Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biomed Pharmacother ; 175: 116644, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692057

RESUMO

Transmembrane drug transporters can be important determinants of the pharmacokinetics, efficacy, and safety profiles of drugs. To investigate the potential cooperative and/or counteracting interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in physiology and pharmacology, we generated a new mouse model (Bab12), deficient for Slco1a/1b, Slco2b1, Abcb1a/1b and Abcg2. Bab12 mice were viable and fertile. We compared wild-type, Slco1a/1b/2b1-/-, Abcb1a/1b;Abcg2-/- and Bab12 strains. Endogenous plasma conjugated bilirubin levels ranked as follows: wild-type = Abcb1a/1b;Abcg2-/- << Slco1a/1b/2b1-/- < Bab12 mice. Plasma levels of rosuvastatin and fexofenadine were elevated in Slco1a/1b/2b1-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type, and dramatically increased in Bab12 mice. Although systemic exposure of larotrectinib and repotrectinib was substantially increased in the separate multidrug transporter knockout strains, no additive effects were observed in the combination Bab12 mice. Significantly higher plasma exposure of fluvastatin and pravastatin was only found in Slco1a/1b/2b1-deficient mice. However, noticeable transport by Slco1a/1b/2b1 and Abcb1a/1b and Abcg2 across the BBB was observed for fluvastatin and pravastatin, respectively, by comparing Bab12 mice with Abcb1a/1b;Abcg2-/- or Slco1a/1b/2b1-/- mice. Quite varying behavior in plasma exposure of erlotinib and its metabolites was observed among these strains. Bab12 mice revealed that Abcb1a/1b and/or Abcg2 can contribute to conjugated bilirubin elimination when Slco1a/1b/2b1 are absent. Our results suggest that the interplay of Slco1a/1b/2b1, Abcb1a/1b, and Abcg2 could markedly affect the pharmacokinetics of some, but not all drugs and metabolites. The Bab12 mouse model will represent a useful tool for optimizing drug development and clinical application, including efficacy and safety.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Bilirrubina , Camundongos Knockout , Transportadores de Ânions Orgânicos , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Bilirrubina/sangue , Bilirrubina/metabolismo , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Terfenadina/farmacocinética , Terfenadina/análogos & derivados , Masculino , Transporte Biológico , Rosuvastatina Cálcica/farmacocinética , Rosuvastatina Cálcica/farmacologia , Camundongos Endogâmicos C57BL
2.
BMJ Open ; 13(2): e057151, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828648

RESUMO

OBJECTIVE: The non-metabolised antihistamine fexofenadine has oral absorption resulting from transporter activity. Uptake by enterocyte organic anion transporting polypeptides and efflux by an ATP-binding cassette transporter (P-glycoprotein) are primary determinants. Coeliac disease-mediated lesions to the small intestinal mucosa may alter oral absorption of the drug probe, fexofenadine. DESIGN: A phase I, open-label, single-dose, pharmacokinetic study SETTING: London, Ontario, Canada PARTICIPANTS: Patients with coeliac disease (n=41) with positive serology and healthy individuals (n=48). MAIN OUTCOME MEASURES: Patients with coeliac disease-duodenal histology and oral fexofenadine pharmacokinetics within a 3-week period. Healthy individuals-oral fexofenadine pharmacokinetics with water and grapefruit juice. RESULTS: Patients with coeliac disease were stratified by disease severity: Group A (n=15, normal), B+C (n=14, intraepithelial lymphocytosis with/without mild villous blunting) and D (n=12, moderate to severe villous blunting). Patients with coeliac disease in groups A, B+C and D and healthy individuals receiving water had similar fexofenadine AUC0-8 (2038±304, 2259±367, 2128±410, 1954±138 ng.h/mL; p>0.05; mean±SEM) and Cmax (440±73, 513±96, 523±104, 453±32 ng/mL; p>0.05), respectively. These four groups all had higher fexofenadine AUC0-8 (1063±59; p<0.01) and Cmax (253±18; p<0.05) compared with those for healthy individuals receiving grapefruit juice. Coeliac groups had a positive linear trend between disease severity and fexofenadine Tmax (2.0±0.3, 2.7±0.4, 3.1±0.5 hours; p<0.05). CONCLUSIONS: Coeliac disease severity based on duodenal histopathology did not affect oral fexofenadine bioavailability. Increased Tmax suggested absorption distal to the duodenum (jejunum + ileum), where histology seems more normal which may be the key determinant. Patients with coeliac disease may not require consideration for alternative clinical drug management for a number of non-metabolised and transport-mediated medications.


Assuntos
Doença Celíaca , Citrus paradisi , Humanos , Ontário , Terfenadina/farmacocinética , Água
3.
Ther Drug Monit ; 45(4): 539-545, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645711

RESUMO

BACKGROUND: Fexofenadine is a recommended in vivo probe drug for phenotyping P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/3 transporter activities. This study evaluated a limited sampling strategy using a population pharmacokinetic approach to estimate plasma fexofenadine exposure as an index of P-gp and OATP activities. METHODS: In a previous study, a single oral dose of fexofenadine (120 mg) was administered alone or in combination with grapefruit juice, Panax ginseng , or Echinacea purpurea to healthy adult participants. Serial plasma samples were collected up to 72 hours after administration and fexofenadine concentrations were measured. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling. Limited sampling models (LSMs) using single and 2-timepoint fexofenadine concentrations were compared with full profiles from intense sampling using empirical Bayesian post hoc estimations of systemic exposure derived from the population pharmacokinetic model. Predefined criteria for LSM selection and validation included a coefficient of determination (R 2 ) ≥ 0.90, relative percent mean prediction error ≥ -5 to ≤5%, relative percent mean absolute error ≤ 10%, and relative percent root mean square error ≤ 15%. RESULTS: Fexofenadine concentrations (n = 1520) were well described using a 2-compartment model. Grapefruit juice decreased the relative oral bioavailability of fexofenadine by 25%, whereas P. ginseng and E. purpurea had no effect. All the evaluated single timepoint fexofenadine LSMs showed unacceptable percent mean prediction error, percent mean absolute error, and/or percent root mean square error. Although adding a second time point improved precision, the predefined criteria were not met. CONCLUSIONS: Identifying novel fexofenadine LSMs to estimate P-gp and OATP1B1/3 activities in healthy adults for future transporter-mediated drug-drug interaction studies remains elusive.


Assuntos
Citrus paradisi , Transportadores de Ânions Orgânicos , Adulto , Humanos , Teorema de Bayes , Terfenadina/farmacocinética , Preparações Farmacêuticas
4.
Pharm Res ; 38(4): 647-655, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33825113

RESUMO

PURPOSE: Fexofenadine is a well-identified in vivo probe substrate of P-glycoprotein (P-gp) and/or organic anion transporting polypeptide (OATP). This work aimed to investigate the transplacental pharmacokinetics of fexofenadine enantiomers with and without the selective P-gp inhibitor fluoxetine. METHODS: The chiral transplacental pharmacokinetics of fexofenadine-fluoxetine interaction was determined using the ex vivo human placenta perfusion model (n = 4). In the Control period, racemic fexofenadine (75 ng of each enantiomer/ml) was added in the maternal circuit. In the Interaction period, racemic fluoxetine (50 ng of each enantiomer/mL) and racemic fexofenadine (75 ng of each enantiomer/mL) were added to the maternal circulation. In both periods, maternal and fetal perfusate samples were taken over 90 min. RESULTS: The (S)-(-)- and (R)-(+)-fexofenadine fetal-to-maternal ratio values in Control and Interaction periods were similar (~0.18). The placental transfer rates were similar between (S)-(-)- and (R)-(+)-fexofenadine in both Control (0.0024 vs 0.0019 min-1) and Interaction (0.0019 vs 0.0021 min-1) periods. In both Control and Interaction periods, the enantiomeric fexofenadine ratios [R-(+)/S-(-)] were approximately 1. CONCLUSIONS: Our study showed a low extent, slow rate of non-enantioselective placental transfer of fexofenadine enantiomers, indicating a limited fetal fexofenadine exposure mediated by placental P-gp and/or OATP2B1. The fluoxetine interaction did not affect the non-enantioselective transplacental transfer of fexofenadine. The ex vivo placental perfusion model accurately predicts in vivo placental transfer of fexofenadine enantiomers with remarkably similar values (~0.17), and thus estimates the limited fetal exposure.


Assuntos
Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Troca Materno-Fetal/efeitos dos fármacos , Placenta/metabolismo , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Área Sob a Curva , Interações Medicamentosas , Feminino , Fluoxetina/administração & dosagem , Fluoxetina/farmacocinética , Antagonistas não Sedativos dos Receptores H1 da Histamina/administração & dosagem , Humanos , Perfusão/instrumentação , Perfusão/métodos , Gravidez , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/imunologia , Estereoisomerismo , Terfenadina/administração & dosagem , Terfenadina/farmacocinética
5.
Acta Pharmacol Sin ; 42(3): 470-481, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32555444

RESUMO

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are involved in intestinal barrier. Short-chain fatty acids (SCFAs) play important roles in maintaining intestinal barrier. In this study we explored how SCFAs affected the expression and function of intestinal P-gp and BCRP in rats. Rats received 150 mM acetate, propionate or butyrate in drinking water for 4 weeks. In SCFA-treated rats, the expression and function of intestinal P-gp were decreased, but those of intestinal BCRP were increased; intestinal p-p65 was also decreased, which was positively related to P-gp protein expression. Among the three SCFAs tested, butyrate exhibited the strongest induction or inhibitory effect, followed by propionate and acetate. Similar results were observed in mouse primary enterocytes and Caco-2 cells treated with acetate (5 mM), propionate (2 mM), or butyrate (1 mM). In Caco-2 cells, addition of butyrate, vorinostat, and valproate (two classic HDAC inhibitors), Bay117082 (selective inhibitor of NF-κB activation) or NF-κB p65 silencing significantly decreased the expression of P-gp and the level of phosphorylated p65 (p-p65). Furthermore, butyrate attenuated the expression of P-gp and p-p65 induced by TNF-α (NF-κB activator) and theophylline (HDAC activator). However, vorinostat, valproate, Bay117082, TNF-α or p65 silencing hardly affected BCRP protein expression. But GW9662 (selective PPARγ antagonist) or PPARγ silencing abolished BCRP induction by butyrate and troglitazone (PPARγ agonist). SCFAs-treated rats showed higher intestinal protein expression of PPARγ, which was positively related to BCRP protein expression. Butyrate increased plasma exposure of fexofenadine but decreased that of rosuvastatin following oral dose to rats. In conclusion, SCFAs exert opposite effects on the expression and function of intestinal P-gp and BCRP; butyrate downregulated P-gp expression and function possibly via inhibiting HDAC/NF-κB pathways; butyrate induced BCRP expression and function partly via PPARγ activation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetatos/farmacologia , Butiratos/farmacologia , Mucosa Intestinal/metabolismo , Propionatos/farmacologia , Animais , Células CACO-2 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , PPAR gama/metabolismo , Ratos Sprague-Dawley , Rosuvastatina Cálcica/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Terfenadina/análogos & derivados , Terfenadina/farmacocinética
6.
Clin Pharmacol Ther ; 108(4): 866-873, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32356565

RESUMO

Drug dosing is challenging in patients with end-stage renal disease. Not only is renal drug elimination reduced, but nonrenal clearance pathways are also altered. Increasing evidence suggest that uremia impacts drug metabolizing enzymes and transporters leading to changes in nonrenal clearance. However, the exact mechanisms are not yet fully understood, and the acute effects of dialysis are inadequately investigated. We prospectively phenotyped cytochrome P450 3A (CYP3A; midazolam) and P-glycoprotein (P-gp)/organic anion-transporting proteins (OATP; fexofenadine) in 12 patients on chronic intermittent hemodialysis; a day after ("clean") and a day prior to ("dirty") dialysis. Unbound midazolam clearance decreased with time after dialysis; median (range) reduction of 14% (-3% to 41%) from "clean" to "dirty" day (P = 0.001). Fexofenadine clearance was not affected by time after dialysis (P = 0.68). In conclusion, changes in uremic milieu between dialysis sessions induce a small, direct inhibitory effect on CYP3A activity, but do not alter P-gp/OATP activity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Falência Renal Crônica/terapia , Rim/fisiopatologia , Transportadores de Ânions Orgânicos/metabolismo , Diálise Renal , Idoso , Interações Medicamentosas , Feminino , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/fisiopatologia , Masculino , Midazolam/farmacocinética , Pessoa de Meia-Idade , Estudos Prospectivos , Eliminação Renal , Terfenadina/análogos & derivados , Terfenadina/farmacocinética , Fatores de Tempo , Resultado do Tratamento
7.
J Ethnopharmacol ; 245: 112174, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31442620

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Propolis has been employed extensively in many cultures since ancient times as antiseptic, wound healing, anti-pyretic and others due to its biological and pharmacological properties, such as immunomodulatory, antitumor, anti-inflammatory, antioxidant, antibacterial, antiviral, antifungal, antiparasite activities. But despite its broad and traditional use, there is little knowledge about its potential interaction with prescription drugs. AIM OF THE STUDY: The main objective of this work was to study the potential herbal-drug interactions (HDIs) of EPP-AF® using an in vivo assay with a cocktail approach. MATERIALS AND METHODS: Subtherapeutic doses of caffeine, losartan, omeprazole, metoprolol, midazolam and fexofenadine were used. Sixteen healthy adult volunteers were investigated before and after exposure to orally administered 125 mg/8 h (375 mg/day) EPP-AF® for 15 days. Pharmacokinetic parameters were calculated based on plasma concentration versus time (AUC) curves. RESULTS: After exposure to EPP-AF®, it was observed decrease in the AUC0-∞ of fexofenadine, caffeine and losartan of approximately 18% (62.20 × 51.00 h.ng/mL), 8% (1085 × 999 h.ng/mL) and 13% (9.01 × 7.86 h.ng/mL), respectively, with all 90% CIs within the equivalence range of 0.80-1.25. On the other hand, omeprazole and midazolam exhibited an increase in AUC0-∞ of, respectively, approximately 18% (18.90 × 22.30 h.ng/mL) and 14% (1.25 × 1.43 h.ng/mL), with the upper bounds of 90% CIs slightly above 1.25. Changes in pharmacokinetics of metoprolol or its metabolite α-hydroxymetoprolol were not statistically significant and their 90% CIs were within the equivalence range of 0.80-1.25. CONCLUSIONS: In conclusion, our study shows that EPP-AF® does not clinically change CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities, once, despite statistical significant, the magnitude of the changes in AUC values after EPP-AF® were all below 20% and therefore may be considered safe regarding potential interactions involving these enzymes. Besides, to the best of our knowledge this is the first study to assess potential HDIs with propolis.


Assuntos
Cafeína/farmacocinética , Losartan/farmacocinética , Metoprolol/farmacocinética , Midazolam/farmacocinética , Omeprazol/farmacocinética , Própole , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adulto , Cafeína/sangue , Estudos Cross-Over , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Feminino , Humanos , Losartan/sangue , Masculino , Metoprolol/sangue , Midazolam/sangue , Omeprazol/sangue , Terfenadina/sangue , Terfenadina/farmacocinética
8.
Drug Metab Dispos ; 47(8): 832-842, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31123035

RESUMO

Organic anion transporting polypeptide 2B1 (OATP2B1) is a widely expressed membrane transporter with diverse substrate specificity. In vitro and clinical studies suggest a role for intestinal OATP2B1 in the oral absorption of medications. Moreover, OATP2B1 is highly expressed in hepatocytes where it is thought to promote liver drug clearance. However, until now, a shortcoming of studies implicating OATP2B1 in drug disposition has been a lack of in vivo models. Here, we report the development of a knockout (KO) mouse model with targeted, global disruption of the Slco2b1 gene to examine the disposition of two confirmed mOATP2B1 substrates, namely, fexofenadine and rosuvastatin. The plasma pharmacokinetics of intravenously administered fexofenadine was not different between KO and wild-type (WT) mice. However, after oral fexofenadine administration, KO mice had 70% and 41% lower maximal plasma concentration (C max) and area under the plasma concentration-time curve (AUC0-last) than WT mice, respectively. In WT mice, coadministration of fexofenadine with grapefruit juice (GFJ) or apple juice (AJ) was associated with reduced C max by 80% and 88%, respectively, while the AUC0-last values were lower by 35% and 70%, respectively. In KO mice, AJ coadministration reduced oral fexofenadine C max and AUC0-last values by 67% and 59%, respectively, while GFJ had no effects. Intravenous and oral rosuvastatin pharmacokinetics were similar among WT and KO mice. We conclude that intestinal OATP2B1 is a determinant of oral fexofenadine absorption, as well as a target for fruit juice interactions. OATP2B1 does not significantly influence rosuvastatin disposition in mice. SIGNIFICANCE STATEMENT: A novel mouse model with targeted disruption of the Slco2b1 gene revealed that OATP2B1 is a determinant of oral absorption but not systemic disposition of fexofenadine, as well as a target of fruit juice interactions. Rosuvastatin oral and intravenous pharmacokinetics were not dependent on OATP2B1. These findings support the utility of the Slco2b1 KO mouse model for defining mechanisms of drug disposition at the intersection of in vitro and clinical pharmacology.


Assuntos
Mucosa Intestinal/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rosuvastatina Cálcica/farmacocinética , Terfenadina/análogos & derivados , Administração Intravenosa , Administração Oral , Animais , Área Sob a Curva , Interações Alimento-Droga , Sucos de Frutas e Vegetais , Células HEK293 , Células HeLa , Humanos , Absorção Intestinal , Masculino , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos/genética , Rosuvastatina Cálcica/administração & dosagem , Terfenadina/administração & dosagem , Terfenadina/farmacocinética
9.
J Clin Pharmacol ; 59(8): 1099-1109, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30875094

RESUMO

Osimertinib is a potent, third-generation, irreversible, central nervous system active epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that selectively inhibits EGFR-TKI sensitizing and EGFR T790M resistance mutations. It is approved for first-line treatment of patients with advanced non-small cell lung cancer (NSCLC) whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, and for patients with T790M-positive advanced NSCLC whose disease has progressed on or after EGFR-TKI therapy. This study investigated the pharmacokinetics (PK) of fexofenadine (P-glycoprotein substrate) following single- and multiple-dose osimertinib in patients with advanced NSCLC who have progressed on prior EGFR-TKI therapy. This open-label, phase 1 study (NCT02908750) comprised the PK phase and continued access phase. The former comprised 2 distinct periods with a 3- to 7-day washout: treatment period 1 (n = 24, fexofenadine 120 mg, day 1) and treatment period 2 (fexofenadine 120 mg + osimertinib 80 mg single dose on days 1 and 39 and osimertinib 80 mg once daily from days 4 to 41). Patients could continue osimertinib 80 mg once daily based on investigator's discretion in the continued access phase. Fexofenadine area under the plasma concentration-time curve and maximum concentration increased by 56% (90% confidence interval [CI], 35.4-78.6) and 76% (90%CI, 49.3-108.3) following coadministration with osimertinib single dose, and by 27% (90%CI, 11.2-45.8) and 25% (90%CI, 5.6-48.1) when given with osimertinib at steady state, respectively. Following osimertinib coadministration, median fexofenadine time to maximum concentration increased by approximately 30 minutes compared with time to maximum concentration following fexofenadine alone. No new osimertinib safety findings were observed. The increase in fexofenadine exposure following osimertinib coadministration shows osimertinib as a weak P-glycoprotein inhibitor.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antialérgicos/farmacocinética , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Terfenadina/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Idoso , Antialérgicos/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/embriologia , Carcinoma Pulmonar de Células não Pequenas/genética , Interações Medicamentosas , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Terfenadina/sangue , Terfenadina/farmacocinética
10.
Curr Drug Metab ; 20(2): 124-129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30280663

RESUMO

BACKGROUND: Recent US Food and Drug Administration (FDA) draft guidance on pharmacokinetic drugdrug interactions (DDIs) has highlighted the clinical importance of ABC transporters B1 or P-glycoprotein (P-gp), hepatic organic anion-transporting polypeptide transporters and breast cancer resistant protein because of their broad substrate specificity and the potential to be involved in DDIs. This guidance has indicated that digoxin, dabigatran etexilate and fexofenadine are P-gp substrate drugs and has defined P-gp inhibitors as those that increase the AUC of digoxin by ≧1.25-fold in clinical DDI studies. However, when substrate drugs of both CYPs and P-gp are involved in DDIs, it remains that the mechanisms of DDIs will be quite ambiguous in assessing how much the CYPs and/or drug transporters partially contribute to DDIs. OBJECTIVE: Since there are no detailed manuscripts that summarizes P-gp interactions unrelated to CYP metabolism, this article reviews the effects of potent P-gp inhibitors and P-gp inducers on the pharmacokinetics of P-gp substrate drugs, including digoxin, talinolol, dabigatran etexilate, and fexofenadine in human studies. In addition, the present outcome were to determine the PK changes caused by DDIs among P-gp substrate drugs without CYP metabolism in human DDI studies. CONCLUSION: Our manuscript concludes that the PK changes of the DDIs among P-gp drugs unrelated to CYP metabolism are less likely to be serious, and it appears to be convincing that the absences of clinical effects caused to the PK changes by the P-gp inducers is predominant compared with the excessive effects caused to those by the P-gp inhibitors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Dabigatrana/farmacocinética , Digoxina/farmacocinética , Propanolaminas/farmacocinética , Terfenadina/análogos & derivados , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Terfenadina/farmacocinética
11.
Expert Opin Drug Metab Toxicol ; 14(4): 429-434, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29635947

RESUMO

INTRODUCTION: Fexofenadine is administered as a racemic mixture of (R)- and (S)-enantiomers. The plasma concentrations of (R)-fexofenadine in humans are about 1.5-fold higher than those of the (S)-enantiomer. Such differences in the pharmacokinetics between fexofenadine enantiomers are likely to be dependent on stereoselectivity for affinity to drug-transporters. Areas covered: This review focuses on elucidation of differences in clinical pharmacokinetics between fexofenadine enantiomers. Expert opinion: Differences in pharmacokinetics between fexofenadine enantiomers were caused by organic anion transporting polypeptide (OATP) 2B1, with a minor contribution from P-glycoprotein (P-gp). In vitro studies using OATP2B1 cRNA showed that (R)-fexofenadine uptake into oocytes is greater than (S)-enantiomer uptake. P-gp inducers, carbamazepine, and inhibitors such as itraconazole and verapamil show greater effects on the pharmacokinetics of (S)-fexofenadine. Apple juice and grape fruit juice, OATP2B1 inhibitors, significantly decrease the exposure of both fexofenadine enantiomers, particularly the (S)-enantiomer, but do not change the t1/2. Rifampicin significantly increases plasma concentrations of both enantiomers through inhibition of OATP1B3, whereas enantioselectivity of fexofenadine uptake by OATP1B3-expressing cells has not been observed. Combinations of multiple transporters such as OATP2B1 and P-gp facilitate enantioselective disposition of fexofenadine. Drug-transporters appear to be capable of chiral discrimination for transport of drugs with an asymmetric center.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Terfenadina/análogos & derivados , Antialérgicos/química , Antialérgicos/farmacocinética , Transporte Biológico , Interações Medicamentosas , Humanos , Estereoisomerismo , Terfenadina/química , Terfenadina/farmacocinética
12.
Basic Clin Pharmacol Toxicol ; 121(6): 465-470, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28654209

RESUMO

Using moxifloxacin and terfenadine, which are known to induce benign and malignant QT interval prolongation, respectively, we analysed whether halothane-anaesthetized microminipigs are an appropriate model for assessing the risk of drug-induced long QT syndrome. Moxifloxacin (0.03, 0.3 and 3 mg/kg) and terfenadine (0.03, 0.3 and 3 mg/kg) were intravenously infused over 10 min. with a pause of 20 min. to the halothane-anaesthetized microminipigs (n = 4 for each drug). Moxifloxacin decreased the heart rate, whereas it increased the blood pressure in a dose-related manner. It also prolonged the PR interval and QT/QTc in a dose-related manner without altering the QRS width. Terfenadine decreased the heart rate and blood pressure, whereas it prolonged the PR interval, QRS width and QT/QTc in a dose-related manner. Terfenadine significantly prolonged the beat-to-beat variability of QT interval reflecting its pro-arrhythmic potential, which was not observed with moxifloxacin. The peak plasma concentrations of moxifloxacin and terfenadine after doses of 3 mg/kg were 4.81 and 10.15 µg/mL, respectively, which were both 1.5 times less in microminipigs than those previously reported in dogs. These results indicate that halothane-anaesthetized microminipigs would be useful for detecting drug-induced cardiovascular responses as well as differentiating benign from malignant QT interval prolongation like dogs, although there may be some differences in pharmacokinetic profile between these animals.


Assuntos
Anestésicos Inalatórios/farmacologia , Halotano/farmacologia , Síndrome do QT Longo/induzido quimicamente , Animais , Arritmias Cardíacas/induzido quimicamente , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fluoroquinolonas/efeitos adversos , Fluoroquinolonas/sangue , Fluoroquinolonas/farmacocinética , Frequência Cardíaca , Síndrome do QT Longo/epidemiologia , Masculino , Moxifloxacina , Reprodutibilidade dos Testes , Medição de Risco , Sensibilidade e Especificidade , Suínos , Porco Miniatura , Terfenadina/efeitos adversos , Terfenadina/sangue , Terfenadina/farmacocinética
13.
Clin Pharmacol Ther ; 102(6): 989-996, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28437851

RESUMO

Whether the combined use of probe drugs for CYP3A4 and P-glycoprotein can clarify the relative contribution of these proteins to pharmacokinetic variability of a dual substrate like tacrolimus has never been assessed. Seventy renal recipients underwent simultaneous 8-h pharmacokinetic profiles for tacrolimus, the CYP3A4 probe midazolam, and the putative P-glycoprotein probe fexofenadine. Patients were genotyped for polymorphisms in CYP3A5, CYP3A4, ABCB1, ABCC2 and SLCO2B1, -1B1, and 1B3. Carriers of the ABCB1 2677G>A polymorphism displayed lower fexofenadine Cmax (-66%; P = 0.012) and a trend toward higher clearance (+157%; P = 0.078). Predictors of tacrolimus clearance were CYP3A5 genotype, midazolam clearance, hematocrit, weight, and age (R2 = 0.61). Fexofenadine pharmacokinetic parameters were not predictive of tacrolimus clearance. In conclusion, fexofenadine pharmacokinetics varied considerably between renal recipients but most of this variability remained unexplained, with only minor effects of genetic polymorphisms. Fexofenadine cannot be used to assess in vivo CYP3A4-P-glycoprotein interplay in tacrolimus-treated renal recipients.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Tacrolimo/metabolismo , Tacrolimo/farmacocinética , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocromo P-450 CYP3A/genética , Feminino , Humanos , Transplante de Rim , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Midazolam/farmacocinética , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Ânions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Terfenadina/metabolismo , Terfenadina/farmacocinética , Adulto Jovem
14.
Drug Metab Dispos ; 45(5): 569-575, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188296

RESUMO

The aim of this study was to determine the effects of garlic and ginkgo herbal extracts on the pharmacokinetics of the P-glycoprotein (P-gp)/organic anion-transporting polypeptides (Oatps) substrate fexofenadine. Male rats were dosed orally with garlic (120 mg/kg), ginkgo (17 mg/kg), St. John's wort (SJW; 1000 mg/kg; positive control), or Milli-Q water for 14 days. On day 15, rats either were administered fexofenadine (orally or i.v.), had their livers isolated and perfused with fexofenadine, or had their small intestines divided into four segments (SI-SIV) and analyzed for P-gp and Oatp1a5. In vivo, SJW increased the clearance of i.v. administered fexofenadine by 28%. Garlic increased the area under the curve0-∞ and maximum plasma concentration of orally administered fexofenadine by 47% and 85%, respectively. Ginkgo and SJW had no effect on the oral absorption of fexofenadine. In the perfused liver, garlic, ginkgo, and SJW increased the biliary clearance of fexofenadine with respect to perfusate by 71%, 121%, and 234%, respectively. SJW increased the biliary clearance relative to the liver concentration by 64%. The ratio of liver to perfusate concentrations significantly increased in all treated groups. The expression of Oatp1a5 in SI was increased by garlic (88%) and SJW (63%). There were no significant changes in the expression of P-gp. Induction of intestinal Oatp1a5 by garlic may explain the increased absorption of orally administered fexofenadine. Ginkgo had no effect on the expression of intestinal P-gp or Oatp1a5. A dual inductive effect by SJW on opposing intestinal epithelial transport by Oatp1a5 and P-gp remains a possibility.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Alho/química , Ginkgo biloba/química , Hypericum/química , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Extratos Vegetais/farmacologia , Terfenadina/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Interações Medicamentosas , Injeções Intravenosas , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Perfusão , Extratos Vegetais/isolamento & purificação , Ratos , Especificidade por Substrato , Terfenadina/administração & dosagem , Terfenadina/sangue , Terfenadina/farmacocinética , Distribuição Tecidual
15.
Clin Transl Sci ; 9(4): 201-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27197662

RESUMO

Pharmacokinetic exposures to fexofenadine (FEX) are reduced by apple juice (AJ); however, the relationship between the AJ volume and the degree of AJ-FEX interaction has not been understood. In this crossover study, 10 healthy subjects received single doses of FEX 60 mg with different volumes (150, 300, and 600 mL) of AJ or water (control). To identify an AJ volume lacking clinically meaningful interaction, we tested a hypothesis that the 90% confidence interval (CI) for geometric mean ratio (GMR) of FEX AUCAJ /AUCwater is contained within a biocomparability bound of 0.5-2.0, with at least one tested volume of AJ. GMR (90% CI) of AUCAJ 150mL /AUCwater , AUCAJ 300mL /AUCwater , and AUCAJ 600mL /AUCwater were 0.903 (0.752-1.085), 0.593 (0.494-0.712), and 0.385 (0.321-0.462), respectively. While a moderate to large AJ-FEX interaction is caused by a larger volumes of AJ (e.g., 300 to 600 mL), the effect of a small volume (e.g., 150 mL) appears to be not meaningful.


Assuntos
Bebidas , Voluntários Saudáveis , Malus , Terfenadina/análogos & derivados , Administração Oral , Feminino , Humanos , Masculino , Terfenadina/administração & dosagem , Terfenadina/sangue , Terfenadina/farmacocinética
16.
Eur J Clin Pharmacol ; 72(7): 797-805, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27023466

RESUMO

PURPOSE: In Caco-2 cells, folate uptake via the proton-coupled folate transporter (PCFT) increases significantly by a 3-day treatment with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Additionally, mRNA content and protein expression of the transporter OATP1A2 were increased up to ninefold with 1,25(OH)2D3. We investigated whether these in vitro findings can be confirmed in humans in vivo. METHODS: Ten healthy volunteers (six women) received 5 mg folic acid orally once before and once together with the last intake of a 10-day course of 0.5 µg 1,25(OH)2D3 orally. One hundred twenty milligrams fexofenadine, an OATP1A2 substrate, was taken in 1 day before the first folic acid intake, and again on the ninth day of 1,25(OH)2D3 intake. Duodenal biopsies were taken for transporter mRNA assessments once before and once on the ninth or tenth day of the vitamin D3 course. Serum folic acid and fexofenadine concentrations were quantified with a chemiluminescence immunoassay and LC-MS/MS, respectively. Pharmacokinetics were compared between periods with standard bioequivalence approaches. RESULTS: While geometric mean folic acid AUC0-2h, which mainly reflects absorption, was 0.403 and 0.414 mg/L·h before and after the vitamin D3 course (geometric mean ratio (GMR), 1.027; 90 % confidence interval (90 % CI), 0.788-1.340), the geometric mean fexofenadine AUC0-2h was 1.932 and 2.761 mg/L·h, respectively (GMR, 1.429; 90 % CI, 0.890-2.294). PCFT- and OATP1A2-mRNA expressions in duodenal biopsies were essentially unchanged. CONCLUSIONS: No significant changes in folic acid and fexofenadine absorption were observed after a 10-day course of 1,25(OH)2D3 in humans in vivo. This study underlines the importance of confirming in vitro findings in vivo in humans.


Assuntos
Ácido Fólico/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Terfenadina/análogos & derivados , Vitamina D/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Administração Oral , Adulto , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Feminino , Ácido Fólico/sangue , Voluntários Saudáveis , Humanos , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Ânions Orgânicos/genética , Transportador de Folato Acoplado a Próton/genética , RNA Mensageiro/metabolismo , Terfenadina/sangue , Terfenadina/farmacocinética , Vitamina D/farmacologia , Adulto Jovem
17.
Basic Clin Pharmacol Toxicol ; 119(3): 284-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27009433

RESUMO

Cytochrome P450 (CYP) activity can be assessed using a 'cocktail' phenotyping approach. Recently, we have developed a cocktail (Geneva cocktail) which combines the use of low-dose probes with a low-invasiveness dried blood spots (DBS) sampling technique and a single analytical method for the phenotyping of six major CYP isoforms. We have previously demonstrated that modulation of CYP activity after pre-treatment with CYP inhibitors/inducer could be reliably predicted using Geneva cocktail. To further validate this cocktail, in this study, we have verified whether probe drugs contained in the latter cause mutual drug-drug interactions. In a randomized, four-way, Latin-square crossover study, 30 healthy volunteers received low-dose caffeine, flurbiprofen, omeprazole, dextromethorphan and midazolam (a previously validated combination with no mutual drug-drug interactions); fexofenadine alone; bupropion alone; or all seven drugs simultaneously (Geneva cocktail). Pharmacokinetic profiles of the probe drugs and their metabolites were determined in DBS samples using both conventional micropipette sampling and new microfluidic device allowing for self-sampling. The 90% confidence intervals for the geometric mean ratios of AUC metabolite/AUC probe for CYP probes administered alone or within Geneva cocktail fell within the 0.8-1.25 bioequivalence range indicating the absence of pharmacokinetic interaction. The same result was observed for the chosen phenotyping indices, that is metabolic ratios at 2 hr (CYP1A2, CYP3A) or 3 hr (CYP2B6, CYP2C9, CYP2C19, CYP2D6) post-cocktail administration. DBS sampling could successfully be performed using a new microfluidic device. In conclusion, Geneva cocktail combined with an innovative DBS sampling device can be used routinely as a test for simultaneous CYP phenotyping.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Teste em Amostras de Sangue Seco/métodos , Fenótipo , Adolescente , Adulto , Bupropiona/administração & dosagem , Bupropiona/farmacocinética , Cafeína/administração & dosagem , Cafeína/farmacocinética , Estudos Cross-Over , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Dextrometorfano/administração & dosagem , Dextrometorfano/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Flurbiprofeno/administração & dosagem , Flurbiprofeno/farmacocinética , Técnicas de Genotipagem , Humanos , Masculino , Midazolam/administração & dosagem , Midazolam/farmacocinética , Omeprazol/administração & dosagem , Omeprazol/farmacocinética , Terfenadina/administração & dosagem , Terfenadina/análogos & derivados , Terfenadina/farmacocinética , Adulto Jovem
18.
Drug Dev Ind Pharm ; 42(6): 945-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26467209

RESUMO

BACKGROUND: In the present age of polypharmacy, limited sampling strategy becomes important to verify if drug levels are within the prescribed threshold limits from efficacy and safety considerations. The need to establish reliable single time concentration dependent models to predict exposure becomes important from cost and time perspectives. METHODS: A simple unweighted linear regression model was developed to describe the relationship between Cmax versus AUC for fexofenadine, losartan, EXP3174, itraconazole and hydroxyitraconazole. The fold difference, defined as the quotient of the observed and predicted AUC values, were evaluated along with statistical comparison of the predicted versus observed values. RESULTS: The correlation between Cmax versus AUC was well established for all the five drugs with a correlation coefficient (r) ranging from 0.9130 to 0.9997. Majority of the predicted values for all the five drugs (77%) were contained within a narrow boundary of 0.75- to 1.5-fold difference. The r values for observed versus predicted AUC were 0.9653 (n = 145), 0.8342 (n = 76), 0.9524 (n = 88), 0.9339 (n = 89) and 0.9452 (n = 66) for fexofenadine, losartan, EXP3174, itraconazole and hydroxyitraconazole, respectively. CONCLUSIONS: Cmax versus AUC relationships were established for all drugs and were amenable for limited sampling strategy for AUC prediction. However, fexofenadine, EXP3174 and hydroxyitraconazole may be most relevant for AUC prediction by a single time concentration as judged by the various criteria applied in this study.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacocinética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Itraconazol/farmacocinética , Losartan/farmacocinética , Terfenadina/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Área Sob a Curva , Estudos Cross-Over , Interações Medicamentosas , Humanos , Itraconazol/análogos & derivados , Itraconazol/metabolismo , Losartan/metabolismo , Polimedicação , Terfenadina/metabolismo , Terfenadina/farmacocinética
19.
Drug Metab Pharmacokinet ; 30(5): 352-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213156

RESUMO

The stereoselective pharmacokinetics of fexofenadine are associated with OATP2B1-mediated transport, and grapefruit juice (GFJ) is an inhibitor of OATP2B1. Therefore, in this study, we aimed to investigate whether and to what extent GFJ ingestion affected the pharmacokinetics of fexofenadine enantiomers in healthy subjects. In a randomized, two-phase, open-label, crossover study, 14 subjects received 60 mg of racemic fexofenadine simultaneously with water or GFJ. Ingestion of GFJ significantly decreased the areas under the plasma concentration-time curve (AUC0-24) for (R)- and (S)-fexofenadine by 39% and 52%, respectively. Subsequently, GFJ increased the mean R/S ratio of the AUC0-24 from 1.58 to 1.96 (P < 0.05). Although GFJ greatly reduced the amounts of (R)- and (S)-fexofenadine excreted into the urine (Ae0-24) by 52% and 61%, respectively, the mean R/S ratios of Ae0-24 and the renal clearances of both enantiomers were unchanged between the control and GFJ phases. GFJ, an OATP2B1 inhibitor, significantly reduced the plasma concentrations of fexofenadine enantiomers, exhibiting clinically moderate effects. The present results suggested that changes in OATP2B1 activity by GFJ may alter the stereoselective pharmacokinetics of fexofenadine and that reduced intestinal OATP2B1 activity may affect the stereoselectivity of fexofenadine.


Assuntos
Antialérgicos/farmacocinética , Bebidas , Citrus paradisi , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Terfenadina/análogos & derivados , Adulto , Antialérgicos/química , Área Sob a Curva , Estudos Cross-Over , Feminino , Interações Alimento-Droga , Humanos , Masculino , Estereoisomerismo , Terfenadina/química , Terfenadina/farmacocinética , Adulto Jovem
20.
Yakugaku Zasshi ; 135(3): 473-81, 2015.
Artigo em Japonês | MEDLINE | ID: mdl-25759055

RESUMO

Drug transporters play an important role in the clinical pharmacokinetics of many therapeutic agents. Although it is estimated that about half of all therapeutic agents are chiral, there has been little information on the stereoselective pharmacokinetics related to drug transporters. This review focuses on the drug transporters contributing to the stereoselective pharmacokinetics of fexofenadine enantiomers in humans. Fexofenadine is administered clinically as a racemic mixture, and the plasma concentration of (R)-fexofenadine is about 1.5-fold higher than that of the (S)-enantiomer. Because fexofenadine is poorly metabolized by cytochrome P450s, its pharmacokinetics depends on its drug-transporter activities. First, we examined whether drug-transporter polymorphisms influence fexofenadine enantiomer pharmacokinetics. The findings suggested that a combination of multiple transporters involving organic anion transporting polypeptide (OATP) 2B1, P-glycoprotein (P-gp), and multidrug resistance-associated protein 2 (MRP2) react to stereoselective fexofenadine exposure. Subsequently, we evaluated the roles of P-gp and OATPs in fexofenadine enantiomer pharmacokinetics using these inducer/inhibitors. Coadministration of P-gp inducer/inhibitors significantly altered the pharmacokinetics of fexofenadine enantiomers. In addition, the OATP inhibitors rifampicin and apple juice also affected fexofenadine enantiomer pharmacokinetics. Moreover, in in vitro studies, the uptake of both fexofenadine enantiomers into OATP2B1 cRNA-injected oocytes was significantly higher than that into water-injected oocytes, and this effect was greater for (R)-fexofenadine. Taken together, these studies indicated that multiple transporters including P-gp, OATPs, and MRP2 play important roles in fexofenadine enantiomer pharmacokinetics. Furthermore, OATP2B1 is a key determinant of the stereoselective pharmacokinetics of fexofenadine, and drug transporters may have chiral discrimination ability.


Assuntos
Terfenadina/análogos & derivados , Animais , Transporte Biológico , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Polimorfismo Genético , Estereoisomerismo , Terfenadina/química , Terfenadina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA