RESUMO
Seasonal Malaria Chemoprevention consisting of monthly administration of amodiaquine/sulfadoxine-pyrimethamine to children aged 3-59 months during the transmission season could promote SP-resistance. Mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes were assessed before and after SMC adoption in Burkina Faso. A total of 769 dried blood spots were selected from studies conducted in Nanoro, Burkina Faso, between 2010 and 2020. Of those, 299 were pre-SMC (2010-2012) and 470 were post-SMC-samples. Pfdhps and Pfdhfr genes were PCR-amplified and sequenced. A systematic review/meta-analysis of published studies conducted in Burkina Faso (2009-2023) was additionally performed. In Nanoro, the prevalence of Pfdhfr triple mutations (CIRNI) rose from 43.6% pre-SMC to 89.4% post-SMC (p < 0.0001). There was no mutation in Pfdhfr 164 and Pfdhps 540; Pfdhps A437G mutation increased from 63.9% (2010-2012) to 84.7% (2020) (p < 0.0001). The VAGKGS haplotype was 2.8% (2020). Pfdhfr/Pfdhps quintuple mutant IRN-436A437G rose from 18.6% (2010-2012) to 58.3% (2020) (p < 0.0001). Meta-analysis results from Burkina Faso showed an increase in mutations at Pfdhfr N51I, C59R, S108N, and Pfdhps A437G after SMC adoption. Post-SMC, the pyrimethamine-resistance marker prevalence increased, while the sulfadoxine-resistance marker prevalence remained stable. Detection of emerging PfdhpsVAGKGS haplotypes in 2020 underscores the importance of continuous SP-resistance monitoring.
Assuntos
Antimaláricos , Di-Hidropteroato Sintase , Resistência a Medicamentos , Mutação , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Tetra-Hidrofolato Desidrogenase , Burkina Faso/epidemiologia , Humanos , Tetra-Hidrofolato Desidrogenase/genética , Di-Hidropteroato Sintase/genética , Pirimetamina/uso terapêutico , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Antimaláricos/uso terapêutico , Sulfadoxina/uso terapêutico , Resistência a Medicamentos/genética , Lactente , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Pré-Escolar , Estações do Ano , Amodiaquina/uso terapêutico , Proteínas de Protozoários/genética , Combinação de Medicamentos , Quimioprevenção/métodos , Masculino , Feminino , Malária/prevenção & controle , Malária/epidemiologiaRESUMO
Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 µM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.
Assuntos
Ciclo Estral , Ácido Fólico , Animais , Feminino , Bovinos , Ciclo Estral/metabolismo , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/efeitos dos fármacos , Oviductos/metabolismo , Oviductos/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacosRESUMO
Cystathionine beta-synthase-deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. HCU can be treated by using betaine to lower tissue and plasma levels of homocysteine (Hcy). Here, we show that mice with severely elevated Hcy and potentially deficient in the folate species tetrahydrofolate (THF) exhibit a very limited response to betaine indicating that THF plays a critical role in treatment efficacy. Analysis of a mouse model of HCU revealed a 10-fold increase in hepatic levels of 5-methyl -THF and a 30-fold accumulation of formiminoglutamic acid, consistent with a paucity of THF. Neither of these metabolite accumulations were reversed or ameliorated by betaine treatment. Hepatic expression of the THF-generating enzyme dihydrofolate reductase (DHFR) was significantly repressed in HCU mice and expression was not increased by betaine treatment but appears to be sensitive to cellular redox status. Expression of the DHFR reaction partner thymidylate synthase was also repressed and metabolomic analysis detected widespread alteration of hepatic histidine and glutamine metabolism. Many individuals with HCU exhibit endothelial dysfunction. DHFR plays a key role in nitric oxide (NO) generation due to its role in regenerating oxidized tetrahydrobiopterin, and we observed a significant decrease in plasma NOx (NO2 + NO3) levels in HCU mice. Additional impairment of NO generation may also come from the HCU-mediated induction of the 20-hydroxyeicosatetraenoic acid generating cytochrome CYP4A. Collectively, our data shows that HCU induces dysfunctional one-carbon metabolism with the potential to both impair betaine treatment and contribute to multiple aspects of pathogenesis in this disease.
Assuntos
Homocistinúria , Fígado , Oxirredução , Tetra-Hidrofolato Desidrogenase , Tetra-Hidrofolatos , Animais , Homocistinúria/metabolismo , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Camundongos , Tetra-Hidrofolatos/metabolismo , Fígado/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Betaína/metabolismo , Betaína/farmacologia , Homocisteína/metabolismo , Camundongos Endogâmicos C57BL , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/genética , Carbono/metabolismo , Masculino , Ácido Fólico/metabolismo , FemininoRESUMO
BACKGROUND/AIM: Methotrexate (MTX) resistance in osteosarcoma leads to a very poor prognosis. In the present study, in order to further understand the basis and ramifications of MTX resistance in osteosarcoma, we selected an osteosarcoma cell line that has a 5,500-fold-increased MTX IC50 Materials and Methods: The super MTX-resistant 143B osteosarcoma cells (143B-MTXSR) were selected from MTX-sensitive parental human 143B osteosarcoma cells (143B-P) by continuous culture with step-wise increased amounts of MTX. To compare the malignancy of 143B-MTXSR and 143B-P, colony-formation capacity was compared with clonogenic assays on plastic and in soft agar. In addition, tumor growth was compared with orthotopic xenograft mouse models of osteosarcoma. Expression of dihydrofolate reductase (DHFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), and myelocytomatosis oncogene (MYC) was examined with western immunoblotting and compared in 143B-MTXSR and 143B-P cells. RESULTS: 143B-MTXSR had a 5,500-fold increase in the MTX IC50 compared to the parental 143B-P cells. Expression of DHFR was increased 10-fold in 143B-MTXSR compared to 143B-P (p<0.01). 143B-MTXSR cells had reduced colony-formation capacity on plastic (p=0.032) and in soft agar (p<0.01) compared to 143B-P and reduced tumor growth in orthotopic xenograft mouse models (p<0.001). These results demonstrate that 143B-MTXSR had reduced malignancy. 143B-MTXSR also showed an increased expression of PI3K (p<0.01), phosphorylated (activated) AKT (p=0.031), phosphorylated mTOR (p=0.043), and c-MYC (p=0.024) compared to 143B-P. CONCLUSION: The present study demonstrates that the increased expression of DHFR, PI3K/AKT/mTOR and c-MYC appears to be linked to super MTX resistance and, paradoxically, to reduced malignancy. The present results suggest that DHFR may be a powerful tumor suppressor when highly amplified.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Metotrexato , Osteossarcoma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc , Serina-Treonina Quinases TOR , Tetra-Hidrofolato Desidrogenase , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Metotrexato/farmacologia , Humanos , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Amplificação de Genes , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Antimetabólitos Antineoplásicos/farmacologiaRESUMO
BACKGROUND: Mutations in the Plasmodium falciparum dhfr gene confer resistance to pyrimethamine, which is widely used for malaria chemoprevention in Africa. We aimed to evaluate the frequency and evolution of dhfr mutations in Plasmodium ovale spp in Africa and their functional consequences, which are incompletely characterised. METHODS: We analysed dhfr mutations and their frequencies in P ovale spp isolates collected between Feb 1, 2004, and Aug 31, 2023, from the French National Malaria Reference Centre collection and from field studies in Benin, Gabon, and Kenya. Genetic patterns of positive selection were investigated. Full-length recombinant wild-type and mutant DHFR enzymes from both P ovale curtisi and P ovale wallikeri were expressed in bacteria to test whether the most common mutations reduced pyrimethamine susceptibility. FINDINGS: We included 518 P ovale spp samples (314 P ovale curtisi and 204 P ovale wallikeri). In P ovale curtisi, Ala15Ser-Ser58Arg was the most common dhfr mutation (39%; 124 of 314 samples). In P ovale wallikeri, dhfr mutations were less frequent, with Phe57Leu-Ser58Arg reaching 17% (34 of 204 samples). These two mutants were the most prevalent in central and east Africa and were fixed in Kenyan isolates. We detected six and four other non-synonymous mutations, representing 8% (24 isolates) and 2% (five isolates) of the P ovale curtisi and P ovale wallikeri isolates, respectively. Whole-genome sequencing and microsatellite analyses revealed reduced genetic diversity around the mutant pocdhfr and powdhfr genes. The mutant DHFR proteins showed structural changes at the pyrimethamine binding site in-silico, confirmed by a 4-times increase in pyrimethamine half-maximal inhibitory concentration in an Escherichia coli growth assay for the Phe57Leu-Ser58Arg mutant and 50-times increase for the Ala15Ser-Ser58Arg mutant, compared with the wild-type counterparts. INTERPRETATION: The widespread use of sulfadoxine-pyrimethamine for malaria chemoprevention might have exerted fortuitous selection pressure for dhfr mutations in P ovale spp. This calls for closer monitoring of dhfr and dhps mutations in P ovale spp. FUNDING: French Ministry of Health, Agence Nationale de la Recherche, and Global Emerging Infections Surveillance branch of the Armed Forces Health Surveillance Division.
Assuntos
Antimaláricos , Resistência a Medicamentos , Malária , Mutação , Plasmodium ovale , Pirimetamina , Tetra-Hidrofolato Desidrogenase , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium ovale/genética , Plasmodium ovale/efeitos dos fármacos , Humanos , Malária/epidemiologia , Estudos Retrospectivos , África Subsaariana/epidemiologia , Proteínas de Protozoários/genética , Quênia/epidemiologiaRESUMO
BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Piperazinas , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Prevalência , Togo/epidemiologia , Estudos Prospectivos , Artemeter/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Resistência a Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Biomarcadores , Combinação de Medicamentos , Plasmodium falciparum/genéticaRESUMO
BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Amplificação de Genes , Metotrexato , Tetra-Hidrofolato Desidrogenase , Humanos , Metotrexato/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Antimetabólitos Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodosRESUMO
A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.
Assuntos
RNA , Tetra-Hidrofolato Desidrogenase , Humanos , Linhagem Celular , Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismoRESUMO
Temporal control of protein levels in cells and living animals can be used to improve our understanding of protein function. In addition, control of engineered proteins could be used in therapeutic applications. PRoteolysis-TArgeting Chimeras (PROTACs) have emerged as a small-molecule-driven strategy to achieve rapid, post-translational regulation of protein abundance via recruitment of an E3 ligase to the target protein of interest. Here, we develop several PROTAC molecules by covalently linking the antibiotic trimethoprim (TMP) to pomalidomide, a ligand for the E3 ligase, Cereblon. These molecules induce degradation of proteins of interest (POIs) genetically fused to a small protein domain, E. coli dihydrofolate reductase (eDHFR), the molecular target of TMP. We show that various eDHFR-tagged proteins can be robustly degraded to 95% of maximum expression with PROTAC molecule 7c. Moreover, TMP-based PROTACs minimally affect the expression of immunomodulatory imide drug (IMiD)-sensitive neosubstrates using proteomic and biochemical assays. Finally, we show multiplexed regulation with another known degron-PROTAC pair, as well as reversible protein regulation in a rodent model of metastatic cancer, demonstrating the formidable strength of this system. Altogether, TMP PROTACs are a robust approach for selective and reversible degradation of eDHFR-tagged proteins in vitro and in vivo.
Assuntos
Proteínas de Escherichia coli , Tetra-Hidrofolato Desidrogenase , Animais , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Quimera de Direcionamento de Proteólise , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trimetoprima/farmacologia , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , ProteóliseRESUMO
Chimeric antigen receptor (CAR) T cell therapy has been successful for hematological malignancies. Still, a lack of efficacy and potential toxicities have slowed its application for other indications. Furthermore, CAR T cells undergo dynamic expansion and contraction in vivo that cannot be easily predicted or controlled. Therefore, the safety and utility of such therapies could be enhanced by engineered mechanisms that engender reversible control and quantitative monitoring. Here, we use a genetic tag based on the enzyme Escherichia coli dihydrofolate reductase (eDHFR), and derivatives of trimethoprim (TMP) to modulate and monitor CAR expression and T cell activity. We fused eDHFR to the CAR C terminus, allowing regulation with TMP-based proteolysis-targeting chimeric small molecules (PROTACs). Fusion of eDHFR to the CAR does not interfere with cell signaling or its cytotoxic function, and the addition of TMP-based PROTACs results in a reversible and dose-dependent inhibition of CAR activity via the proteosome. We show the regulation of CAR expression in vivo and demonstrate imaging of the cells with TMP radiotracers. In vitro immunogenicity assays using primary human immune cells and overlapping peptide fragments of eDHFR showed no memory immune repertoire for eDHFR. Overall, this translationally-orientied approach allows for temporal monitoring and image-guided control of cell-based therapies.
Assuntos
Imunoterapia Adotiva , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency.
Assuntos
Antagonistas do Ácido Fólico , Humanos , Antagonistas do Ácido Fólico/farmacologia , Metotrexato/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Ácido Fólico/farmacologia , Fluoruracila/farmacologiaRESUMO
BACKGROUND: Artemisinin-based combinations therapy (ACT) is the current frontline curative therapy for uncomplicated malaria in Burkina Faso. Sulfadoxine-pyrimethamine (SP) is used for the preventive treatment of pregnant women (IPTp), while SP plus amodiaquine (SP-AQ) is recommended for children under five in seasonal malaria chemoprevention (SMC). This study aimed to assess the proportions of mutations in the P. falciparum multidrug-resistance 1 (Pfmdr1), P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum dihydrofolate reductase (pfdhfr), and P. falciparum dihydropteroate synthase (pfdhps), genes from isolates collected during household surveys in Burkina Faso. METHODS: Dried blood spots from Plasmodium falciparum-positive cases at three sites (Orodara, Gaoua, and Banfora) collected during the peak of transmission were analysed for mutations in Pfcrt (codons 72-76, 93, 97, 145, 218, 343, 350 and 353), Pfmdr-1 (codons 86, 184, 1034, 1042 and 1246) dhfr (codons 51, 59, 108, 164) and dhps (at codons 431, 436, 437, 540, 581, 613) genes using deep sequencing of multiplexed Polymerase chaine reaction (PCR) amplicons. RESULTS: Of the 377 samples analysed, 346 (91.7%), 369 (97.9%), 368 (97.6%), and 374 (99.2%) were successfully sequenced for Pfcrt, Pfmdr-1, dhfr, and dhps, respectively. Most of the samples had a Pfcrt wild-type allele (89.3%). The 76T mutation was below 10%. The most frequent Pfmdr-1 mutation was detected at codon 184 (Y > F, 30.9%). The single mutant genotype (NFSND) predominated (66.7%), followed by the wild-type genotype (NYSND, 30.4%). The highest dhfr mutations were observed at codon 59R (69.8%), followed by codons 51I (66.6%) and 108 N (14.7%). The double mutant genotype (ACIRSI) predominated (52.4%). For mutation in the dhps gene, the highest frequency was observed at codon 437 K (89.3%), followed by codons 436 A (61.2%), and 613 S (14.4%). The double mutant genotype (IAKKAA) and the single mutant genotype (ISKKAA) were predominant (37.7% and 37.2%, respectively). The most frequent dhfr/dhps haplotypes were the triple mutant ACIRSI/IAKKAA (23%), the wild-type ACNCSI/ISKKAA (19%) and the double mutant ACIRSI/ISKKAA (14%). A septuple mutant ACIRNI/VAKKGA was observed in 2 isolates from Gaoua (0.5%). CONCLUSION: The efficacy of ACT partner drugs and drugs used in IPTp and SMC does not appear to be affected by the low proportion of highly resistant mutants observed in this study. Continued monitoring, including molecular surveillance, is critical for decision-making on effective treatment policy in Burkina Faso.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Criança , Feminino , Gravidez , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Burkina Faso , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Mutação , Tetra-Hidrofolato Desidrogenase/genética , Combinação de Medicamentos , Resistência a Medicamentos/genética , CódonRESUMO
BACKGROUND: Seasonal malaria chemoprevention is used in 13 countries in the Sahel region of Africa to prevent malaria in children younger than 5 years. Resistance of Plasmodium falciparum to seasonal malaria chemoprevention drugs across the region is a potential threat to this intervention. METHODS: Between December, 2015, and March, 2016, and between December, 2017, and March, 2018, immediately following the 2015 and 2017 malaria transmission seasons, community surveys were done among children younger than 5 years and individuals aged 10-30 years in districts implementing seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine in Burkina Faso, Chad, Guinea, Mali, Nigeria, Niger and The Gambia. Dried blood samples were collected and tested for P falciparum DNA by PCR. Resistance-associated haplotypes of the P falciparum genes crt, mdr1, dhfr, and dhps were identified by quantitative PCR and sequencing of isolates from the collected samples, and survey-weighted prevalence and prevalence ratio between the first and second surveys were estimated for each variant. FINDINGS: 5130 (17·5%) of 29 274 samples from 2016 and 2176 (7·6%) of 28 546 samples from 2018 were positive for P falciparum on quantitative PCR. Among children younger than 5 years, parasite carriage decreased from 2844 of 14 345 samples (19·8% [95% CI 19·2-20·5]) in 2016 to 801 of 14 019 samples (5·7% [5·3-6·1]) in 2018 (prevalence ratio 0·27 [95% CI 0·24-0·31], p<0·0001). Genotyping found no consistent evidence of increasing prevalence of amodiaquine resistance-associated variants of crt and mdr1 between 2016 and 2018. The dhfr haplotype IRN (consisting of 51Ile-59Arg-108Asn) was common at both survey timepoints, but the dhps haplotype ISGEAA (431Ile-436Ser-437Gly-540Glu-581Ala-613Ala), crucial for resistance to sulfadoxine-pyrimethamine, was always rare. Parasites carrying amodiaquine resistance-associated variants of both crt and mdr1 together with dhfr IRN and dhps ISGEAA occurred in 0·05% of isolates. The emerging dhps haplotype VAGKGS (431Val-436Ala-437Gly-540Lys-581Gly-613Ser) was present in four countries. INTERPRETATION: In seven African countries, evidence of a significant reduction in parasite carriage among children receiving seasonal malaria chemoprevention was found 2 years after intervention scale-up. Combined resistance-associated haplotypes remained rare, and seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine is expected to retain effectiveness. The threat of future erosion of effectiveness due to dhps variant haplotypes requires further monitoring. FUNDING: Unitaid.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Criança , Humanos , Plasmodium falciparum , Amodiaquina/uso terapêutico , Haplótipos , Antimaláricos/uso terapêutico , Estações do Ano , Prevalência , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Combinação de Medicamentos , Quimioprevenção , Nigéria , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/uso terapêutico , Genômica , Resistência a Medicamentos/genéticaRESUMO
A major challenge in the fight to effectively control malaria is the emergence of resistant parasite to drugs used in therapy as well as for chemoprevention. In this study, single nucleotide polymorphisms (SNPs) associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP), one of the partner drugs in artemisinin-based therapies (ACTs) were studied in asymptomatic P. falciparum isolates from Cameroon. Dried Blood spots were collected from children with asymptomatic malaria enrolled during a household survey. The P. falciparum dihydrofolate reductase (Pfdhfr), dihydropteroate synthase (Pfdhps) and Kelch 13 genes were amplified and point mutations in these gene sequences were analyzed by sequencing. Among a total of 234 samples collected, 51 showed parasitaemia after microscopic examination of which 47 were P. falciparum mono-infections. Molecular analysis revealed 97.3% of mutant alleles at codons 51I, 59R and 108 N in Pfdhfr gene. In Pfdhps gene the most common mutation was 437G (83.3%); followed by 436A (47.6%) and 436F (28.6%). The association of mutations in the two genes (dhfr + dhps) showed 11 different haplotypes including three sextuple mutants (IRNI + AGKGA, IRNI + AAKGS, IRNI + AGKAS) and one septuple mutant (IRNI + AGKGS). For K13 gene no SNPs were seen in the studied asymptomatic malaria samples. The findings revealed presence of SP-resistant alleles in asymptomatic infected individuals with presence of sextuples and septuple SNPs. This emphasizes that regular profiling of antimalarial drugs resistance markers in such population is essential for malaria control and elimination programmes.
Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Criança , Plasmodium falciparum/genética , Ácido Fólico , Camarões/epidemiologia , Infecções Assintomáticas/epidemiologia , Malária Falciparum/epidemiologia , Mutação , Tetra-Hidrofolato Desidrogenase/genéticaRESUMO
Pneumocystis jirovecii infections occur in patients treated with methotrexate (MTX) because of immunosuppressive effects of this highly potent dihydrofolate reductase (DHFR) inhibitor. Conversely, MTX may act as an anti-P. jirovecii drug and consequently may exert a selective pressure on this fungus. In this context, we compared the sequences of the dhfr gene of P. jirovecii isolates obtained from two groups of patients with P. jirovecii infections. The first group, with systemic diseases or malignancies, had prior exposure to MTX (21 patients), whereas the second group (22 patients), the control group, did not. Three single nucleotide polymorphisms (SNPs) were observed at positions 278, 312, and 381. The first one was located in the intronic region and the two others were synonymous. Based on these SNPs, three P. jirovecii dhfr alleles, named A, B, and C, were specified. Allele A was the most frequent, as it was observed in 18 patients (85.7%) and in 16 patients (72.7%) of the first and second groups, respectively. No significant difference in P. jirovecii dhfr gene diversity in the two patient groups was observed. In conclusion, these original results suggest that MTX does not exert an overt selective pressure on P. jirovecii organisms.
Assuntos
Antagonistas do Ácido Fólico , Infecções por Pneumocystis , Pneumocystis carinii , Humanos , Pneumocystis carinii/genética , Metotrexato/uso terapêutico , Metotrexato/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Tetra-Hidrofolato Desidrogenase/genéticaRESUMO
Endothelial malfunction is a major contributor to early or delayed vasospasm after subarachnoid hemorrhage (SAH). As a representative form of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) uncoupling leads to a reduction in nitric oxide (NO) generated by endothelial cells. In this study, we investigated how the interaction between endothelial NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4) and DHFR (dihydrofolate reductase) contributes to eNOS uncoupling after SAH. Setanaxib and the adeno-associated virus (AAV) targeting brain vascular endothelia were injected through the tail vein and the expression and localization of proteins were examined by western blot and immunofluorescence staining. The NO content was measured using the NO assay kit, and laser speckle contrast imaging was used to assess cortical perfusion. ROS (reactive oxygen species) level was detected by DHE (dihydroethidium) staining, DCFH-DA (2',7'-dichlorofluorescin diacetate) staining and H2O2 (hydrogen peroxide) measurement. The Garcia score was employed to examine neurological function. Setanaxib is widely used for its preferential inhibition for NOX1/4 over other NOX isoforms. After endothelial NOX4 was inhibited by Setanaxib in a mouse model of SAH, the endothelial DHFR level was significantly elevated, which attenuated eNOS uncoupling, increased cortical perfusion, and improved the neurological function. The protective role of inhibiting endothelial NOX4, however, disappeared after knocking down endothelial DHFR. Our results suggest that endothelial DHFR decreased significantly because of the elevated level of endothelial NOX4, which aggravated eNOS uncoupling after SAH, leading to decreased cortical perfusion and worse neurological outcome.
Assuntos
Óxido Nítrico Sintase Tipo III , Hemorragia Subaracnóidea , Animais , Camundongos , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , NADPH Oxidase 4/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismoRESUMO
BACKGROUND: Sulfadoxine-pyrimethamine (SP) is recommended in Africa in several antimalarial preventive regimens including Intermittent Preventive Treatment in pregnant women (IPTp), Intermittent Preventive Treatment in infants (IPTi) and Seasonal Malaria Chemoprevention (SMC). The effectiveness of SP-based preventive treatments are threatened in areas where Plasmodium falciparum resistance to SP is high. The prevalence of mutations in the dihydropteroate synthase gene (pfdhps) can be used to monitor SP effectiveness. IPTi-SP is recommended only in areas where the prevalence of the pfdhps540E mutation is below 50%. It has also been suggested that IPTp-SP does not have a protective effect in areas where the pfdhps581G mutation, exceeds 10%. However, pfdhps mutation prevalence data in Africa are extremely heterogenous and scattered, with data completely missing from many areas. METHODS AND FINDINGS: The WWARN SP Molecular Surveyor database was designed to summarize dihydrofolate reductase (pfdhfr) and pfdhps gene mutation prevalence data. In this paper, pfdhps mutation prevalence data was used to generate continuous spatiotemporal surface maps of the estimated prevalence of the SP resistance markers pfdhps437G, pfdhps540E, and pfdhps581G in Africa from 1990 to 2020 using a geostatistical model, with a Bayesian inference framework to estimate uncertainty. The maps of estimated prevalence show an expansion of the pfdhps437G mutations across the entire continent over the last three decades. The pfdhps540E mutation emerged from limited foci in East Africa to currently exceeding 50% estimated prevalence in most of East and South East Africa. pfdhps540E distribution is expanding at low or moderate prevalence in central Africa and a predicted focus in West Africa. Although the pfdhps581G mutation spread from one focus in East Africa in 2000, to exceeding 10% estimated prevalence in several foci in 2010, the predicted distribution of the marker did not expand in 2020, however our analysis indicated high uncertainty in areas where pfdhps581G is present. Uncertainty was higher in spatial regions where the prevalence of a marker is intermediate or where prevalence is changing over time. CONCLUSIONS: The WWARN SP Molecular Surveyor database and a set of continuous spatiotemporal surface maps were built to provide users with standardized, current information on resistance marker distribution and prevalence estimates. According to the maps, the high prevalence of pfdhps540E mutation was to date restricted to East and South East Africa, which is reassuring for continued use of IPTi and SMC in West Africa, but continuous monitoring is needed as the pfdhps540E distribution is expanding. Several foci where pfdhps581G prevalence exceeded 10% were identified. More data on the pfdhps581G distribution in these areas needs to be collected to guide IPTp-SP recommendations. Prevalence and uncertainty maps can be utilized together to strategically identify sites where increased surveillance can be most informative. This study combines a molecular marker database and predictive modelling to highlight areas of concern, which can be used to support decisions in public health, highlight knowledge gaps in certain regions, and guide future research.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Teorema de Bayes , Combinação de Medicamentos , Resistência a Medicamentos/genética , Feminino , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mutação , Plasmodium falciparum/genética , Gravidez , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , África do Sul , Sulfadoxina , Tetra-Hidrofolato Desidrogenase/genéticaRESUMO
BACKGROUND: Cancer remains a major world health issue due to its high morbidity and mortality rate. Plant based natural products (NPs) have played vital role in discovery of valuable anti-cancer drugs. Darjeeling Himalayan region has a rich diversity of therapeutic plants that can be utilized for development of novel drugs. AIM: We previously reported cytotoxic potential of rhizome extract of A.rivularis, a Darjeeling himalayan herb. Present study reports isolation and characterization of a phytosteroid from the plant rhizome in a bioassay-guided approach and evaluation of its anti-tumorigenic potential. RESULTS: The phytosteroid was characterized as stigmasta-5(6), 22(23)-dien-3-beta-yl acetate (A11) by various spectrometric techniques (IR, NMR, MS etc.). The catalytic inhibition and structural alteration of human dihydrofolate reductase (hDHFR) by A11 was evaluated using methotrexate (MTX), a DHFR inhibitor anticancer drug as a reference. A11 inhibited hDHFR activity with IC50 values of 1.20 µM A11 caused concentration dependent quenching of tryptophan fluorescence of hDHFR suggesting its effect on alteration of enzyme structure. Molecular docking of A11 on crystal structure of hDHFR revealed significant interaction with free energy of binding and Ki values of -10.86 kcal/mol and 11 nM, respectively. Subsequent in vitro studies at cellular level showed a relatively greater cytotoxic effect of A11 against human kidney (ACHN, IC50 60 µM) and liver (HepG2, IC5070 µM) cancer cells than their respective normal cells (HEK-293, IC50 350 µM and WRL-68, IC50 520 µM). Scanning electron microscopy of A11 treated cells revealed the morphological feature of apoptosis, like cell rounding and surface detachment, membrane blebbing, loss of cilia and increased number of pores of decreased sizes. A11 mediated apoptosis of cancer cells was found to be correlated with induction of intracellular of reactive oxygen species (ROS) level and fragmentation of genomic DNA.
Assuntos
Antineoplásicos , Fitosteróis , Saxifragaceae , Acetatos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ésteres , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Saxifragaceae/metabolismo , Esteroides , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismoRESUMO
BACKGROUND: Retinoblastoma protein (Rb) supports vasoprotective E2F Transcription Factor 1 (E2f1)/Dihydrofolate Reductase (Dhfr) pathway activity in endothelial cells. Cyclin I (Ccni) promotes Cyclin-Dependent Kinase-5 (Cdk5)-mediated Rb phosphorylation. Therefore, we hypothesized that endothelial Ccni may regulate cardiovascular homeostasis, vessel remodeling, and abdominal aortic aneurysm (AAA) formation. METHODS: Aortic CCNI mRNA expression was analyzed in the Gene Expression Omnibus (GEO) GSE57691 cohort consisting of AAA patients (n = 39) and healthy controls (n = 10). We employed wild-type (WT) mice and endothelial Ccni knockout (Ccnifl/flTie2-Cre) mice to conduct in vivo and ex vivo experimentation using an Angiotensin (Ang) II hypertension model and a CaCl2 AAA model. Mice were assessed for Rb/E2f1/Dhfr signaling, biopterin (i.e., biopterin [B], dihydrobiopterin [BH2], and tetrahydrobiopterin [BH4]) production, cardiovascular homeostasis, vessel remodeling, and AAA formation. RESULTS: Aortic CCNI mRNA expression was downregulated in AAA patients. Both Ang II- and CaCl2-induced WT mice showed aortic Ccni upregulation coupled with vasculoprotective upregulation of Rb/E2f1/Dhfr signaling and biopterins. Endothelial Ccni knockout downregulated medial Rb/E2f1/Dhfr signaling and biopterins in Ang II-induced hypertensive mice, which exacerbated eNos uncoupling and H2O2 production. Endothelial Ccni knockout impaired in vivo hemodynamic responses and endothelium-dependent vasodilatation in ex vivo mesenteric arteries in response to Ang II. Endothelial Ccni knockout exacerbated mesenteric artery remodeling and AAA risk in response to Ang II and CaCl2. CONCLUSIONS: Endothelial Ccni acts as a critical negative regulator of eNos uncoupling-mediated ROS generation and thereby reduces vulnerability to hypertension-induced vascular remodeling and AAA development in mice.
Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Hipertensão , Remodelação Vascular , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Biopterinas/metabolismo , Cloreto de Cálcio/metabolismo , Ciclina I/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismoRESUMO
Antifolates targeting dihydrofolate reductase (DHFR) are antimalarial compounds that have long been used for malaria treatment and chemoprevention (inhibition of infection from mosquitoes to humans). Despite their extensive applications, a thorough understanding of antifolate activity against hepatic malaria parasites, especially resistant parasites, has yet to be achieved. Using a transgenic Plasmodium berghei harboring quadruple mutant dhfr from Plasmodium falciparum (Pb::Pfdhfr-4M), we demonstrated that quadruple mutations on Pfdhfr confer complete chemoprevention resistance to pyrimethamine, the previous generation of antifolate, but not to a new class of antifolate designed to overcome the resistance, such as P218. Detailed investigation to pinpoint stage-specific chemoprevention further demonstrated that it is unnecessary for the drug to be present throughout hepatic development. The drug is most potent against the developmental stages from early hepatic trophozoite to late hepatic trophozoite, but it is not effective at inhibiting sporozoite and early hepatic stage development from sporozoite to early trophozoite. Our data show that P218 also inhibited the late hepatic-stage development, from trophozoite to mature schizonts to a lesser extent. With a single dose of 15 mg/kg of body weight, P218 prevented infection from up to 25,000 pyrimethamine-resistant sporozoites, a number equal to thousands of infectious mosquito bites. Additionally, the hepatic stage of malaria parasite is much more susceptible to antifolates than the asexual blood stage. This study provides important insights into the activity of antifolates as a chemopreventive therapeutic which could lead to a more efficient and cost-effective treatment regime.