Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724563

RESUMO

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Assuntos
Diferenciação Celular , Neurônios , Transdução de Sinais , Temperatura , Animais , Células PC12 , Neurônios/fisiologia , Neurônios/citologia , Camundongos , Ratos , Crescimento Neuronal , Neurogênese/fisiologia , Neuritos/metabolismo , Neuritos/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Termometria/métodos , Termogênese/fisiologia
2.
Phys Med Biol ; 69(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688289

RESUMO

Objective. Conventional computed tomography (CT) imaging does not provide quantitative information on local thermal changes during percutaneous ablative therapy of cancerous and benign tumors, aside from few qualitative, visual cues. In this study, we have investigated changes in CT signal across a wide range of temperatures and two physical phases for two different tissue mimicking materials, each.Approach. A series of experiments were conducted using an anthropomorphic phantom filled with water-based gel and olive oil, respectively. Multiple, clinically used ablation devices were applied to locally cool or heat the phantom material and were arranged in a configuration that produced thermal changes in regions with inconsequential amounts of metal artifact. Eight fiber optic thermal sensors were positioned in the region absent of metal artifact and were used to record local temperatures throughout the experiments. A spectral CT scanner was used to periodically acquire and generate electron density weighted images. Average electron density weighted values in 1 mm3volumes of interest near the temperature sensors were computed and these data were then used to calculate thermal volumetric expansion coefficients for each material and phase.Main results. The experimentally determined expansion coefficients well-matched existing published values and variations with temperature-maximally differing by 5% of the known value. As a proof of concept, a CT-generated temperature map was produced during a heating time point of the water-based gel phantom, demonstrating the capability to map changes in electron density weighted signal to temperature.Significance. This study has demonstrated that spectral CT can be used to estimate local temperature changes for different materials and phases across temperature ranges produced by thermal ablations.


Assuntos
Técnicas de Ablação , Estudos de Viabilidade , Imagens de Fantasmas , Termometria , Tomografia Computadorizada por Raios X , Termometria/métodos , Técnicas de Ablação/métodos , Cirurgia Assistida por Computador/métodos , Temperatura , Humanos
3.
Med Phys ; 51(5): 3195-3206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513254

RESUMO

BACKGROUND: Percutaneous microwave ablation (pMWA) is a minimally invasive procedure that uses a microwave antenna placed at the tip of a needle to induce lethal tissue heating. It can treat cancer and other diseases with lower morbidity than conventional surgery, but one major limitation is the lack of control over the heating region around the ablation needle. Superparamagnetic iron oxide nanoparticles have the potential to enhance and control pMWA heating due to their ability to absorb microwave energy and their ease of local delivery. PURPOSE: The purpose of this study is to experimentally quantify the capabilities of FDA-approved superparamagnetic iron oxide Feraheme nanoparticles (FHNPs) to enhance and control pMWA heating. This study aims to determine the effectiveness of locally injected FHNPs in increasing the maximum temperature during pMWA and to investigate the ability of FHNPs to create a controlled ablation zone around the pMWA needle. METHODS: PMWA was performed using a clinical ablation system at 915 MHz in ex-vivo porcine liver tissues. Prior to ablation, 50 uL 5 mg/mL FHNP injections were made on one side of the pMWA needle via a 23-gauge needle. Local temperatures at the FHNP injection site were directly compared to equidistant control sites without FHNP. First, temperatures were compared using directly inserted thermocouples. Next, temperatures were measured non-invasively using magnetic resonance thermometry (MRT), which enabled comprehensive four-dimensional (volumetric and temporal) assessment of heating effects relative to nanoparticle distribution, which was quantified using dual-echo ultrashort echo time (UTE) subtraction MR imaging. Maximum heating within FHNP-exposed tissues versus control tissues were compared at multiple pMWA energy delivery settings. The ability to generate a controlled asymmetric ablation zone using multiple FHNP injections was also tested. Finally, intra-procedural MRT-derived heat maps were correlated with gold standard gross pathology using Dice similarity analysis. RESULTS: Maximum temperatures at the FHNP injection site were significantly higher than control (without FHNP) sites when measured using direct thermocouples (93.1 ± 6.0°C vs. 57.2 ± 8.1°C, p = 0.002) and using non-invasive MRT (115.6 ± 13.4°C vs. 49.0 ± 10.6°C, p = 0.02). Temperature difference between FHNP-exposed and control sites correlated with total energy deposition: 66.6 ± 17.6°C, 58.1 ± 8.5°C, and 20.8 ± 9.2°C at high (17.5 ± 2.2 kJ), medium (13.6 ± 1.8 kJ), and low (8.8 ± 1.1 kJ) energies, respectively (all pairwise p < 0.05). Each FHNP injection resulted in a nanoparticle distribution within 0.9 ± 0.2 cm radially of the injection site and a local lethal heating zone confined to within 1.1 ± 0.4 cm radially of the injection epicenter. Multiple injections enabled a controllable, asymmetric ablation zone to be generated around the ablation needle, with maximal ablation radius on the FHNP injection side of 1.6 ± 0.2 cm compared to 0.7 ± 0.2 cm on the non-FHNP side (p = 0.02). MRT intra-procedural predicted ablation zone correlated strongly with post procedure gold-standard gross pathology assessment (Dice similarity 0.9). CONCLUSIONS: Locally injected FHNPs significantly enhanced pMWA heating in liver tissues, and were able to control the ablation zone shape around a pMWA needle. MRI and MRT allowed volumetric real-time visualization of both FHNP distribution and FHNP-enhanced pMWA heating that was useful for intra-procedural monitoring. This work strongly supports further development of a FHNP-enhanced pMWA paradigm; as all individual components of this approach are approved for patient use, there is low barrier for clinical translation.


Assuntos
Técnicas de Ablação , Nanopartículas Magnéticas de Óxido de Ferro , Micro-Ondas , Termometria , Animais , Termometria/métodos , Técnicas de Ablação/métodos , Suínos , Imageamento por Ressonância Magnética , Temperatura , Fígado/cirurgia , Fígado/diagnóstico por imagem
4.
An Acad Bras Cienc ; 96(1): e20200570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451591

RESUMO

In this study, videothermometry's application in detecting mammary tumors in dogs is explored in-depth. The research hypothesizes that this technique can effectively identify cancerous tissues during surgery by analyzing thermal patterns. The methodology involved comparing thermal imaging results from dogs with palpable mammary nodules against a control group, focusing on capturing real-time thermal patterns. Results were significant, showing distinct thermal patterns in carcinomas. This indicates videothermometry's capability in accurately identifying micro metastases and differentiating between neoplastic and non-neoplastic changes. The study concludes that videothermometry has considerable potential in enhancing surgical precision, especially in tumor resection and safety margin definition, but emphasizes the need for further research to thoroughly understand the thermal signatures of various mammary tumors in dogs.


Assuntos
Neoplasias Mamárias Animais , Termometria , Animais , Cães , Neoplasias Mamárias Animais/diagnóstico por imagem , Termometria/veterinária
5.
Theranostics ; 14(1): 324-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164157

RESUMO

Theranostic platforms, combining diagnostic and therapeutic approaches within one system, have garnered interest in augmenting invasive surgical, chemical, and ionizing interventions. Magnetic particle imaging (MPI) offers a quite recent alternative to established radiation-based diagnostic modalities with its versatile tracer material (superparamagnetic iron oxide nanoparticles, SPION). It also offers a bimodal theranostic framework that can combine tomographic imaging with therapeutic techniques using the very same SPION. Methods: We show the interleaved combination of MPI-based imaging, therapy (highly localized magnetic fluid hyperthermia (MFH)) and therapy safety control (MPI-based thermometry) within one theranostic platform in all three spatial dimensions using a commercial MPI system and a custom-made heating insert. The heating characteristics as well as theranostic applications of the platform were demonstrated by various phantom experiments using commercial SPION. Results: We have shown the feasibility of an MPI-MFH-based theranostic platform by demonstrating high spatial control of the therapeutic target, adequate MPI-based thermometry, and successful in situ interleaved MPI-MFH application. Conclusions: MPI-MFH-based theranostic platforms serve as valuable tools that enable the synergistic integration of diagnostic and therapeutic approaches. The transition into in vivo studies will be essential to further validate their potential, and it holds promising prospects for future advancements.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Termometria , Medicina de Precisão , Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita/uso terapêutico , Campos Magnéticos
6.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252974

RESUMO

Objectives. Evaluate the reproducibility, temperature tolerance, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations.Methods. Three liver mimicking phantoms embedded with temperature sensors were individually scanned with a dual-layer spectral CT at different radiation dose levels during heating (35 °C-80 °C). Physical density maps were reconstructed from spectral results using varying reconstruction parameters. Thermal volumetric expansion was then measured at each temperature sensor every 5 °C in order to establish a correlation between physical density and temperature. Linear regressions were applied based on thermal volumetric expansion for each phantom, and coefficient of variation for fit parameters was calculated to characterize reproducibility of spectral CT thermometry. Additionally, temperature tolerance was determined to evaluate effects of acquisition and reconstruction parameters. The resulting minimum radiation dose to meet the clinical temperature accuracy requirement was determined for each slice thickness with and without additional denoising.Results. Thermal volumetric expansion was robustly replicated in all three phantoms, with a correlation coefficient variation of only 0.43%. Similarly, the coefficient of variation for the slope and intercept were 9.6% and 0.08%, respectively, indicating reproducibility of the spectral CT thermometry. Temperature tolerance ranged from 2 °C to 23 °C, decreasing with increased radiation dose, slice thickness, and iterative reconstruction level. To meet the clinical requirement for temperature tolerance, the minimum required radiation dose ranged from 20, 30, and 57 mGy for slice thickness of 2, 3, and 5 mm, respectively, but was reduced to 2 mGy with additional denoising.Conclusions. Spectral CT thermometry demonstrated reproducibility across three liver-mimicking phantoms and illustrated the clinical requirement for temperature tolerance can be met for different slice thicknesses. The reproducibility and temperature accuracy of spectral CT thermometry enable its clinical application for non-invasive temperature monitoring of thermal ablation.


Assuntos
Termometria , Reprodutibilidade dos Testes , Termometria/métodos , Temperatura , Fígado/diagnóstico por imagem , Fígado/cirurgia , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
7.
J Clin Monit Comput ; 38(1): 197-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37792140

RESUMO

To identify and prevent perioperative hypothermia, most surgical patients require a non-invasive, accurate, convenient, and continuous core temperature method, especially for patients undergoing major surgery. This study validated the precision and accuracy of a cutaneous zero-heat-flux thermometer and its performance in detecting intraoperative hypothermia. Adults undergoing major non-cardiac surgeries with general anaesthesia were enrolled in the study. Core temperatures were measured with a zero-heat-flux thermometer, infrared tympanic membrane thermometer, and oesophagal monitoring at 15-minute intervals. Taking the average value of temperature measured in the tympanic membrane and oesophagus as a reference, we assessed the agreement using the Bland-Altman analysis and linear regression methods. Sensitivity, specificity, and predictive values of detecting hypothermia were estimated. 103 patients and one thousand sixty-eight sets of paired temperatures were analyzed. The mean difference between zero-heat-flux and the referenced measurements was -0.03 ± 0.25 °C, with 95% limits of agreement (-0.52 °C, 0.47 °C) was narrow, with 94.5% of the differences within 0.5 °C. Lin's concordance correlation coefficient was 0.90 (95%CI 0.89-0.92). The zero-heat-flux thermometry detected hypothermia with a sensitivity of 82% and a specificity of 90%. The zero-heat-flux thermometer is in good agreement with the reference core temperature based on tympanic and oesophagal temperature monitoring in patients undergoing major surgeries, and appears high performance in detecting hypothermia.


Assuntos
Hipotermia , Termometria , Adulto , Humanos , Temperatura Corporal , Temperatura , Temperatura Alta , Monitorização Intraoperatória/métodos , Termômetros , Esôfago
8.
J Biophotonics ; 17(2): e202300249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010860

RESUMO

Denervation induces skeletal muscle atrophy due to the loss of control and feedback with the nervous system. Unfortunately, muscle atrophy only becomes evident days after the denervation event when it could be irreversible. Alternative diagnosis tools for early detection of denervation-induced muscle atrophy are, thus, required. In this work, we demonstrate how the combination of transient thermometry, a technique already used for early diagnosis of tumors, and infrared-emitting nanothermometers makes possible the in vivo detection of the onset of muscle atrophy at short (<1 day) times after a denervation event. The physiological reasons behind these experimental results have been explored by performing three dimensional numerical simulations based on the Pennes' bioheat equation. It is concluded that the alterations in muscle thermal dynamics at the onset of muscle atrophy are consequence of the skin perfusion increment caused by the alteration of peripheral nervous autonomous system. This work demonstrates the potential of infrared luminescence thermometry for early detection of diseases of the nervous system opening the venue toward the development of new diagnosis tools.


Assuntos
Luminescência , Termometria , Humanos , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Termometria/métodos , Denervação/efeitos adversos , Diagnóstico Precoce
9.
Int J Hyperthermia ; 40(1): 2283388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994800

RESUMO

Purpose: A crucial aspect of quality assurance in thermal therapy is periodic demonstration of the heating performance of the device. Existing methods estimate the specific absorption rate (SAR) from the temperature rise after a short power pulse, which yields a biased estimate as thermal diffusion broadens the apparent SAR pattern. To obtain an unbiased estimate, we propose a robust frequency-domain method that simultaneously identifies the SAR as well as the thermal dynamics.Methods: We propose a method consisting of periodic modulation of the FUS power while recording the response with MR thermometry (MRT). This approach enables unbiased measurements of spatial Fourier coefficients that encode the thermal response. These coefficients are substituted in a generic thermal model to simultaneously estimate the SAR, diffusivity, and damping. The method was tested using a cylindrical phantom and a 3 T clinical MR-HIFU system. Three scenarios with varying modulation strategies are chosen to challenge the method. The results are compared to the well-known power pulse technique.Results: The thermal diffusivity is estimated at 0.151 mm2s-1 with a standard deviation of 0.01 mm2s-1 between six experiments. The SAR estimates are consistent between all experiments and show an excellent signal-to-noise ratio (SNR) compared to the well established power pulse method. The frequency-domain method proved to be insensitive to B0-drift and non steady-state initial temperature distributions.Conclusion: The proposed frequency-domain estimation method shows a high SNR and provided reproducible estimates of the SAR and the corresponding thermal diffusivity. The findings suggest that frequency-domain tools can be highly effective at estimating the SAR from (biased) MRT data acquired during periodic power modulation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Termometria , Difusão Térmica , Temperatura , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
10.
Adv Healthc Mater ; 12(31): e2301863, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37463675

RESUMO

Temperature plays a critical role in regulating body mechanisms and indicating inflammatory processes. Local temperature increments above 42 °C are shown to kill cancer cells in tumorous tissue, leading to the development of nanoparticle-mediated thermo-therapeutic strategies for fighting oncological diseases. Remarkably, these therapeutic effects can occur without macroscopic temperature rise, suggesting localized nanoparticle heating, and minimizing side effects on healthy tissues. Nanothermometry has received considerable attention as a means of developing nanothermosensing approaches to monitor the temperature at the core of nanoparticle atoms inside cells. In this study, a label-free, direct, and universal nanoscale thermometry is proposed to monitor the thermal processes of nanoparticles under photoexcitation in the tumor environment. Gold-iron oxide nanohybrids are utilized as multifunctional photothermal agents internalized in a 3D tumor model of glioblastoma that mimics the in vivo scenario. The local temperature under near-infrared photo-excitation is monitored by X-ray absorption spectroscopy (XAS) at the Au L3 -edge (11 919 eV) to obtain their temperature in cells, deepening the knowledge of nanothermal tumor treatments. This nanothermometric approach demonstrates its potential in detecting high nanothermal changes in tumor-mimicking tissues. It offers a notable advantage by enabling thermal sensing of any element, effectively transforming any material into a nanothermometer within biological environments.


Assuntos
Nanopartículas , Neoplasias , Termometria , Humanos , Raios X , Nanopartículas/química , Temperatura , Termometria/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Ouro/química
11.
Nanoscale ; 15(23): 9993-10003, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265264

RESUMO

Upconversion broadband white light emission driven by low-power near-infrared (NIR) lasers has been reported for many materials, but the mechanisms and effects related to this phenomenon remain unclear. Herein, we investigate the origin of laser-induced continuous white light emission in synthesized nanoparticles (Gd0.89Yb0.10Er0.01)2O3 and a mechanical mixture of commercial oxides with the same composition 89% Gd2O3, 10% Yb2O3, and 1% Er2O3. We report their photophysical features with respect to sample compactness, laser irradiation (wavelength, power density, excitation cycles), pressure, temperature, and temporal dynamics. Despite the sensitizer (Yb3+) and activator (Er3+) being in different particles for the mechanical mixture, efficient discrete and continuous upconversion emissions were observed. Furthermore, the synthesized nanoparticles were developed as primary luminescent thermometers (upon excitation at NIR) in the 299-363 K range, using the Er3+ upconversion 2H11/2 → 4I15/2/4S3/2 → 4I15/2 intensity ratio. They were also operating as secondary ones in the 1949-3086 K, based on the blackbody distribution of the observed white light emission. Our findings provide important insights into the mechanisms and effects related to the transition from discrete to continuous upconversion emissions with potential applications in remote temperature sensing.


Assuntos
Termometria , Fototerapia , Luz , Temperatura , Técnicas de Diagnóstico Cardiovascular
12.
Int J Hyperthermia ; 40(1): 2194595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37080550

RESUMO

PURPOSE: In presence of respiratory motion, temperature mapping is altered by in-plane and through-plane displacements between successive acquisitions together with periodic phase variations. Fast 2D Echo Planar Imaging (EPI) sequence can accommodate intra-scan motion, but limited volume coverage and inter-scan motion remain a challenge during free-breathing acquisition since position offsets can arise between the different slices. METHOD: To address this limitation, we evaluated a 2D simultaneous multi-slice EPI sequence with multiband (MB) acceleration during radiofrequency ablation on a mobile gel and in the liver of a volunteer (no heating). The sequence was evaluated in terms of resulting inter-scan motion, temperature uncertainty and elevation, potential false-positive heating and repeatability. Lastly, to account for potential through-plane motion, a 3D motion compensation pipeline was implemented and evaluated. RESULTS: In-plane motion was compensated whatever the MB factor and temperature distribution was found in agreement during both the heating and cooling periods. No obvious false-positive temperature was observed under the conditions being investigated. Repeatability of measurements results in a 95% uncertainty below 2 °C for MB1 and MB2. Uncertainty up to 4.5 °C was reported with MB3 together with the presence of aliasing artifacts. Lastly, fast simultaneous multi-slice EPI combined with 3D motion compensation reduce residual out-of-plane motion. CONCLUSION: Volumetric temperature imaging (12 slices/700 ms) could be performed with 2 °C accuracy or less, and offer tradeoffs in acquisition time or volume coverage. Such a strategy is expected to increase procedure safety by monitoring large volumes more rapidly for MR-guided thermotherapy on mobile organs.


Assuntos
Imagem Ecoplanar , Termometria , Humanos , Imagem Ecoplanar/métodos , Termometria/métodos , Termografia/métodos , Temperatura , Temperatura Corporal , Encéfalo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador
13.
J Clin Monit Comput ; 37(5): 1153-1159, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36879085

RESUMO

Zero-heat-flux core temperature measurements on the forehead (ZHF-forehead) show acceptable agreement with invasive core temperature measurements but are not always possible in general anesthesia. However, ZHF measurements over the carotid artery (ZHF-neck) have been shown reliable in cardiac surgery. We investigated these in non-cardiac surgery. In 99 craniotomy patients, we assessed agreement of ZHF-forehead and ZHF-neck (3M™ Bair Hugger™) with esophageal temperatures. We applied Bland-Altman analysis and calculated mean absolute differences (difference index) and proportion of differences within ± 0.5 °C (percentage index) during entire anesthesia and before and after esophageal temperature nadir. In Bland-Altman analysis [mean (limits of agreement)], agreement with esophageal temperature during entire anesthesia was 0.1 (-0.7 to +0.8) °C (ZHF-neck) and 0.0 (-0.8 to +0.8) °C (ZHF-forehead), and, after core temperature nadir, 0.1 (-0.5 to +0.7) °C and 0.1 (-0.6 to +0.8) °C, respectively. In difference index [median (interquartile range)], ZHF-neck and ZHF-forehead performed equally during entire anesthesia [ZHF-neck: 0.2 (0.1-0.3) °C vs ZHF-forehead: 0.2 (0.2-0.4) °C], and after core temperature nadir [0.2 (0.1-0.3) °C vs 0.2 (0.1-0.3) °C, respectively; all p > 0.017 after Bonferroni correction]. In percentage index [median (interquartile range)], both ZHF-neck [100 (92-100) %] and ZHF-forehead [100 (92-100) %] scored almost 100% after esophageal nadir. ZHF-neck measures core temperature as reliably as ZHF-forehead in non-cardiac surgery. ZHF-neck is an alternative to ZHF-forehead if the latter cannot be applied.


Assuntos
Temperatura Alta , Termometria , Humanos , Temperatura , Temperatura Corporal , Artéria Carótida Primitiva , Anestesia Geral , Craniotomia , Termômetros
14.
Int J Hyperthermia ; 40(1): 2184399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907223

RESUMO

PURPOSE: MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS: MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS: The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION: For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.


Assuntos
Hipertermia Induzida , Termometria , Humanos , Termometria/métodos , Hipertermia Induzida/métodos , Imagens de Fantasmas , Encéfalo , Imageamento por Ressonância Magnética/métodos
15.
Chem Commun (Camb) ; 59(7): 876-879, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36598045

RESUMO

Herein, a nanopipette-based thermocouple probe that possesses high temperature resolution, rapid response, good reversibility and stability was constructed and successfully applied for single-cell temperature sensing. Different intracellular temperatures were observed in diverse types of cells, which reveals differences in their metabolism levels. Temperature responses of cancer and normal cells against various exogenous drugs were also demonstrated. The spatially resolved temperature sensing of three-dimensional cell culture models unveils the existence of their inner temperature gradients. This work would facilitate drug screening and disease diagnosis.


Assuntos
Neoplasias , Termometria , Humanos , Termômetros , Temperatura Corporal , Temperatura
16.
Phys Med Biol ; 68(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36595333

RESUMO

Objective.The aim of the paper is to propose an all-in-one method based on magnetic resonance-supersonic shear wave imaging (MR-SSI) and proton resonance frequency shift (PRFS) to monitor high intensity focused ultrasound (HIFU) thermal ablations.Approach.Mechanical properties have been shown to be related to tissue damage induced by thermal ablations. Monitoring elasticity in addition to temperature changes may help in ensuring the efficacy and the accuracy of HIFU therapies. For this purpose, an MR-SSI method has been developed where the ultrasonic transducer is used for both mechanical wave generation and thermal ablation. Transient quasi-planar shear waves are generated using the acoustic radiation force, and their propagation is monitored in motion-sensitized phase MR images. Using a single-shot gradient-echo echo-planar-imaging sequence, MR images can be acquired at a sufficiently high temporal resolution to provide an update of PRFS thermometry and MR-SSI elastography maps in real time.Main results.The proposed method was first validated on a calibrated elasticity phantom, in which both the possibility to detect inclusions with different stiffness and repeatability were demonstrated. The standard deviation between the 8 performed measurements was 2% on the background of the phantom and 11%, at most, on the inclusions. A second experiment consisted in performing a HIFU heating in a gelatin phantom. The temperature increase was estimated to be 9 °C and the shear modulus was found to decrease from 2.9 to 1.8 kPa, reflecting the gel softening around the HIFU focus, whereas it remained steady in non-heated areas.Significance.The proposed MR-SSI technique allows monitoring HIFU ablations using thermometry and elastography simultaneously, without the need for an additional external mechanical exciter such as those used in MR elastography.


Assuntos
Técnicas de Imagem por Elasticidade , Tratamento por Ondas de Choque Extracorpóreas , Ablação por Ultrassom Focalizado de Alta Intensidade , Termometria , Técnicas de Imagem por Elasticidade/métodos , Termometria/métodos , Elasticidade , Ultrassom , Imageamento por Ressonância Magnética/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos
17.
Eur Arch Otorhinolaryngol ; 280(2): 549-556, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35716181

RESUMO

OBJECTIVE: To investigate the impact of with tympanostomy tubes (TT) on infrared tympanic membrane thermometer (ITMT) results and to provide a systematic review of ITMT results in non-naïve tympanic membranes. STUDY DESIGN: Original prospective blinded case series and systematic literature review. SETTINGS: A single tertiary university-affiliated medical center. METHODS: ITMT measurements of patients with unilateral TT and contralateral naïve control ear were randomly conducted by a single investigator blinded to the TT side before and after cerumen was removed from the external auditory canals. A systematic literature search of "MEDLINE" via "PubMed," "Embase," and "Google Scholar" on comparable published cases was performed. RESULTS: The mean paired differences (95% confidence interval [CI]) between ventilated and non-ventilated ears before and after cerumen removal were 0.08 ºC/0.14 ºF (-0.04 to 0.19 ºC/- 0.07º-0.34º) and 0.62 ºC/1.12 ºF (0.04-0.25 ºC/0.07-0.45 ºF), respectively (P < 0.001 and P = 0.01, respectively). CONCLUSION: These findings support the validity and accuracy of ITMT in the setting of ventilated ears.


Assuntos
Termometria , Membrana Timpânica , Humanos , Estudos Prospectivos , Termômetros , Meato Acústico Externo , Raios Infravermelhos
18.
World J Urol ; 41(2): 543-549, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36543945

RESUMO

PURPOSE: We aimed to assess critical temperature areas in the kidney parenchyma using magnetic resonance thermometry (MRT) in an ex vivo Holmium:YAG laser lithotripsy model. METHODS: Thermal effects of Ho:YAG laser irradiation of 14 W and 30 W were investigated in the calyx and renal pelvis of an ex vivo kidney with different laser application times (tL) followed by a delay time (tD) of tL/tD = 5/5 s, 5/10 s, 10/5 s, 10/10 s, and 20/0 s, with irrigation rates of 10, 30, 50, 70, and 100 ml/min. Using MRT, the size of the area was determined in which the thermal dose as measured by the Cumulative Equivalent Minutes (CEM43) method exceeded a value of 120 min. RESULTS: In the calyx, CEM43 never exceeded 120 min for flow rates ≥ 70 ml/min at 14 W, and longer tL (10 s vs. 5 s) lead to exponentially lower thermal affection of tissue (3.6 vs. 21.9 mm2). Similarly at 30 W and ≥ 70 ml/min CEM43 was below 120 min. Interestingly, at irrigation rates of 10 ml/min, tL = 10 s and tD = 10 s CEM43 were observed > 120 min in an area of 84.4 mm2 and 49.1 mm2 at tD = 5 s. Here, tL = 5 s revealed relevant thermal affection of 29.1 mm2 at 10 ml/min. CONCLUSION: We demonstrate that critical temperature dose areas in the kidney parenchyma were associated with high laser power and application times, a low irrigation rate, and anatomical volume of the targeted calyx.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Termometria , Humanos , Temperatura , Hólmio , Litotripsia a Laser/métodos , Temperatura Alta , Rim , Imageamento por Ressonância Magnética
19.
Int J Hyperthermia ; 40(1): 2151649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36535967

RESUMO

PURPOSE: To develop an effective and practical reconstruction pipeline to achieve motion-robust, multi-slice, real-time MR thermometry for monitoring thermal therapy in abdominal organs. METHODS: The application includes a fast spiral magnetic resonance imaging (MRI) pulse sequence and a real-time reconstruction pipeline based on multi-baseline proton resonance frequency shift (PRFS) method with visualization of temperature imaging. The pipeline supports multi-slice acquisition with minimal reconstruction lag. Simulations with a virtual motion phantom were performed to investigate the influence of the number of baselines and respiratory rate on the accuracy of temperature measurement. Phantom experiments with ultrasound heating were performed using a custom-made motion phantom to evaluate the performance of the pipeline. Lastly, experiments in healthy volunteers (N = 2) without heating were performed to evaluate the accuracy and stability of MR thermometry in abdominal organs (liver and kidney). RESULTS: The multi-baseline approach with greater than 25 baselines resulted in minimal temperature errors in the simulation. Phantom experiments demonstrated a 713 ms update time for 3-slice acquisitions. Temperature maps with 30 baselines showed clear temperature distributions caused by ultrasound heating in the respiratory phantom. Finally, the pipeline was evaluated with physiologic motions in healthy volunteers without heating, which demonstrated the accuracy (root mean square error [RMSE]) of 1.23 ± 0.18 °C (liver) and 1.21 ± 0.17 °C (kidney) and precision of 1.13 ± 0.11 °C (liver) and 1.16 ± 0.15 °C (kidney) using 32 baselines. CONCLUSIONS: The proposed real-time acquisition and reconstruction pipeline allows motion-robust, multi-slice, real-time temperature monitoring within the abdomen during free breathing.


Assuntos
Termometria , Humanos , Termometria/métodos , Temperatura , Imageamento por Ressonância Magnética/métodos , Temperatura Corporal , Fígado/cirurgia , Imagens de Fantasmas
20.
Magn Reson Imaging ; 96: 126-134, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496098

RESUMO

Real-time temperature monitoring is critical to the success of thermally ablative therapies. This work validates a 3D thermometry sequence with k-space field drift correction designed for use in magnetic resonance-guided focused ultrasound treatments for breast cancer. Fiberoptic probes were embedded in tissue-mimicking phantoms, and temperature change measurements from the probes were compared with the magnetic resonance temperature imaging measurements following heating with focused ultrasound. Precision and accuracy of measurements were also evaluated in free-breathing healthy volunteers (N = 3) under a non-heating condition. MR temperature measurements agreed closely with those of fiberoptic probes, with a 95% confidence interval of measurement difference from -2.0 °C to 1.4 °C. Field drift-corrected measurements in vivo had a precision of 1.1 ± 0.7 °C and were accurate within 1.3 ± 0.9 °C across the three volunteers. The field drift correction method improved precision and accuracy by an average of 46 and 42%, respectively, when compared to the uncorrected data. This temperature imaging sequence can provide accurate measurements of temperature change in aqueous tissues in the breast and support the use of this sequence in clinical investigations of focused ultrasound treatments for breast cancer.


Assuntos
Neoplasias da Mama , Ablação por Ultrassom Focalizado de Alta Intensidade , Termometria , Humanos , Feminino , Temperatura , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Termometria/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagens de Fantasmas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA