Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454159

RESUMO

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Assuntos
Proteínas do Citoesqueleto , Infertilidade Masculina , Teratozoospermia , Tiazóis , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dineínas/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Sêmen/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatogênese/genética , Espermatozoides/metabolismo , Teratozoospermia/metabolismo , Teratozoospermia/patologia
2.
Reprod Sci ; 30(11): 3285-3295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37264261

RESUMO

Identifying the metabolome of human seminal plasma (HSP) is a new research area to screen putative biomarkers of infertility. This case-control study was performed on HSP specimens of 15 infertile patients with teratozoospermia (defined as normal sperm morphology < 4%) and 12 confirmed fertile normozoospermic men as the control group to investigate the seminal metabolic signature and whether there are differences in the metabolome between two groups. HSPs were subjected to LC-MS-MS analysis. MetaboAnalyst5.0 software was utilized for statistical analysis. Different univariate and multivariate analyses were used, including T-tests, fold change analysis, random forest (RF), and metabolite set enrichment analysis (MSEA). Teratozoospermic samples contained seventeen significantly different amino acids. Upregulated metabolites include glutamine, asparagine, and glycylproline, whereas downregulated metabolites include cysteine, γ-aminobutyric acid, histidine, hydroxylysine, hydroxyproline, glycine, proline, methionine, ornithine, tryptophan, aspartic acid, argininosuccinic acid, α-aminoadipic acid, and ß-aminoisobutyric acid. RF algorithm defined a set of 15 metabolites that constitute the significant features of teratozoospermia. In particular, increased glutamine, asparagine, and decreased cysteine, tryptophan, glycine, and valine were strong predictors of teratozoospemia. The most affected metabolic pathways in teratozoospermic men are the aminoacyl-tRNA, arginine, valine-leucine, and isoleucine biosynthesis. Altered metabolites detected in teratozoospermia were responsible for various roles in sperm functions that classified into four subgroups as follows: related metabolites to antioxidant function, energy production, sperm function, and spermatogenesis. The altered amino acid metabolome identified in this study may be related to the etiology of teratozoospermia, and may provide novel insight into potential biomarkers of male infertility for therapeutic targets.


Assuntos
Aminoácidos , Teratozoospermia , Humanos , Masculino , Aminoácidos/análise , Aminoácidos/metabolismo , Sêmen/metabolismo , Teratozoospermia/metabolismo , Triptofano/análise , Triptofano/metabolismo , Asparagina/análise , Asparagina/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Glutamina/análise , Glutamina/metabolismo , Estudos de Casos e Controles , Espectrometria de Massas em Tandem , Glicina/análise , Glicina/metabolismo , Valina/análise , Valina/metabolismo , Biomarcadores/metabolismo
3.
J Med Genet ; 60(4): 380-390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35973810

RESUMO

BACKGROUND: The information of ZMYND15 in human reproduction is very limited, resulting in the unclear link between ZMYND15 variants and male infertility. METHODS: Whole exome sequencing and Sanger sequencing to identify the potential pathogenic variation of ZMYND15 in infertile men, Papanicolaou staining and electron microscopy to investigate the spermatozoa morphology, western blotting and immunofluorescence staining to confirm the pathogenicity of the identified variants, and proteomic analysis and coimmunoprecipitation to clarify the potential molecular mechanism. RESULTS: A total of 31 ZMYND15 variants were identified in 227 infertile patients. Three deleterious biallelic variants, including a novel compound heterozygous variant of c.1105delG (p.A369Qfs*15) and c.1853T>C (p.F618S), a new homozygous splicing mutation of c.1297+5G>A and a reported homozygous nonsense mutation of c.1209T>A (p.Y403*), were detected in three affected individuals with oligoasthenoteratozoospermia, showing a biallelic pathogenic mutation frequency of 1.3% (3/227). No biallelic pathogenic mutation was found in 692 fertile men. Morphology analysis showed abnormalities in sperm morphology in the patients harbouring ZMYND15 mutations. Western blotting and immunofluorescence staining confirmed the nearly absent ZMYND15 expression in the sperm of the patients. Mechanistically, ZMYND15 might regulate spermatogenesis by interacting with key molecules involved in sperm development, such as DPY19L2, AKAP4 and FSIP2, and might also mediate the expression of the autophagy-associated protein SPATA33 to maintain sperm individualisation and unnecessary cytoplasm removal. CONCLUSION: Our findings broaden the variant and phenotype spectrum of ZMYND15 in male infertility, and reveal the potential signalling pathway of ZMYND15 regulating spermatogenesis, finally confirming the essential role of ZMYND15 in human fertility.


Assuntos
Infertilidade Masculina , Proteínas Repressoras , Teratozoospermia , Humanos , Masculino , População do Leste Asiático , Infertilidade Masculina/patologia , Mutação/genética , Proteômica , Sêmen/metabolismo , Espermatozoides/patologia , Teratozoospermia/genética , Teratozoospermia/metabolismo , Teratozoospermia/patologia , Proteínas Repressoras/genética
4.
Medicina (Kaunas) ; 58(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36295569

RESUMO

Background and Objectives: Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. Polymerization of SEPTs contributes to several critical cellular processes such as cytokinesis, cytoskeletal remodeling, and vesicle transportation. In our previous study, we found that SEPT14 mutations resulted in teratozoospermia with >87% sperm morphological defects. SEPT14 interactors were also identified through proteomic assays, and one of the peptides was mapped to RAB3B and RAB3C. Most studies on the RAB3 family have focused on RAB3A, which regulates the exocytosis of neurotransmitters and acrosome reactions. However, the general expression and patterns of the RAB3 family members during human spermatogenesis, and the association between RAB3 and teratozoospermia owing to a SEPT14 mutation, are largely unknown. Materials and Methods: Human sperm and murine male germ cells were collected in this study and immunofluorescence analysis was applied on the collected sperm. Results: In this study, we observed that the RAB3C transcripts were more abundant than those of RAB3A, 3B, and 3D in human testicular tissues. During human spermatogenesis, the RAB3C protein is mainly enriched in elongated spermatids, and RAB3B is undetectable. In mature human spermatozoa, RAB3C is concentrated in the postacrosomal region, neck, and midpiece. The RAB3C signals were delocalized within human spermatozoa harboring the SEPT14 mutation, and the decreased signals were accompanied by a defective head and tail, compared with the healthy controls. To determine whether RAB3C is involved in the morphological formation of the head and tail of the sperm, we separated murine testicular tissue and isolated elongated spermatids for further study. We found that RAB3C is particularly expressed in the manchette structure, which assists sperm head shaping at the spermatid head, and is also localized at the sperm tail. Conclusions: Based on these results, we suggest that the localization of RAB3C proteins in murine and human sperm is associated with SEPT14 mutation-induced morphological defects in sperm.


Assuntos
Teratozoospermia , Camundongos , Humanos , Masculino , Animais , Teratozoospermia/genética , Teratozoospermia/metabolismo , Septinas/genética , Septinas/metabolismo , Proteômica , Sêmen/metabolismo , Espermatozoides , Proteínas de Ligação ao GTP , Peptídeos/metabolismo
5.
Mol Biol Rep ; 48(5): 4073-4081, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34057684

RESUMO

Teratozoospermia is a condition related to poor morphologically normal sperm count below the lower reference limit, which could hinder natural conception. Single nucleotide polymorphisms (SNPs) in the genes involved in sperm production and testicular function are proved to be risk factors, resulting in decreased sperm parameters and defects in sperm morphology. c.474 G > A polymorphism in the SEPTIN12 gene which is one of the testis-specific genes creates a novel splice variant and the resulting truncated protein was previously found to be more prevalent in infertile men. We aimed to investigate the association of SEPTIN12 c.474 G > A polymorphism with male infertility in teratozoospermia patients. Forty-eight teratozoospermic patients, diagnosed according to Kruger's criteria and 164 fertile controls who fathered at least 1 child within 3 years without assisted reproductive technologies were included into our prospective randomized controlled study. PCR-RFLP method was used for genotyping. Although no statistical difference was found between teratozoospermic patients and fertile controls in terms of genotype distributions, significance was identified between the genotypes of all and non-smoking teratozoopermic patients in terms of neck defects. SEPTIN12 c.474 G > A polymorphism was shown to be associated with sperm neck defects in teratozoospermic patients using the dominant statistical model. Smoking was identified as a risk factor for the sperm morphology defects in teratozoospermic A allele carriers.


Assuntos
Infertilidade Masculina/genética , Septinas/genética , Teratozoospermia/genética , Adulto , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Estudos Prospectivos , Distribuição Aleatória , Fatores de Risco , Septinas/metabolismo , Espermatozoides/metabolismo , Teratozoospermia/metabolismo , Testículo/metabolismo , Turquia
6.
Reprod Sci ; 28(7): 2060-2069, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33620707

RESUMO

Numerous evidences suggested that microRNAs (miRs) could play an active and significant role during spermatogenesis. Cysteine-rich secretory protein (CRISP3) has a role in inflammatory response and is extremely over-expressed in adolescents with varicocele seminal plasma and modified semen analysis. Nowadays, the miRs expression's association with their target genes is well recognized. The aim of this study was evaluating the association of CRISP3 and four candidate miRs among teratozoospermia (TZ) infertile men. First, we have selected four miRs, miR-182-5p, miR-192-5p, miR-204-5p, and miR-493-5p bioinformatically. After that, RNA was extracted from semen samples of 21 TZ patients and 20 normozoospermia (Norm). Then, their expression levels were assessed using real-time polymerase chain reaction method. In the next step, we quantified the expression of two CRISP3 protein isoforms, targeted by these miRs, using western blotting. According to our results, up-regulation of miR-182-5p, miR-192-5p, and miR-493-5p was observed. MiR-182-5p, miR-192-5p, and miR-493-5p showed good AUC values which can be introduced as possible biomarkers of TZ. In addition, the expression level of the CRISP3 glycosylated (31 kDa) isoform was significantly lower in TZ patients than Norm ones. Notably, in TZ patients, there was a possibly positive correlation of glycosylated CRISP3 expression with normal sperm morphology. According to our results, CRISP3 protein can play a significant role in male infertility especially in maturation formation of spermatozoa. Also, deregulation of the studied miRs, miR-182-5p, miR-92-5p, and miR-493-5p, can suggest a regulatory network between these miRs and CRISP3 isoforms and suggest their regulatory roles in male infertility.


Assuntos
MicroRNAs/genética , Proteínas e Peptídeos Salivares/genética , Sêmen/metabolismo , Proteínas de Plasma Seminal/genética , Espermatozoides/metabolismo , Teratozoospermia/genética , Adulto , Biomarcadores/metabolismo , Forma Celular/fisiologia , Redes Reguladoras de Genes , Humanos , Masculino , MicroRNAs/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Análise do Sêmen , Proteínas de Plasma Seminal/metabolismo , Espermatogênese/fisiologia , Espermatozoides/citologia , Teratozoospermia/metabolismo
7.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120839

RESUMO

Human sperm proteomics research has gained increasing attention lately, which provides complete information about the functional state of the spermatozoa. Changes in the sperm proteome are evident in several male infertility associated conditions. Global proteomic tools, such as liquid chromatography tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight, are used to profile the sperm proteins to identify the molecular pathways that are defective in infertile men. This review discusses the use of proteomic techniques to analyze the spermatozoa proteome. It also highlights the general steps involved in global proteomic approaches including bioinformatic analysis of the sperm proteomic data. Also, we have presented the findings of major proteomic studies and possible biomarkers in the diagnosis and therapeutics of male infertility. Extensive research on sperm proteome will help in understanding the role of fertility associated sperm proteins. Validation of the sperm proteins as biomarkers in different male infertility conditions may aid the physician in better clinical management.


Assuntos
Biologia Computacional/métodos , Infertilidade Masculina/metabolismo , Proteômica/métodos , Espermatozoides/metabolismo , Astenozoospermia/metabolismo , Azoospermia/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida , Humanos , Masculino , Transdução de Sinais/genética , Espectrometria de Massas em Tandem , Teratozoospermia/metabolismo , Neoplasias Testiculares/metabolismo , Varicocele/metabolismo
8.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866452

RESUMO

Male infertility is observed in approximately 50% of all couples with infertility. Intracytoplasmic sperm injection (ICSI), a conventional artificial reproductive technique for treating male infertility, may fail because of a severe low sperm count, immotile sperm, immature sperm, and sperm with structural defects and DNA damage. Our previous studies have revealed that mutations in the septin (SEPT)-coding gene SEPT12 cause teratozoospermia and severe oligozoospermia. These spermatozoa exhibit morphological defects in the head and tail, premature chromosomal condensation, and nuclear damage. Sperm from Sept12 knockout mice also cause the developmental arrest of preimplantation embryos generated through in vitro fertilization and ICSI. Furthermore, we found that SEPT12 interacts with SPAG4, a spermatid nuclear membrane protein that is also named SUN4. Loss of the Spag4 allele in mice also disrupts the integration nuclear envelope and reveals sperm head defects. However, whether SEPT12 affects SPAG4 during mammalian spermiogenesis remains unclear. We thus conducted this study to explore this question. First, we found that SPAG4 and SEPT12 exhibited similar localizations in the postacrosomal region of elongating spermatids and at the neck of mature sperm through isolated murine male germ cells. Second, SEPT12 expression altered the nuclear membrane localization of SPAG4, as observed through confocal microscopy, in a human testicular cancer cell line. Third, SEPT12 expression also altered the localizations of nuclear membrane proteins: LAMINA/C in the cells. This effect was specifically due to the expression of SEPT12 and not that of SEPT1, SEPT6, SEPT7, or SEPT11. Based on these results, we suggest that SEPT12 is among the moderators of SPAG4/LAMIN complexes and is involved in the morphological formation of sperm during mammalian spermiogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Septinas/metabolismo , Espermatogênese , Animais , Proteínas de Transporte/genética , Células Cultivadas , Técnicas de Inativação de Genes , Humanos , Lamina Tipo A/metabolismo , Masculino , Camundongos , Microscopia Confocal , Proteínas Nucleares/genética , Especificidade de Órgãos , Septinas/genética , Teratozoospermia/genética , Teratozoospermia/metabolismo , Testículo/metabolismo
9.
Reprod Biomed Online ; 36(3): 348-355, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29339016

RESUMO

Globozoospermia is characterized by the presence of 100% acrosomeless round-headed spermatozoa in an ejaculate. Failed fertilization after intracytoplasmic sperm injection (ICSI) is commonly reported for globozoospermic couples and can be overcome by artificial oocyte activation (AOA). Phospholipase C zeta (PLCζ) is one of the main sperm factors involved in oocyte activation and its low expression levels mainly account for fertilization failure. Deletion of the DPY19L2 gene is reported as a main genetic cause in over 70% of infertile men with globozoospermia. The current study assesses the expression profile of sperm PLCζ at RNA and protein levels in 32 DPY19L2 deletion-mediated globozoospermic men and reports corresponding clinical outcomes following ICSI with AOA. The expression of PLCζ relative to GAPDH at RNA (0.78 ± 0.16 versus 1.65 ± 0.24; P = 0.02) and protein (0.39 ± 0.12 versus 0.83 ± 0.13; P = 0.01) levels in globozoospermic men with DPY19L2 deletion was significantly lower compared with fertile men (n = 32). Fertilization rate in globozoospermic couples following ICSI-AOA was significantly lower compared with fertile men (53.14 ± 5.13% versus 87.64 ± 2.38%, P < 0.001). However, implantation (26.2%) and pregnancy (53.8%) rates were not jeopardized by DPY19L2 deletion in these couples.


Assuntos
Deleção de Genes , Proteínas de Membrana/genética , Indução da Ovulação/métodos , Fosfoinositídeo Fosfolipase C/metabolismo , Injeções de Esperma Intracitoplásmicas/métodos , Espermatozoides/metabolismo , Teratozoospermia/patologia , Adulto , Estudos de Casos e Controles , Feminino , Fertilização , Regulação da Expressão Gênica , Humanos , Masculino , Oócitos , Fosfoinositídeo Fosfolipase C/genética , Gravidez , Motilidade dos Espermatozoides , Teratozoospermia/genética , Teratozoospermia/metabolismo
10.
Cell Tissue Res ; 369(2): 413-427, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28299521

RESUMO

The sperm acrosome is a specialized vacuole, a member of the family of cell-specific lysosome-related organelles. Its exocytosis, the acrosome reaction, is a crucial event during fertilization. The released acrosomal contents promote sperm penetration through the investments of the oocyte, whereas the membranous components of the acrosome are involved in sperm-oocyte interaction/fusion and oocyte activation. The way that these functionally distinct acrosomal costituents reach the vacuole during its biogenesis remains poorly understood. The biosynthetic pathway and a consistent supply from the endosomal system have recently been documented. We use immunogold electron microscopy to determine the contribution of endosome cargo-sorting during step-by-step mouse acrosomogenesis. The chosen proteins of this study were UBPy (ESCRT-DUB), together with endosome compartment markers EEA1 and pallidin. The latter is described here for the first time in male germ cells. This new insight expands our knowledge of acrosomogenesis, confirming the plasticity of the endosomal system in supporting cell-type-specific functions. We also study wobbler mice, whose Vps54 mutation causes motor neuron degeneration and male infertility. Use of electron/immunoelectron microscopy and immunofluorescence enabled us to establish that the lack of an acrosome in wobbler spermatozoa is attributable to an early block in acrosome biogenesis and that the mislocalization of acrosome-destined proteins, potentially involved in the signaling events leading to oocyte activation, is possibly responsible for wobbler infertility, even after intracytoplasmic sperm injection.


Assuntos
Acrossomo/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mutação/genética , Teratozoospermia/metabolismo , Teratozoospermia/patologia , Ubiquitina Tiolesterase/metabolismo , Proteínas de Transporte Vesicular/genética , Acrossomo/ultraestrutura , Animais , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular , Lectinas/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-met/metabolismo , Espermátides/metabolismo , Espermátides/ultraestrutura , Espermatogênese , Testículo/patologia , Testículo/ultraestrutura
11.
Asian J Androl ; 19(1): 39-42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27751992

RESUMO

In couples with infertility, abnormal strict morphology of 0% normal forms (NF) is a criterion to proceed rapidly to in vitro fertilization (IVF). Since no data currently exist, we investigated the outcomes for men with 0% NF to determine reproductive success without the use of assisted reproductive technologies (ART). A cohort of 24 men with 0% NF were identified (2010-2013) with 27 randomly selected men with ≥4% NF as controls. Patient charts were reviewed with men contacted and administered an Institutional Review Board (IRB)-approved telephone questionnaire to ascertain outcomes. After a median follow-up time of 2.5 years, 29.2% of men with 0% NF did not require ART for their first pregnancy (controls = 55.6%, P ≤ 0.05). When all pregnancies were analyzed together, men with 0% NF achieved twenty pregnancies of which 75% did not require IVF (controls = thirty pregnancies; 76.7% did not require IVF). The average age of men and female partners was similar between men with 0% NF and ≥4% NF. All men had normal follicle-stimulating hormone (FSH), testosterone, prolactin, sex hormone-binding globulin (SHBG), and estradiol. Although, global semen parameters were worse in men with 0% NF, when a first pregnancy was a natural conception (NC), 100% of men with 0% NF (n = 7/7) and 37.5% of controls (n = 3/8) went on to have a subsequent pregnancy via NC. Men with 0% NF conceived without IVF in 29.2% of cases compared to 55.6% of controls. Strict morphology should not be used to predict fertilization, pregnancy, or live birth potential. In men with 0% NF, alternative modalities should be considered before immediate IVF.


Assuntos
Fertilização in vitro/estatística & dados numéricos , Taxa de Gravidez , Teratozoospermia/fisiopatologia , Adulto , Estudos de Casos e Controles , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Seguimentos , Humanos , Hormônio Luteinizante/metabolismo , Masculino , Gravidez , Prolactina/metabolismo , Técnicas de Reprodução Assistida/estatística & dados numéricos , Índice de Gravidade de Doença , Globulina de Ligação a Hormônio Sexual/metabolismo , Espermatozoides/anormalidades , Teratozoospermia/metabolismo , Testosterona/metabolismo
12.
Andrology ; 4(5): 850-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27089467

RESUMO

Sperm-mediated oocyte activation critically depends upon appropriate expression and assembly of sperm-borne oocyte-activating factors (SOAFs) during spermiogenesis. Several factors have been considered as candidate for SOAFs over the recent years. However, little is known about the expression profile of these candidates and their potential contribution to the clinical outcomes of intra-cytoplasmic sperm injection (ICSI), particularly in globozoospermia. This study investigated the expression profile of PLCζ, PAWP, and TR-KIT and clinical outcomes of ICSI in 12 men with total globozoospermia and compared with 12 fertile individuals. Levels of PLCζ, PAWP, and TR-KIT mRNA in the spermatozoa of fertile men were significantly higher than the corresponding values of the globozoospermic subjects. Interestingly, at protein level, expressions of these factors in the cases assessed were low in globozoospermic individuals. Fertilization rates following artificial oocyte activation (AOA) in the majority of globozoospermic couples were higher than the expected 30% cut-off value reported for individuals with failed or low fertilization rate. Clinical outcomes of ICSI-AOA were dependent on inter-individual variation in globozoospermic couples. None of the SOAFs assessed could provide a greater prediction value with respect to fertilization rate in globozoospermic couples which underwent ICSI-AOA. High fertilization (56.06%) and pregnancy (41.7%) rates accomplished in this study following ICSI-AOA indicated that expression profiles of PLCζ, PAWP, and TR-KIT were low in globozoospermic individuals, and ICSI combined with artificial oocyte activation could mimic physiological calcium changes which occur during fertilization.


Assuntos
Proteínas de Transporte/metabolismo , Desenvolvimento Embrionário/genética , Fertilização/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas de Plasma Seminal/metabolismo , Teratozoospermia/metabolismo , Adulto , Proteínas de Transporte/genética , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Indução da Ovulação , Fosfoinositídeo Fosfolipase C/genética , Gravidez , Resultado da Gravidez , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas de Plasma Seminal/genética , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides/genética , Teratozoospermia/genética
13.
Andrologia ; 48(5): 576-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26404029

RESUMO

Teratozoospermia with unclear pathomechanism is one of the common causes for failed fertilisation. This study aimed to further explore the pathological mechanism for teratozoospermia. Spermatozoal transcript profiles generated from 13 normal fertile men and eight infertile males with a consistent severe heterogeneous teratozoospermia were used. These data were pre-processed, and differentially expressed genes were screened. Besides, gene ontology and pathway enrichment analysis were performed, and then, protein-protein interaction (PPI) network was constructed, and spermatogenesis-related genes in the PPI network were extracted. As a result, 366 up-regulated and 2158 down-regulated genes were identified. Multiple gene ontology terms and pathways including cell-cell signalling and reproduction enriched by differentially expressed genes were obtained. Moreover, four clusters including cluster 1 associated with RNA catabolic process were identified from the PPI network. In addition, genes including cyclin B1, proteasome (prosome, macropain) activator subunit 4, Rac GTPase-activating protein 1 and pituitary tumour-transforming 1 were received. In conclusion, abnormal expression of cyclin B1 and Rac GTPase-activating protein 1, still proteasome (prosome, macropain) activator subunit 4 and pituitary tumour-transforming 1 would impede cell cycle progression during sperm development and maturation, which may contribute to the occurrence and development of teratozoospermia.


Assuntos
Espermatozoides/metabolismo , Teratozoospermia/genética , Estudos de Casos e Controles , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Mapas de Interação de Proteínas , Teratozoospermia/etiologia , Teratozoospermia/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA