Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1251351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390373

RESUMO

Introduction: During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods: Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the ß-adrenergic receptor agonist CL316,243. Results: Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion: Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.


Assuntos
Canais de Cátion TRPM , Camundongos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética
2.
J Biol Chem ; 300(3): 105760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367663

RESUMO

In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Marrom , Sistema Nervoso Simpático , Termogênese , Proteína Desacopladora 1 , Animais , Camundongos , Tecido Adiposo Bege/inervação , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenérgicos/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Camundongos Knockout , Aclimatação/genética , Sistema Nervoso Simpático/fisiologia , Macrófagos/metabolismo
3.
Nat Commun ; 15(1): 1646, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388532

RESUMO

Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.


Assuntos
Adipócitos Bege , Adipogenia , Animais , Masculino , Camundongos , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Termogênese/genética
4.
Proc Natl Acad Sci U S A ; 121(3): e2310711121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190531

RESUMO

Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis which plays an important role in thermogenesis and energy metabolism. However, the regulatory factors that inhibit BAT activity remain largely unknown. Here, cardiotrophin-like cytokine factor 1 (CLCF1) is identified as a negative regulator of thermogenesis in BAT. Adenovirus-mediated overexpression of CLCF1 in BAT greatly impairs the thermogenic capacity of BAT and reduces the metabolic rate. Consistently, BAT-specific ablation of CLCF1 enhances the BAT function and energy expenditure under both thermoneutral and cold conditions. Mechanistically, adenylate cyclase 3 (ADCY3) is identified as a downstream target of CLCF1 to mediate its role in regulating thermogenesis. Furthermore, CLCF1 is identified to negatively regulate the PERK-ATF4 signaling axis to modulate the transcriptional activity of ADCY3, which activates the PKA substrate phosphorylation. Moreover, CLCF1 deletion in BAT protects the mice against diet-induced obesity by promoting BAT activation and further attenuating impaired glucose and lipid metabolism. Therefore, our results reveal the essential role of CLCF1 in regulating BAT thermogenesis and suggest that inhibiting CLCF1 signaling might be a potential therapeutic strategy for improving obesity-related metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Adenoviridae , Interleucinas , Obesidade/genética , Termogênese/genética
5.
Adv Biol (Weinh) ; 8(2): e2300192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38164809

RESUMO

The strategy to activate thermogenic adipocytes has therapeutic potential to overcome obesity as they dissipate surplus energy as heat through various mechanisms. NG,NG-dimethylarginine dimethylaminohydrolases (DDAHs) are enzymes involved in the nitric oxide-protein kinase G signaling axis which increases thermogenic gene expression. However, the role of DDAHs in thermogenic adipocytes has not been elucidated. The adipocyte-specific Ddah1 knockout mice are generated by crossing Ddah1fl/fl mice with adiponectin Cre recombinase mice. Adipocyte-specific DDAH1 overexpressing mice are generated using adeno-associated virus-double-floxed inverse open reading frame (AAV-DIO) system. These mice are analyzed under basal, cold exposure, or high-fat diet (HFD) conditions. Primary inguinal white adipose tissue cells from adipocyte-specific Ddah1 knockout mice expressed comparable amounts of Ucp1 mRNA. Adipocyte-specific DDAH1 overexpressing mice do not exhibit enhanced activation of thermogenic adipocytes. In addition, when these mice are exposed to cold environment or fed an HFD, their body temperature/weight and thermogenesis-related gene and protein expressions are unchanged. These findings indicate that DDAH1 does not play a role in either cold- or diet-induced thermogenesis. Therefore, adipocyte targeting DDAH1 gene therapy for the treatment of obesity is unlikely to be effective.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Amidoidrolases , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Brancos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Camundongos Knockout , Dieta
6.
Cell Rep ; 42(12): 113504, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041811

RESUMO

Bisphenol S (BPS) exposure has been implied epidemiologically to increase obesity risk, but the underlying mechanism is unclear. Here, we propose that BPS exposure at an environmentally relevant dose aggravates diet-induced obesity in female mice by inducing brown adipose tissue (BAT) whitening. We explored the underlying mechanism by which KDM5A-associated demethylation of the trimethylation of lysine 4 on histone H3 (H3K4me3) in thermogenic genes is overactivated in BAT upon BPS exposure, leading to the reduced expression of thermogenic genes. Further studies have suggested that BPS activates KDM5A transcription in BAT by binding to glucocorticoid receptor (GR) in an estrogen-dependent manner. Estrogen-estrogen receptors facilitate the accessibility of the KDM5A gene promoter to BPS-activated GR by recruiting the activator protein 1 (AP-1) complex. These results indicate that BAT is another important target of BPS and that targeting KDM5A-related signals may serve as an approach to counteract the BPS-induced susceptivity to obesity.


Assuntos
Tecido Adiposo Marrom , Obesidade , Feminino , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Receptores de Estrogênio/metabolismo , Estrogênios/metabolismo , Dieta , Termogênese/genética
7.
Front Immunol ; 14: 1253766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936696

RESUMO

Introduction: Brown adipose tissue (BAT) is mainly responsible for mammalian non-shivering thermogenesis and promotes energy expenditure. Meanwhile, similar to white adipose tissue (WAT), BAT also secretes a variety of adipokines to regulate metabolism through paracrine, autocrine, or endocrine ways. The chemokine C-X-C motif chemokine ligand-13 (CXCL13), a canonical B cell chemokine, functions in inflammation and tumor-related diseases. However, the role of CXCL13 in the adipose tissues is unclear. Methods: The expression of CXCL13 in BAT and subcutaneous white adipose tissue (SWAT) of mice under cold stimulation were detected. Local injection of CXCL13 into BAT of normal-diet and high-fat-diet induced obese mice was used to detect thermogenesis and determine cold tolerance. The brown adipocytes were treated with CXCL13 alone or in the presence of macrophages to determine the effects of CXCL13 on thermogenic and inflammation related genes expression in vitro. Results: In this study, we discovered that the expression of CXCL13 in the stromal cells of brown adipose tissue significantly elevated under cold stimulation. Overexpression of CXCL13 in the BAT via local injection could increase energy expenditure and promote thermogenesis in obese mice. Mechanically, CXCL13 could promote thermogenesis via recruiting M2 macrophages in the BAT and, in the meantime, inhibiting pro-inflammatory factor TNFα level. Discussion: This study revealed the novel role of adipose chemokine CXCL13 in the regulation of BAT activity and thermogenesis.


Assuntos
Tecido Adiposo Marrom , Quimiocina CXCL13 , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Quimiocina CXCL13/metabolismo , Macrófagos/metabolismo , Mamíferos , Camundongos Obesos , Termogênese/genética
8.
Nat Commun ; 14(1): 6729, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872178

RESUMO

Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.


Assuntos
Tecido Adiposo Marrom , Mitocôndrias , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Plasmalogênios/metabolismo , Termogênese/genética
9.
J Nutr Biochem ; 122: 109458, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802370

RESUMO

Iron overload has been demonstrated to be associated with insulin resistance, iron overload cardiomyopathy (IOC). Brown adipose tissue (BAT) is emerging as a novel therapeutic target for the treatment of various diseases, not only because of its capacity for dissipating excess energy via non-shivering thermogenesis, but also because of its implication in physiological and pathophysiological processes. However, little attention has been devoted to the precise alterations and impacts of iron overload-BAT. We conducted RNA-Seq analysis on BAT samples obtained from mice subjected to a high iron diet (HID) or a normal chow diet (CON), respectively. The RNA-seq transcriptomic analysis revealed that 1,289 differentially expressed RNAs (DEGs) were identified, with a higher number of the downregulated genes (910 genes) compared to the upregulated genes (379 genes). The results of Gene Ontology (GO) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the downregulated DEGs were primarily involved in hypertrophic cardiomyopathy, dilated cardiomyopathy, which were defined as IOC under the iron overload condition. The association between iron overload-BAT with cardiomyopathy was further investigated using exosome coculture technology. Our results demonstrated that the exosomes derived from ferric citrate treated-mature HIB 1B brown adipocytes, could be internalized by HL-1 cardiomyocytes, and contributed to the dysfunction in these cells. The present study has revealed the alterations and impacts of iron overload-BAT, particularly on the onset of IOC via not only RNA-seq but also exosomes coculture technology. The outputs might shed light on the novel therapeutic strategies for the treatment of IOC.


Assuntos
Cardiomiopatias , Exossomos , Sobrecarga de Ferro , Animais , Camundongos , Adipócitos Marrons , RNA-Seq , Técnicas de Cocultura , Tecido Adiposo Marrom/fisiologia , Cardiomiopatias/genética , Sobrecarga de Ferro/genética , Termogênese/genética
10.
Dev Cell ; 58(21): 2195-2205.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37647897

RESUMO

Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. Here, we performed single-cell gene expression analyses of mesenchymal cells during mouse embryogenesis with a focus on BAT development. We identified cell populations associated with the development of BAT, including Dpp4+ cells that emerge at the onset of adipogenic commitment. Immunostaining and lineage-tracing studies show that Dpp4+ cells constitute the BAT fascia and contribute minorly as adipocyte progenitors. Additionally, we identified the transcription factor GATA6 as a marker of brown adipogenic progenitor cells. Deletion of Gata6 in the brown fat lineage resulted in a striking loss of BAT. Together, these results identify progenitor and transitional cells in the brown adipose lineage and define a crucial role for GATA6 in BAT development.


Assuntos
Adipócitos Marrons , Dipeptidil Peptidase 4 , Animais , Camundongos , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Dipeptidil Peptidase 4/metabolismo , Obesidade/metabolismo , Termogênese/genética
11.
FASEB J ; 37(8): e23079, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37410022

RESUMO

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Assuntos
Adipócitos Bege , Camundongos , Ratos , Animais , Ativação Transcricional , Adipócitos Bege/metabolismo , Genisteína/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Elementos de Resposta , Tecido Adiposo Marrom/metabolismo
12.
J Physiol Biochem ; 79(4): 731-743, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37405670

RESUMO

Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatócitos , Termogênese/genética , Tecido Adiposo Branco/metabolismo
13.
Mol Metab ; 76: 101780, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482187

RESUMO

OBJECTIVES: Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since ß-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS: NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS: Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while ß-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS: The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.


Assuntos
Adipócitos , Transdução de Sinais , Camundongos , Humanos , Animais , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Camundongos Obesos , Adipócitos/metabolismo , Obesidade/metabolismo , Termogênese/genética
14.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298226

RESUMO

Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.


Assuntos
Sirtuínas , Humanos , Polifenóis/farmacologia , PPAR gama , Obesidade , Tecido Adiposo Branco/fisiologia , Tecido Adiposo Marrom/fisiologia , Termogênese/genética
15.
Nat Commun ; 14(1): 2754, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179330

RESUMO

Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs. In the early phase of lipid accumulation induced by denervation or thermoneutrality, transiently expressed c-Kit on BAs increases the protein levels of the lipogenic enzymes via PI3K and AKT signaling. EC-specific SCF deletion and BA-specific c-Kit deletion attenuate the induction of the lipogenic enzymes and suppress the enlargement of lipid droplets in BAs after denervation or thermoneutrality in male mice. These data provide insight into SCF/c-Kit signaling as a regulator that promotes lipid accumulation through the increase of lipogenic enzymes in BAT when thermogenesis is inhibited.


Assuntos
Adipócitos Marrons , Hipercolesterolemia , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Hipercolesterolemia/metabolismo , Lipogênese/genética , Camundongos Knockout , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Termogênese/genética , Proteínas Proto-Oncogênicas c-kit
16.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430282

RESUMO

Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.


Assuntos
Adipócitos Marrons , MicroRNAs , Animais , Camundongos , Adipócitos Marrons/metabolismo , Febre/induzido quimicamente , Febre/genética , Febre/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Termogênese/genética
17.
J Biol Chem ; 298(11): 102568, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209826

RESUMO

Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) uncoupling in skeletal muscle and mitochondrial uncoupling via uncoupling protein 1 (UCP1) in brown/beige adipose tissue are two mechanisms implicated in energy expenditure. Here, we investigated the effects of glycogen synthase kinase 3 (GSK3) inhibition via lithium chloride (LiCl) treatment on SERCA uncoupling in skeletal muscle and UCP1 expression in adipose. C2C12 and 3T3-L1 cells treated with LiCl had increased SERCA uncoupling and UCP1 protein levels, respectively, ultimately raising cellular respiration; however, this was only observed when LiCl treatment occurred throughout differentiation. In vivo, LiCl treatment (10 mg/kg/day) increased food intake in chow-fed diet and high-fat diet (HFD; 60% kcal)-fed male mice without increasing body mass-a result attributed to elevated daily energy expenditure. In soleus muscle, we determined that LiCl treatment promoted SERCA uncoupling via increased expression of SERCA uncouplers, sarcolipin and/or neuronatin, under chow-fed and HFD-fed conditions. We attribute these effects to the GSK3 inhibition observed with LiCl treatment as partial muscle-specific GSK3 knockdown produced similar effects. In adipose, LiCl treatment inhibited GSK3 in inguinal white adipose tissue (iWAT) but not in brown adipose tissue under chow-fed conditions, which led to an increase in UCP1 in iWAT and a beiging-like effect with a multilocular phenotype. We did not observe this beiging-like effect and increase in UCP1 in mice fed a HFD, as LiCl could not overcome the ensuing overactivation of GSK3. Nonetheless, our study establishes novel regulatory links between GSK3 and SERCA uncoupling in muscle and GSK3 and UCP1 and beiging in iWAT.


Assuntos
Adenosina Trifosfatases , Lítio , Animais , Masculino , Camundongos , Adenosina Trifosfatases/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Quinase 3 da Glicogênio Sintase/metabolismo , Lítio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
J Oleo Sci ; 71(11): 1647-1653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310052

RESUMO

Brown adipose tissue (BAT) functions as a radiator for thermogenesis and helps maintain body temperature and regulate metabolism. Inflammatory signals have been reported to inhibit PGC-1α activation and UCP1-mediated thermogenesis in brown adipocytes. Inflammation is mainly caused by cell hypertrophy and macrophage invasion due to obesity, and invading macrophages secrete inflammatory cytokines, including TNF-α, IL1ß, and IL6, which suppress the thermogenesis in BAT. Tocopherol is a lipid-soluble vitamin with anti-inflammatory effects is expected to contribute to the suppression of inflammation in adipose tissue. In this study, we investigated the protective effect of tocopherols, α-tocopherol (α-toc) and δ-tocopherol (δ-toc), against brown adipocyte inflammation and thermogenesis dysfunction.Inflammatory stimulation by TNF-α, a major inflammatory cytokine, significantly decreased the protein expression levels of UCP1 and PGC-1α in rat primary brown adipocytes. The pre-incubation of α-toc or δ-toc significantly suppressed the decrease in UCP1 and PGC-1α expression and lipid accumulation. Additionally, α-toc and δ-toc suppress the induction of ERK1/2 gene expression, implying that an antiinflammatory effect is involved in this protective effect. We fed mice a high-fat diet for 16 weeks and investigated the effects of α-toc and δ-toc in the diet. Intake of α-toc and δ-toc significantly suppressed weight gain and hypertrophy of brown adipocytes. Our results suggest that α-toc and δ-toc suppress the dysfunction of thermogenesis in brown adipocytes due to inflammation and contribute to the treatment of obesity and obesity-related metabolic diseases.


Assuntos
Adipócitos Marrons , Fator de Necrose Tumoral alfa , Camundongos , Ratos , Animais , Adipócitos Marrons/metabolismo , Proteína Desacopladora 1/genética , Fator de Necrose Tumoral alfa/metabolismo , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Inflamação/metabolismo , Hipertrofia/complicações , Hipertrofia/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
19.
Signal Transduct Target Ther ; 7(1): 324, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114195

RESUMO

The incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Neoplasias , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Aminoácidos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Neoplasias/patologia , Termogênese/genética , Microambiente Tumoral
20.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36124842

RESUMO

Laminin-α4 (LAMA4) is an extracellular matrix protein implicated in the regulation of adipocyte differentiation and function. Prior research describes a role for LAMA4 in modulating adipocyte thermogenesis and uncoupling protein-1 (UCP1) expression in white adipose; however, the mechanisms involved are poorly understood. Here, we describe that Lama4 knockout mice (Lama4-/-) exhibit heightened mitochondrial biogenesis and peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) expression in subcutaneous white adipose tissue (sWAT). Furthermore, the acute silencing of LAMA4 with small interfering RNA in primary murine adipocytes was sufficient to upregulate the expression of thermogenic markers UCP1 and PR domain containing 16 (PRDM16). Silencing also resulted in an upregulation of PGC1-α and adenosine 5'-monophosphate-activated protein kinase (AMPK)-α expression. Subsequently, we show that integrin-linked kinase (ILK) is downregulated in the sWAT of Lama4-/- mice, and its silencing in adipocytes similarly resulted in elevated expression of UCP1 and AMPKα. Last, we demonstrate that treatment of human induced pluripotent stem cell-derived thermogenic adipocytes with LAMA4 (LN411) inhibited the expression of thermogenic markers and AMPKα. Overall, our results indicate that LAMA4 negatively regulates a thermogenic phenotype and pathways involving mitochondrial biogenesis in adipocytes through the suppression of AMPKα.


Assuntos
Proteínas Quinases Ativadas por AMP , Células-Tronco Pluripotentes Induzidas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Humanos , Laminina/genética , Laminina/metabolismo , Masculino , Camundongos , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA