Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019671

RESUMO

There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Células Secretoras de Insulina/ultraestrutura , Transplante das Ilhotas Pancreáticas/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Anticorpos de Domínio Único/química , 5-Hidroxitriptofano/química , 5-Hidroxitriptofano/farmacocinética , Animais , Biomarcadores/análise , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exenatida/química , Exenatida/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Canais de Potássio/genética , Canais de Potássio/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos de Domínio Único/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Tecnécio/química , Tecnécio/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Tetrabenazina/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos
2.
Nature ; 581(7808): 288-293, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433618

RESUMO

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine1. Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules1. Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington's disease2, was recently approved by the United States' Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial1,3,4. The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound5, improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug6,7, these processes are often unselective and the stereoisotopic purity can be difficult to measure7,8. Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Assuntos
Benzeno/química , Técnicas de Química Sintética , Cicloexenos/química , Cicloexenos/síntese química , Deutério/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Bases de Dados de Compostos Químicos , Cinética , Estrutura Molecular , Estereoisomerismo , Tetrabenazina/análogos & derivados , Tetrabenazina/síntese química , Tetrabenazina/química , Tungstênio/química
3.
Mol Imaging Biol ; 22(2): 265-273, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31165386

RESUMO

PURPOSE: The aim of this study was to optimize the radiolabeling method of [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ) to fulfill the demand of preclinical and clinical application. PROCEDURES: Optimized labeling conditions were performed by altering the molar ratio of precursor to base (P/B), base species, solvents, reaction temperature, reaction time, and precursor concentration through manual radiosynthesis of [18F]FP-(+)-DTBZ. The conditions with the highest radiochemical yield (RCY) were applied to automated radiosynthesis, and the crude product was purified with a Sep-Pak Plus C18 cartridge. Quality control and stability of [18F]FP-(+)-DTBZ were carried out by HPLC. In vitro cellular uptake and blocking assays were conducted in human neuroblastoma cell line SH-SY5Y. In vivo imaging with small animal positron emission tomography (microPET) was performed with Sprague-Dawley rats. RESULTS: Under the optimized conditions (P/K2CO3 = 1:8, heating at 120 °C for 3 min in dimethyl sulfoxide), an RCY of 88.7 % was obtained with 1.0 mg precursor. The optimized reaction conditions were successfully applied to an automated module and gave a high activity yield (AY) of 30-55 % in about 40 min with a > 99.0 % radiochemical purity (RCP) and a > 44.4 GBq/µmol molar activity (Am). Stability test displayed that the RCP retained > 98.0 % in 8 h in saline and in phosphate buffer saline (PBS, pH 7.4). In vitro cellular uptake assay showed accumulation of [18F]FP-(+)-DTBZ in SH-SY5Y cells, which could be significantly inhibited by vesicular monoamine transporter 2 (VMAT2) inhibitor DTBZ. MicroPET images of rat brain displayed that the striatum showed the highest uptake with a standardized uptake value (SUV) of 3.91 ± 0.30 at ~ 70 min. Co-injection with DTBZ (1.0 mg/kg) resulted in a 75 % decrease of the striatal SUV, confirming the specificity of [18F]FP-(+)-DTBZ to VMAT2. CONCLUSIONS: We obtained an optimized radiolabeling method of [18F]FP-(+)-DTBZ and successfully applied it to a commercial available module. The automated synthesis gave a high AY and RCP of [18F]FP-(+)-DTBZ with high and specific binding to VMAT2, facilitating its routine application for VMAT2 tracing.


Assuntos
Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tetrabenazina/análogos & derivados , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Controle de Qualidade , Radioquímica/métodos , Ratos , Ratos Sprague-Dawley , Solventes , Tetrabenazina/química
4.
Drugs Today (Barc) ; 53(2): 89-102, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28387387

RESUMO

Deutetrabenazine is a derivative of tetrabenazine in which two trideuteromethoxy groups substitute two methoxy groups. The active metabolites of deutetrabenazine have a longer half-life than those of tetrabenazine, together with a greater overall absorption. However, the peak plasma concentrations are lower. Because of these pharmacokinetic differences, deutetrabenazine can be given twice daily, thus improving compliance. The lower peak concentrations may account for a lower incidence of some unwanted adverse effects. Unlike tetrabenazine, deutetrabenazine has no effect on the QT interval. Treatment with deutetrabenazine significantly improved chorea in Huntington's disease, the hyperkinetic features of tardive dyskinesia, and tics in Tourette syndrome. In all three conditions, deutetrabenazine produced an acceptable level of overall adverse effects without causing any severe adverse effects.


Assuntos
Inibidores da Captação Adrenérgica/uso terapêutico , Doença de Huntington/tratamento farmacológico , Hipercinese/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Discinesia Tardia/tratamento farmacológico , Tetrabenazina/análogos & derivados , Síndrome de Tourette/tratamento farmacológico , Inibidores da Captação Adrenérgica/efeitos adversos , Inibidores da Captação Adrenérgica/química , Inibidores da Captação Adrenérgica/farmacocinética , Animais , Aprovação de Drogas , Frequência Cardíaca/efeitos dos fármacos , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/fisiopatologia , Hipercinese/diagnóstico , Hipercinese/fisiopatologia , Estrutura Molecular , Relação Estrutura-Atividade , Discinesia Tardia/diagnóstico , Discinesia Tardia/fisiopatologia , Tetrabenazina/efeitos adversos , Tetrabenazina/química , Tetrabenazina/farmacocinética , Tetrabenazina/uso terapêutico , Síndrome de Tourette/diagnóstico , Síndrome de Tourette/fisiopatologia , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration
5.
Q J Nucl Med Mol Imaging ; 61(4): 447-455, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25881691

RESUMO

BACKGROUND: The feasibility of beta cell mass (BCM) imaging and quantification with positron emission tomography (PET) in the pancreas is controversial. In an effort to shed some light on this topic, we have used a xenograft model of rat insulinoma (RIN) in mice, mimicking an intramuscular islet transplantation situation. METHODS: A total of 105 RIN cells were subcutaneously implanted in nude mice (N.=8). Tumor size and glycaemia levels were determined daily. Rat C-peptide was measured to demonstrate rat insulin production. PET imaging with 11C-(+)-α-dihydrotetrabenazine (11C-DTBZ) was done at 3 and 4 weeks and compared with 18F-FDG and 18F-DOPA studies in the same mice. Ex-vivo autoradiography with 11C-DTBZ was carried out in frozen sections of tumors. VMAT2 expression was measured by Western-blot and immunohistochemistry in tumors and RIN cells. RESULTS: Functional rat insulin production in mice was demonstrated by substantial decrease in glycaemia (<50 mg/dL by week 4) and rat C-peptide levels (7.2±2.6 ng/mL) similar to those measured in control rats. PET studies showed that tumor imaging with 11C-DTBZ at four (N.=8) and five (N.=5) weeks was negative; only bigger tumors could be seen with 18F-DOPA. In explanted tumors 11C-DTBZ autoradiography was negative, albeit VMAT2 expression measured by Western-blot and immunohistochemistry was lower than in cultured RIN cells. CONCLUSIONS: Although insulinomas are fully functional it does not seem feasible to use 11C-DTBZ for in-vivo measuring of BCM. This might either be due to inherent technical limitations of PET, decrease in VMAT2 expression in the tumors due to unknown reasons, or other biological limiting facts.


Assuntos
Insulinoma/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Tetrabenazina/análogos & derivados , Animais , Radioisótopos de Carbono , Linhagem Celular Tumoral , Fluordesoxiglucose F18/química , Xenoenxertos , Insulinoma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/metabolismo , Ratos , Ratos Wistar , Tetrabenazina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
6.
Nat Chem Biol ; 10(2): 141-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316738

RESUMO

Cell replacement therapy for diabetes mellitus requires cost-effective generation of high-quality, insulin-producing, pancreatic ß cells from pluripotent stem cells. Development of this technique has been hampered by a lack of knowledge of the molecular mechanisms underlying ß-cell differentiation. The present study identified reserpine and tetrabenazine (TBZ), both vesicular monoamine transporter 2 (VMAT2) inhibitors, as promoters of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Neurog3 (referred to henceforth as Ngn3)-positive endocrine precursors. VMAT2-controlled monoamines, such as dopamine, histamine and serotonin, negatively regulated ß-cell differentiation. Reserpine or TBZ acted additively with dibutyryl adenosine 3',5'-cyclic AMP, a cell-permeable cAMP analog, to potentiate differentiation of embryonic stem (ES) cells into ß cells that exhibited glucose-stimulated insulin secretion. When ES cell-derived ß cells were transplanted into AKITA diabetic mice, the cells reversed hyperglycemia. Our protocol provides a basis for the understanding of ß-cell differentiation and its application to a cost-effective production of functional ß cells for cell therapy.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Diabetes Mellitus Experimental , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Hiperglicemia/terapia , Camundongos , Estrutura Molecular , Reserpina/química , Reserpina/farmacologia , Tetrabenazina/química , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/genética
7.
Med Phys ; 40(11): 112507, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24320466

RESUMO

PURPOSE: Respiratory motion during PET∕CT imaging can cause substantial image blurring and underestimation of tracer concentration for both static and dynamic studies. In this study, the authors developed an event-by-event respiratory motion correction method that used three-dimensional internal-one-dimensional external motion correlation (INTEX3D) in listmode reconstruction. The authors aim to fully correct for organ/tumor-specific rigid motion caused by respiration using all detected events to eliminate both intraframe and interframe motion, and investigate the quantitative improvement in static and dynamic imaging. METHODS: The positional translation of an internal organ or tumor during respiration was first determined from the reconstructions of multiple phase-gated images. A level set (active contour) method was used to segment the targeted internal organs/tumors whose centroids were determined. The mean displacement of the external respiratory signal acquired by the Anzai system that corresponded to each phase-gated frame was determined. Three linear correlations between the 1D Anzai mean displacements and the 3D centroids of the internal organ/tumor were established. The 3D internal motion signal with high temporal resolution was then generated by applying each of the three correlation functions to the entire Anzai trace (40 Hz) to guide event-by-event motion correction in listmode reconstruction. The reference location was determined as the location where CT images were acquired to facilitate phase-matched attenuation correction and anatomical-based postfiltering. The proposed method was evaluated with a NEMA phantom driven by a QUASAR respiratory motion platform, and human studies with two tracers: pancreatic beta cell tracer [(18)F]FP(+)DTBZ and tumor hypoxia tracer [(18)F]fluoromisonidazole (FMISO). An anatomical-based postreconstruction filter was applied to the motion-corrected images to reduce noise while preserving quantitative accuracy and organ boundaries in the patient studies. RESULTS: The INTEX3D method yielded an increase of 5%-9% and 32%-40% in contrast recovery coefficient on the hot spheres in the NEMA phantom, compared to the reconstructions with only 1D motion correction (INTEX1D) and no motion correction, respectively. The proposed method also increased the mean activities of the pancreas and kidney by 9.3% and 11.2%, respectively, across three subjects in the FPDTBZ studies, and the average lesion-to-blood ratio by 20% across three lesions in the FMISO study, compared to the reconstructions without motion correction. In addition, the proposed method reduced intragate motion as compared to phase-gated images. The application of the anatomical-based postreconstruction filter further reduced noise in the background by >50% compared to reconstructions without postfiltering, while preserving quantitative accuracy and organ boundaries. Finally, the measurements of the time-activity curves from a subject with FPDTBZ showed that INTEX3D yielded 18% and 11% maximum increases in tracer concentration in the pancreas and kidney cortex, respectively. CONCLUSIONS: These results suggest that the proposed method can effectively compensate for both intragate and intergate respiratory motion while preserving all the counts, and is applicable to dynamic studies.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Tomografia por Emissão de Pósitrons , Respiração , Microtomografia por Raio-X , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Radioisótopos de Flúor/química , Voluntários Saudáveis , Humanos , Hipóxia , Células Secretoras de Insulina/diagnóstico por imagem , Rim/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Misonidazol/análogos & derivados , Misonidazol/química , Movimento , Pâncreas/diagnóstico por imagem , Análise de Regressão , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Tetrabenazina/análogos & derivados , Tetrabenazina/química
8.
Anal Biochem ; 367(1): 68-78, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17559790

RESUMO

Two iodophenylazide derivatives of reserpine and one iodophenylazide derivative of tetrabenazine have been synthesized and characterized as photoaffinity labels of the vesicle monoamine transporter (VMAT2). These compounds are 18-O-[3-(3'-iodo-4'-azidophenyl)-propionyl]methyl reserpate (AIPPMER), 18-O-[N-(3'-iodo-4'-azidophenethyl)glycyl]methyl reserpate (IAPEGlyMER), and 2-N-[(3'-iodo-4'-azidophenyl)-propionyl]tetrabenazine (TBZ-AIPP). Inhibition of [3H]dopamine uptake into purified chromaffin granule ghosts showed IC50 values of approximately 37 nM for reserpine, 83 nM for AIPPMER, 200 nM for IAPEGlyMER, and 2.1 microM for TBZ-AIPP. Carrier-free radioiodinated [125I]IAPEGlyMER and [125I]TBZ-AIPP were synthesized and used to photoaffinity label chromaffin granule membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed specific [125I]IAPEGlyMER labeling of a polypeptide that migrated as a broad band (approximately 55-90 kDa), with the majority of the label located between 70 and 80 kDa. The labeling by [125I]IAPEGlyMER was blocked by 100 nM reserpine, 10 microM tetrabenazine, 1 mM serotonin, and 10 mM (-)-norepinephrine and dopamine. Analysis of [125I]TBZ-AIPP-labeled chromaffin granule membranes by SDS-PAGE and autoradiography demonstrated specific labeling of a similar polypeptide, which was blocked by 1 microM reserpine and 10 microM tetrabenazine. Incubation of [125I]TBZ-AIPP-photolabeled chromaffin granule membranes in the presence of the glycosidase N-glycanase shifted the apparent molecular weight of VMAT2 to approximately 51 kDa. These data indicate that [125I]IAPEGlyMER and [125I]TBZ-AIPP are effective photoaffinity labels for VMAT2.


Assuntos
Proteínas Vesiculares de Transporte de Monoamina/química , Marcadores de Afinidade/síntese química , Marcadores de Afinidade/química , Animais , Sítios de Ligação , Bovinos , Grânulos Cromafim/metabolismo , Técnicas In Vitro , Radioisótopos do Iodo , Reserpina/análogos & derivados , Reserpina/síntese química , Reserpina/química , Serotonina/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/síntese química , Tetrabenazina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
9.
J Biol Chem ; 272(41): 26049-55, 1997 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-9325342

RESUMO

The full-length cDNA for the rat recombinant synaptic vesicle monoamine transporter (rVMAT2) containing a COOH-terminal polyhistidine epitope was engineered into baculovirus DNA for expression in Spodoptera frugiperda (Sf9) cells. Using this recombinant baculovirus and cultured Sf9 cells, rVMAT2 has been expressed to high levels and purified to >95% homogeneity using immobilized Ni2+-affinity chromatography followed by lectin (concanavalin A) chromatography. Purified transporter was photolabeled using [125I]-7-azido-8-iodoketanserin ([125I]AZIK) and [125I]2-N-[(3'-iodo-4'-azidophenyl)propionyl]tetrabenazine ([125I]TBZ-AIPP). Both [125I]AZIK and [125I]TBZ-AIPP photoaffinity labeling of purified rVMAT2 were protectable by 10 microM tetrabenazine (TBZ), 10 microM 7-aminoketanserin, and 1 mM concentrations of the transporter substrates dopamine, norepinephrine, and serotonin. Radiolabeled peptides were generated using enzymatic and chemical methods, purified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and NH2-terminal microsequenced. Radiosequencing of [125I]AZIK-labeled rVMAT2 indicated derivatization of Lys-20 in the NH2 terminus, just prior to putative transmembrane domain 1 (TMD1). [125I]TBZ-AIPP derivatized a segment of rVMAT2 between Gly-408 and Cys-431 in TMD10 and 11. These data implicate juxtaposition of TMD1 and 10/11.


Assuntos
Marcadores de Afinidade/metabolismo , Azidas/metabolismo , Ketanserina/análogos & derivados , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Neuropeptídeos , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo , Tetrabenazina/análogos & derivados , Marcadores de Afinidade/química , Animais , Azidas/química , Sítios de Ligação , Transporte Biológico , Radioisótopos do Iodo , Ketanserina/química , Ketanserina/metabolismo , Glicoproteínas de Membrana/química , Modelos Moleculares , Neurotransmissores/química , Mapeamento de Peptídeos , Ligação Proteica , Ratos , Proteínas Recombinantes/metabolismo , Spodoptera , Vesículas Sinápticas/química , Tetrabenazina/química , Tetrabenazina/metabolismo , Proteínas Vesiculares de Transporte de Aminas Biogênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA