation, as the surfactant promoted the dissociation of S. aureus aggregates by decreasing the size by 75% and 50% in the absence and presence of IgE, respectively. Furthermore, the combined treatment significantly decolonised the pathogen with an efficacy double that of the phage-only treatment, and decreased the expression of pro-inflammatory cytokine genes (IL-1ß, IL-12 and IFNγ) for 5 days in the second in vivo trial. These results suggest that the bacteriophage-surfactant combination could act as an alternative to antibiotics for S. aureus decolonisation in patients with dermatitis.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Bacteriófagos/metabolismo , Dermatite Atópica/tratamento farmacológico , Terapia por Fagos/métodos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Tensoativos/farmacologia , Animais , Dermatite Atópica/microbiologia , Humanos , Imunoglobulina E/imunologia , Interferon gama/biossíntese , Interleucina-12/biossíntese , Interleucina-1beta/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA