Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.558
Filtrar
1.
J Biomech Eng ; 146(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888293

RESUMO

The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Neurônios , Terminações Pré-Sinápticas , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Modelos Neurológicos , Animais , Potenciais de Ação , Fatores de Tempo
2.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748250

RESUMO

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Assuntos
Plasticidade Neuronal , Terminações Pré-Sinápticas , Transdução de Sinais , Animais , Citoesqueleto de Actina/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Complexo Shelterina/metabolismo , Pinocitose , Drosophila
3.
J Physiol ; 602(8): 1703-1732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594842

RESUMO

We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons. Cox's method for correcting space-clamp errors was extended to the case of an isopotential compartment with attached neurites. The method was applied to voltage-ramp experiments, in which iNaP is assumed to gate instantaneously. The raw estimates of iNaP led to predicted clamp currents that were at variance with observation, hence an algorithm was devised to improve these estimates. Optionally, the method also allows an estimate of the membrane specific capacitance, although values of the axial resistivity and seal resistance must be provided. Assuming that membrane specific capacitance and axial resistivity were constant, we conclude that seal resistance continued to fall after adding TTX to the bath. This might have been attributable to a further deterioration of the seal after baseline rather than an unlikely effect of TTX. There was an increase in the membrane specific resistance in TTX. The reason for this is unknown, but it meant that iNaP could not be determined by simple subtraction. Attempts to account for iNaP with a Hodgkin-Huxley model of the transient sodium conductance met with mixed results. One thing to emerge was the importance of voltage shifts. Also, a large variability in previously reported values of transient sodium conductance in mossy fibre boutons made comparisons with our results difficult. Various other possible sources of error are discussed. Simulations suggest a role for iNaP in modulating the axonal attenuation of EPSPs. KEY POINTS: We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons, using a KCl-based internal (pipette) solution and correcting for the liquid junction potential (2 mV). Space-clamp errors and deterioration of the patch-clamp seal during the experiment were corrected for by compartmental modelling. Attempts to account for iNaP in terms of the transient sodium conductance met with mixed results. One possibility is that the transient sodium conductance is higher in mossy fibre boutons than in the axon shaft. The analysis illustrates the need to account for various voltage shifts (Donnan potentials, liquid junction potentials and, possibly, other voltage shifts). Simulations suggest a role for iNaP in modulating the axonal attenuation of excitatory postsynaptic potentials, hence analog signalling by dentate granule cells.


Assuntos
Fibras Musgosas Hipocampais , Sódio , Ratos , Animais , Terminações Pré-Sinápticas
4.
Cell Rep Methods ; 4(4): 100740, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521059

RESUMO

Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.


Assuntos
Adenilil Ciclases , AMP Cíclico , Plasticidade Neuronal , Terminações Pré-Sinápticas , Animais , Masculino , Camundongos , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , AMP Cíclico/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Optogenética/métodos , Terminações Pré-Sinápticas/metabolismo , Ratos
5.
Synapse ; 78(1): e22284, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996987

RESUMO

Dopamine (DA) is involved in stress and stress-related illnesses, including many psychiatric disorders. Corticotropin-releasing factor (CRF) plays a role in stress responses and targets the ventral midbrain DA system, which is composed of DA and non-DA cells, and divided into specific subregions. Although CRF inputs to the midline A10 nuclei ("classic VTA") are known, in monkeys, CRF-containing terminals are also highly enriched in the expanded A10 parabrachial pigmented nucleus (PBP) and in the A8 retrorubral field subregions. We characterized CRF-labeled synaptic terminals on DA (tyrosine hydroxylase, TH+) and non-DA (TH-) cell types in the PBP and A8 regions using immunoreactive electron microscopy (EM) in male and female macaques. CRF labeling was present mostly in axon terminals, which mainly contacted TH-negative dendrites in both subregions. Most CRF-positive terminals had symmetric profiles. In both PBP and A8, CRF symmetric (putative inhibitory) synapses onto TH-negative dendrites were significantly greater than asymmetric (putative excitatory) profiles. This overall pattern was similar in males and females, despite shifts in the size of these effects between regions depending on sex. Because stress and gonadal hormone shifts can influence CRF expression, we also did hormonal assays over a 6-month time period and found little variability in basal cortisol across similarly housed animals at the same age. Together our findings suggest that at baseline, CRF-positive synaptic terminals in the primate PBP and A8 are poised to regulate DA indirectly through synaptic contacts onto non-DA neurons.


Assuntos
Benzenoacetamidas , Hormônio Liberador da Corticotropina , Dopamina , Piperidonas , Humanos , Animais , Masculino , Feminino , Dopamina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Macaca/metabolismo , Terminações Pré-Sinápticas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
J Physiol ; 601(24): 5705-5732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942946

RESUMO

Motor neurons are the longest neurons in the body, with axon terminals separated from the soma by as much as a meter. These terminals are largely autonomous with regard to their bioenergetic metabolism and must burn energy at a high rate to sustain muscle contraction. Here, through computer simulation and drawing on previously published empirical data, we determined that motor neuron terminals in Drosophila larvae experience highly volatile power demands. It might not be surprising then, that we discovered the mitochondria in the motor neuron terminals of both Drosophila and mice to be heavily decorated with phosphagen kinases - a key element in an energy storage and buffering system well-characterized in fast-twitch muscle fibres. Knockdown of arginine kinase 1 (ArgK1) in Drosophila larval motor neurons led to several bioenergetic deficits, including mitochondrial matrix acidification and a faster decline in the cytosol ATP to ADP ratio during axon burst firing. KEY POINTS: Neurons commonly fire in bursts imposing highly volatile demands on the bioenergetic machinery that generates ATP. Using a computational approach, we built profiles of presynaptic power demand at the level of single action potentials, as well as the transition from rest to sustained activity. Phosphagen systems are known to buffer ATP levels in muscles and we demonstrate that phosphagen kinases, which support such phosphagen systems, also localize to mitochondria in motor nerve terminals of fruit flies and mice. By knocking down phosphagen kinases in fruit fly motor nerve terminals, and using fluorescent reporters of the ATP:ADP ratio, lactate, pH and Ca2+ , we demonstrate a role for phosphagen kinases in stabilizing presynaptic ATP levels. These data indicate that the maintenance of phosphagen systems in motor neurons, and not just muscle, could be a beneficial initiative in sustaining musculoskeletal health and performance.


Assuntos
Mitocôndrias , Terminações Pré-Sinápticas , Animais , Camundongos , Simulação por Computador , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/fisiologia , Neurônios Motores/fisiologia , Drosophila/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Neuroscience ; 532: 103-112, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778690

RESUMO

At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to an increase in neurotransmitter release that restores the strength of synaptic transmission following a blockade of nicotinic acetylcholine receptors (nAChRs). Mechanisms informing the presynaptic terminal of the loss of postsynaptic receptivity remain poorly understood. Previous research at the mouse NMJ suggests that extracellular protons may function as a retrograde signal that triggers an upregulation of neurotransmitter output (measured by quantal content, QC) through the activation of acid-sensing ion channels (ASICs). We further investigated the pH-dependency of PHP in an ex-vivo mouse muscle preparation. We observed that increasing the buffering capacity of the perfusion saline with HEPES abolishes PHP and that acidifying the saline from pH 7.4 to pH 7.2-7.1 increases QC, demonstrating the necessity and sufficiency of extracellular acidification for PHP. We then sought to uncover how the blockade of nAChRs leads to the pH decrease. Plasma-membrane calcium ATPase (PMCA), a calcium-proton antiporter, is known to alkalize the synaptic cleft following neurotransmission in a calcium-dependent manner. We hypothesize that since nAChR blockade reduces postsynaptic calcium entry, it also reduces the alkalizing activity of the PMCA, thereby causing acidosis, ASIC activation, and QC upregulation. In line with this hypothesis, we found that pharmacological inhibition of the PMCA with carboxyeosin induces QC upregulation and that this effect requires functional ASICs. We also demonstrated that muscles pre-treated with carboxyeosin fail to generate PHP. These findings suggest that reduced PMCA activity causes presynaptic homeostatic potentiation by activating ASICs at the mouse NMJ.


Assuntos
Cálcio , Junção Neuromuscular , Animais , Camundongos , Cálcio/metabolismo , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Terminações Pré-Sinápticas/metabolismo , Canais Iônicos Sensíveis a Ácido , Neurotransmissores/farmacologia , Concentração de Íons de Hidrogênio , ATPases Transportadoras de Cálcio/farmacologia
8.
J Pharmacol Exp Ther ; 386(3): 331-343, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391223

RESUMO

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Xenônio , Ratos , Animais , Ratos Wistar , Xenônio/farmacologia , Xenônio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios , Transmissão Sináptica , Terminações Pré-Sinápticas/metabolismo , Hipocampo/metabolismo , Medula Espinal , Neurotransmissores/metabolismo
9.
J Alzheimers Dis ; 94(1): 227-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212097

RESUMO

BACKGROUND: Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE: To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS: Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS: In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION: Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Rede de Modo Padrão , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
10.
Acta Neuropathol Commun ; 11(1): 54, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004141

RESUMO

Loss of synapses is the most robust pathological correlate of Alzheimer's disease (AD)-associated cognitive deficits, although the underlying mechanism remains incompletely understood. Synaptic terminals have abundant mitochondria which play an indispensable role in synaptic function through ATP provision and calcium buffering. Mitochondrial dysfunction is an early and prominent feature in AD which could contribute to synaptic deficits. Here, using electron microscopy, we examined synapses with a focus on mitochondrial deficits in presynaptic axonal terminals and dendritic spines in cortical biopsy samples from clinically diagnosed AD and age-matched non-AD control patients. Synaptic vesicle density within the presynaptic axon terminals was significantly decreased in AD cases which appeared largely due to significantly decreased reserve pool, but there were significantly more presynaptic axons containing enlarged synaptic vesicles or dense core vesicles in AD. Importantly, there was reduced number of mitochondria along with significantly increased damaged mitochondria in the presynapse of AD which correlated with changes in SV density. Mitochondria in the post-synaptic dendritic spines were also enlarged and damaged in the AD biopsy samples. This study provided evidence of presynaptic vesicle loss as synaptic deficits in AD and suggested that mitochondrial dysfunction in both pre- and post-synaptic compartments contribute to synaptic deficits in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Sinapses/metabolismo , Terminações Pré-Sinápticas/metabolismo , Mitocôndrias/patologia , Encéfalo/patologia
11.
Int J Numer Method Biomed Eng ; 39(5): e3696, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872253

RESUMO

Previous work on mitochondrial distribution in axons has shown that approximately half of the presynaptic release sites do not contain mitochondria, raising the question of how the boutons that do not contain mitochondria are supplied with ATP. Here, we develop and apply a mathematical model to study this question. Specifically, we investigate whether diffusive transport of ATP is sufficient to support the exocytic functionality in synaptic boutons which lack mitochondria. Our results demonstrate that the difference in ATP concentration between a bouton containing a mitochondrion and a neighboring bouton lacking a mitochondrion is only approximately 0.4%, which is still 3.75 times larger than the ATP concentration minimally required to support synaptic vesicle release. This work therefore suggests that passive diffusion of ATP is sufficient to maintain the functionality of boutons which do not contain mitochondria.


Assuntos
Axônios , Terminações Pré-Sinápticas , Terminações Pré-Sinápticas/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
12.
J Biomech Eng ; 145(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795013

RESUMO

Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol. As dynein is a retrograde motor, its dysfunction should not directly influence anterograde transport. However, our modeling results unexpectedly predict that slow axonal transport fails to transport cargos against their concentration gradient without dynein. The reason is the lack of a physical mechanism for the reverse information flow from the axon terminal, which is required so that the cargo concentration at the terminal could influence the cargo concentration distribution in the axon. Mathematically speaking, to achieve a prescribed concentration at the terminal, equations governing cargo transport must allow for the imposition of a boundary condition postulating the cargo concentration at the terminal. Perturbation analysis for the case when the retrograde motor velocity becomes close to zero predicts uniform cargo distributions along the axon. The obtained results explain why slow axonal transport must be bidirectional to allow for the maintenance of concentration gradients along the axon length. Our result is limited to small cargo diffusivity, which is a reasonable assumption for many slow axonal transport cargos (such as cytosolic and cytoskeletal proteins, neurofilaments, actin, and microtubules) which are transported as large multiprotein complexes or polymers.


Assuntos
Transporte Axonal , Dineínas , Dineínas/genética , Transporte Axonal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Axônios/metabolismo , Microtúbulos/metabolismo
13.
Methods Mol Biol ; 2616: 69-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715929

RESUMO

The comprehension of the finest mechanisms underlying experience-dependent plasticity requires the investigation of neurons and synaptic terminals in the intact brain over prolonged periods of time. Longitudinal two-photon imaging together with the expression of fluorescent proteins enables high-resolution imaging of dendritic spines and axonal varicosities of cortical neurons in vivo. Importantly, the study of the mechanisms of structural reorganization is relevant for a deeper understanding of the pathophysiological mechanisms of neurological diseases such as stroke and for the development of new therapeutic approaches. This protocol describes the principal steps for in vivo investigation of neuronal plasticity both in healthy conditions and after an ischemic lesion. First, we give a description of the surgery to perform a stable cranial window that allows optical access to the mouse brain cortex. Then we explain how to perform longitudinal two-photon imaging of dendrites, axonal branches, and synaptic terminals in the mouse brain cortex in vivo, in order to investigate the plasticity of synaptic terminals and orientation of neuronal processes. Finally, we describe how to induce an ischemic lesion in a target region of the mouse brain cortex through a cranial window by applying the photothrombotic stroke model.


Assuntos
Neurônios , Acidente Vascular Cerebral , Camundongos , Animais , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Axônios/patologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Terminações Pré-Sinápticas , Plasticidade Neuronal/fisiologia , Espinhas Dendríticas/fisiologia
14.
Biochem Biophys Res Commun ; 621: 94-100, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35820284

RESUMO

The activity-dependent regulation of synaptic structures plays a key role in synaptic development and plasticity; however, the signaling mechanisms involved remain largely unknown. The serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K), plays a pivotal role in a wide range of physiological functions. We focused on the importance of Akt in rapid synaptic structural changes after stimulation at the Drosophila neuromuscular junction, a well-studied model synapse. Compared with wild-type larvae, akt mutants showed significantly reduced muscle size and an increased number of boutons per area, suggesting that Akt is required for proper pre- and postsynaptic growth. In addition, the level of cysteine string protein (CSP) was significantly increased, and its distribution was different in akt mutants. After high K+ single stimulation, the CSP level of akt mutant NMJs increased dramatically compared with that of wild-type NMJs. Interestingly, ghost boutons without postsynaptic specialization were found in akt mutant NMJs, and the number of these boutons was significantly increased by patterned stimulation. In contrast, the postsynaptic change in the subsynaptic reticulum (SSR) in the akt mutant occurred independent of stimulation. These results suggest that Akt functions in both pre- and postsynaptic growth and differentiation, and in particular, presynaptic action occurs in an activity-dependent manner.


Assuntos
Proteínas de Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Junção Neuromuscular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transmissão Sináptica/fisiologia
15.
Proc Natl Acad Sci U S A ; 119(28): e2122618119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867738

RESUMO

Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.


Assuntos
AMP Cíclico , Corantes Fluorescentes , Hipocampo , Imagem Molecular , Neurônios , Animais , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Hipocampo/metabolismo , Humanos , Camundongos , Imagem Molecular/métodos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo
16.
Neurotoxicology ; 91: 218-227, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643327

RESUMO

The inhibition of the excessive release of glutamate in the brain has emerged as a promising new option for developing therapeutic strategies for neurodegenerative disorders. This study investigated the effect and mechanism of lappaconitine, a diterpenoid alkaloid found in species of Aconitum, on glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Here, we report that in the rat cortical synaptosomal preparation, lappaconitine reduced the K+ channel blocker 4-aminopyridine (4-AP)-evoked Ca2+-dependent release of glutamate. The inhibitory effect of lappaconitine on the evoked glutamate release was blocked by the vesicular transporter inhibitor bafilomycin A1 and calcium-chelating agent ethylene glycol tetraacetic acid (EGTA), but was unaffected by exposure to the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate (dl-TBOA). The depolarization-induced elevation of cytosolic calcium concentration ([Ca2+]c) was inhibited by lappaconitine, while the 4-AP-mediated depolarization of the synaptosomal membrane potential was not affected. The inhibition of glutamate release by lappaconitine was markedly decreased in synaptosomes pretreated with the Cav2.3 (R-type) channel blocker SNX-482 or the protein kinase A inhibitor H89. Nevertheless, the lappaconitine-mediated inhibition of glutamate release was not abolished by the intracellular Ca2+-release inhibitors dantrolene and CGP37157. Lappaconitine also significantly decreased the 4-AP-induced phosphorylation of PKA and SNAP-25, a presynaptic substrate for PKA. Our data suggest that lappaconitine reduces Ca2+ influx through R-type Ca2+ channels, subsequently reducing the protein kinase A cascade to inhibit the evoked glutamate release from rat cerebral cortex nerve terminals.


Assuntos
Aconitina , Cálcio , Proteínas Quinases Dependentes de AMP Cíclico , Ácido Glutâmico , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptossomos
17.
Proc Natl Acad Sci U S A ; 119(26): e2202912119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727967

RESUMO

VEGF was initially discovered due to its angiogenic activity and therefore named "vascular endothelial growth factor." However, its more recently discovered neurotrophic activity may be evolutionarily more ancient. Our previous work showed that all the changes produced by axotomy on the firing activity and synaptic inputs of abducens motoneurons were completely restored after VEGF administration. Therefore, we hypothesized that the lack of VEGF delivered by retrograde transport from the periphery should also affect the physiology of otherwise intact abducens motoneurons. For VEGF retrograde blockade, we chronically applied a neutralizing VEGF antibody to the lateral rectus muscle. Recordings of extracellular single-unit activity and eye movements were made in alert cats before and after the application of the neutralizing antibody. Our data revealed that intact, noninjured abducens motoneurons retrogradely deprived of VEGF exhibited noticeable changes in their firing pattern. There is a general decrease in firing rate and a significant reduction in eye position and eye velocity sensitivity (i.e., a decrease in the tonic and phasic components of their discharge, respectively). Moreover, by means of confocal immunocytochemistry, motoneurons under VEGF blockade showed a marked reduction in the density of afferent synaptic terminals contacting with their cell bodies. Altogether, the present findings demonstrate that the lack of retrogradely delivered VEGF renders abducens motoneurons into an axotomy-like state. This indicates that VEGF is an essential retrograde factor for motoneuronal synaptic drive and discharge activity.


Assuntos
Movimentos Oculares , Neurônios Motores , Terminações Pré-Sinápticas , Fator A de Crescimento do Endotélio Vascular , Animais , Anticorpos Neutralizantes , Axotomia , Gatos , Movimentos Oculares/efeitos dos fármacos , Movimentos Oculares/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Músculos Oculomotores/efeitos dos fármacos , Músculos Oculomotores/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
18.
Neurobiol Aging ; 115: 29-38, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462302

RESUMO

Synaptic dysfunction is one of the key mechanisms associated with cognitive deficits observed in Alzheimer's disease (AD), yet little is known about the presynaptic axonal boutons in AD. Focusing on cortical en passant boutons (EPBs) along axons located in the motor, sensory and prefrontal regions of the cerebral cortex in the APP/PS1 mouse model of AD, we investigated structural properties of EPBs over the lifespan and in response to a midlife environmental enrichment (EE) intervention. At 3, 12, and 18-22 months and following 6 months of midlife EE, we found that EPBs showed remarkable resilience in preserving overall synaptic output, as evidenced by the maintained density of EPBs along the axon shaft across all experimental conditions. Using cranial window imaging to monitor synaptic changes in real time, we report that despite maintaining a stable synaptic density, the dynamic fraction (gains and losses) of EPBs was significantlyreduced at 10-13 months of age in APP/PS1 axons compared to age matched controls.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Axônios/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Terminações Pré-Sinápticas/metabolismo
19.
Cereb Cortex ; 32(9): 1840-1865, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34530440

RESUMO

Synapses "govern" the computational properties of any given network in the brain. However, their detailed quantitative morphology is still rather unknown, particularly in humans. Quantitative 3D-models of synaptic boutons (SBs) in layer (L)6a and L6b of the temporal lobe neocortex (TLN) were generated from biopsy samples after epilepsy surgery using fine-scale transmission electron microscopy, 3D-volume reconstructions and electron microscopic tomography. Beside the overall geometry of SBs, the size of active zones (AZs) and that of the three pools of synaptic vesicles (SVs) were quantified. SBs in L6 of the TLN were middle-sized (~5 µm2), the majority contained only a single but comparatively large AZ (~0.20 µm2). SBs had a total pool of ~1100 SVs with comparatively large readily releasable (RRP, ~10 SVs L6a), (RRP, ~15 SVs L6b), recycling (RP, ~150 SVs), and resting (~900 SVs) pools. All pools showed a remarkably large variability suggesting a strong modulation of short-term synaptic plasticity. In conclusion, L6 SBs are highly reliable in synaptic transmission within the L6 network in the TLN and may act as "amplifiers," "integrators" but also as "discriminators" for columnar specific, long-range extracortical and cortico-thalamic signals from the sensory periphery.


Assuntos
Neocórtex , Terminações Pré-Sinápticas , Adulto , Humanos , Neocórtex/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura , Lobo Temporal/ultraestrutura
20.
J Neurosci ; 41(40): 8279-8296, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34413209

RESUMO

Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.


Assuntos
Axônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Axônios/química , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Feminino , Hipocampo/química , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/química , Receptor CB1 de Canabinoide/genética , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA