Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302554

RESUMO

Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/ß core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.


Assuntos
Flavodoxina , Fusobacterium nucleatum , Heme , Tetrapirróis , Humanos , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/classificação , Flavodoxina/genética , Flavodoxina/metabolismo , Fusobacterium nucleatum/química , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Heme/metabolismo , Ferro/metabolismo , Oxirredução , Tetrapirróis/metabolismo , Transporte Biológico , Genes Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Infecções por Fusobacterium/microbiologia
2.
Phys Chem Chem Phys ; 25(8): 6016-6024, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36752541

RESUMO

Cyanobacteriochromes (CBCRs) are small and versatile photoreceptor proteins with high potential for biotechnological applications. Among them, the so-called DXCF-CBCRs exhibit an intricate secondary photochemistry: miliseconds after activation with light, a covalent linkage between a conserved cysteine residue and the light-absorbing tetrapyrrole chromophore is reversibly formed or broken. We employed time-resolved IR spectroscopy over ten orders of magnitude in time in conjunction with 2D-IR spectroscopy to investigate the molecular mechanism of this intriguing reaction in the DXCF-CBCR model system TePixJ from T. elongatus. The crosspeak pattern in the 2D-IR spectrum facilitated the assignment of the dominant signals to vibrational modes of the chromophore, which in turn enabled us to construct a mechanistic model for the photocycle reactions from the time-resolved IR spectra. Here, we assigned the time-resolved signals to several proton transfer steps and distinct geometric changes of the chromophore. We propose a model that describes how these events lead to the rearrangement of charges in the chromophore binding pocket, which serves as the trigger for the light-induced bond formation and breakage with the nearby cysteine.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Cianobactérias/metabolismo , Cisteína/química , Proteínas de Bactérias/química , Tetrapirróis/metabolismo , Fotoquímica , Fotorreceptores Microbianos/química
3.
Proc Natl Acad Sci U S A ; 117(27): 15573-15580, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571944

RESUMO

Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Molecular , Luz , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Cor , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Mutagênese Sítio-Dirigida , Nostoc/genética , Nostoc/metabolismo , Nostoc/efeitos da radiação , Fotobiologia/métodos , Fotorreceptores Microbianos/efeitos da radiação , Biologia Sintética/métodos , Tetrapirróis/metabolismo
4.
J Biol Chem ; 295(20): 6888-6925, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32241908

RESUMO

Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.


Assuntos
Pigmentos Biológicos/biossíntese , Tetrapirróis/metabolismo
5.
Plant Physiol ; 183(1): 263-276, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32071153

RESUMO

The chloroplast glutamyl-tRNA (tRNAGlu) is unique in that it has two entirely different functions. In addition to acting in translation, it serves as the substrate of glutamyl-tRNA reductase (GluTR), the enzyme catalyzing the committed step in the tetrapyrrole biosynthetic pathway. How the tRNAGlu pool is distributed between the two pathways and whether tRNAGlu allocation limits tetrapyrrole biosynthesis and/or protein biosynthesis remains poorly understood. We generated a series of transplastomic tobacco (Nicotiana tabacum) plants to alter tRNAGlu expression levels and introduced a point mutation into the plastid trnE gene, which has been reported to uncouple protein biosynthesis from tetrapyrrole biosynthesis in chloroplasts of the protist Euglena gracilis We show that, rather than comparable uncoupling of the two pathways, the trnE mutation is lethal in tobacco because it inhibits tRNA processing, thus preventing translation of Glu codons. Ectopic expression of the mutated trnE gene uncovered an unexpected inhibition of glutamyl-tRNA reductase by immature tRNAGlu We further demonstrate that whereas overexpression of tRNAGlu does not affect tetrapyrrole biosynthesis, reduction of GluTR activity through inhibition by tRNAGlu precursors causes tetrapyrrole synthesis to become limiting in early plant development when active photosystem biogenesis provokes a high demand for de novo chlorophyll biosynthesis. Taken together, our findings provide insight into the roles of tRNAGlu at the intersection of protein biosynthesis and tetrapyrrole biosynthesis.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tetrapirróis/metabolismo , Aldeído Oxirredutases/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Códon/genética
6.
Dalton Trans ; 49(4): 1065-1076, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31868194

RESUMO

The nickel chelatase CfbA is the smallest member of the chelatase family, but the mechanism by which this enzyme inserts nickel into sirohydrochlorin is unknown. In order to gain mechanistic insight, metal binding, tetrapyrrole binding, and enzyme activity were characterized for a variety of substrates using several spectroscopic and computational approaches. Mass spectrometery and magnetic circular dichroism experiments revealed that CfbA binds an octahedral, high-spin metal substrate. UV/Vis absorption spectroscopy demonstrated that the enzyme binds a wide range of tetrapyrrole substrates and perturbs their electronic structures. Based upon activity assays, CfbA promotes insertion of cobalt and nickel into several tetrapyrroles, including cobalt insertion into protopophyrin IX. Finally, density functional theory models were developed which strongly suggest that observed spectral changes upon binding to the enzyme can be explained by tetrapyrrole ruffling, but not deprotonation or saddling. The observation of an octahedral, high-spin metal bound to CfbA leads to a generalization for all class II chelatases: these enzymes bind labile metal substrates and metal desolvation is not a rate-limiting step. The conclusion that CfbA ruffles its tetrapyrrole substrate reveals that the CfbA mechanism is different from that currently proposed for ferrochelatase, and identifies an intriguing correlation between metal substrate specificity and tetrapyrrole distortion mode in chelatases.


Assuntos
Biocatálise , Liases/metabolismo , Níquel/metabolismo , Tetrapirróis/metabolismo , Archaeoglobus fulgidus/enzimologia , Cobalto/metabolismo , Liases/química , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
7.
Plant Physiol Biochem ; 137: 14-24, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710795

RESUMO

Glutamyl-tRNA reductase1 (HEMA1) and ferrochelatase1 (FC1) are both expressed in response to salt stress in the biosynthetic pathway of tetrapyrroles. Peanut (Arachis hypogaea L.) HEMA1 and FC1 were isolated by RT-PCR. The amino acid sequence encoded by the two genes showed high similarity with that in other plant species. The AhFC1 fusion protein was verified to function in chloroplast using Arabidopsis mesophyll protoplast. Sense and wild-type (WT) tobaccos were used to further study the physiological effects of AhHEMA1 and AhFC1. Compared with WT, the Heme contents and germination rate were higher in AhFC1 overexpressing plants under salt stress. Meanwhile, overexpressing AhHEMA1 also led to higher ALA and chlorophyll contents and multiple physiological changes under salt stress, such as higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), lower contents of reactive oxygen species (ROS) and slighter membrane damage. In addition, the activities of CAT, POD and APX in the AhFC1 overexpressing plants were significantly higher than that in WT lines under salt stress, but the activity of SOD between the WT plants and the transgenic plants did not exhibit significant differences. These results suggested that, peanut can enhance resistance to salt stress by improving the biosynthesis of tetrapyrrole biosynthetic.


Assuntos
Arachis/genética , Nicotiana/genética , Proteínas de Plantas/genética , Estresse Salino/genética , Ácido Aminolevulínico/metabolismo , Membrana Celular/metabolismo , Clorofila/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Heme/biossíntese , Heme/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/fisiologia , Plântula/genética , Plântula/metabolismo , Tetrapirróis/genética , Tetrapirróis/metabolismo , Nicotiana/fisiologia
8.
Biochemistry ; 58(2): 85-93, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30365306

RESUMO

Microorganisms have lifestyles and metabolism adapted to environmental niches, which can be very broad or highly restricted. Molecular oxygen (O2) is currently variably present in microenvironments and has driven adaptation and microbial differentiation over the course of evolution on Earth. Obligate anaerobes use enzymes and cofactors susceptible to low levels of O2 and are restricted to O2-free environments, whereas aerobes typically take advantage of O2 as a reactant in many biochemical pathways and may require O2 for essential biochemical reactions. In this Perspective, we focus on analogous enzymes found in tetrapyrrole biosynthesis, modification, and degradation that are catalyzed by O2-sensitive radical S-adenosylmethionine (SAM) enzymes and by O2-dependent metalloenzymes. We showcase four transformations for which aerobic organisms use O2 as a cosubstrate but anaerobic organisms do not. These reactions include oxidative decarboxylation, methyl and methylene oxidation, ring formation, and ring cleavage. Furthermore, we highlight biochemically uncharacterized enzymes implicated in reactions that resemble those catalyzed by the parallel aerobic and anaerobic enzymes. Intriguingly, several of these reactions require insertion of an oxygen atom into the substrate, which in aerobic enzymes is facilitated by activation of O2 but in anaerobic organisms requires an alternative mechanism.


Assuntos
Enzimas/química , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Tetrapirróis/metabolismo , Aerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Clorofila/biossíntese , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/metabolismo , Descarboxilação , Heme/metabolismo , Oxirredução , Oxigênio/metabolismo , Porfirinas/biossíntese , Porfirinas/química , Tetrapirróis/biossíntese , Tetrapirróis/química
9.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 11): 612-620, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095155

RESUMO

The enzyme porphobilinogen deaminase (PBGD) is one of the key enzymes in tetrapyrrole biosynthesis. It catalyses the formation of a linear tetrapyrrole from four molecules of the substrate porphobilinogen (PBG). It has a dipyrromethane cofactor (DPM) in the active site which is covalently linked to a conserved cysteine residue through a thioether bridge. The substrate molecules are linked to the cofactor in a stepwise head-to-tail manner during the reaction, which is catalysed by a conserved aspartate residue: Asp82 in the B. megaterium enzyme. Three mutations have been made affecting Asp82 (D82A, D82E and D82N) and their crystal structures have been determined at resolutions of 2.7, 1.8 and 1.9 Å, respectively. These structures reveal that whilst the D82E mutant possesses the DPM cofactor, in the D82N and D82A mutants the cofactor is likely to be missing, incompletely assembled or disordered. Comparison of the mutant PBGD structures with that of the wild-type enzyme shows that there are significant domain movements and suggests that the enzyme adopts `open' and `closed' conformations, potentially in response to substrate binding.


Assuntos
Bacillus megaterium/enzimologia , Hidroximetilbilano Sintase/química , Mutação , Tetrapirróis/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Conformação Proteica , Domínios Proteicos
10.
FEBS J ; 284(24): 4314-4327, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29076625

RESUMO

Heme d1 is a modified tetrapyrrole playing an important role in denitrification by acting as the catalytically essential cofactor in the cytochrome cd1 nitrite reductase of many denitrifying bacteria. In the course of heme d1 biosynthesis, the two propionate side chains on pyrrole rings A and B of the intermediate 12,18-didecarboxysiroheme are removed from the tetrapyrrole macrocycle. In the final heme d1 molecule, the propionate groups are replaced by two keto functions. Although it was speculated that the Radical S-adenosyl-l-methionine (SAM) enzyme NirJ might be responsible for the removal of the propionate groups and introduction of the keto functions, this has not been shown experimentally, so far. Here, we demonstrate that NirJ is a Radical SAM enzyme carrying two iron-sulfur clusters. While the N-terminal [4Fe-4S] cluster is essential for the initial SAM cleavage reaction, it is not required for substrate binding. NirJ tightly binds its substrate 12,18-didecarboxysiroheme and, thus, can be purified in complex with the substrate. By using the purified NirJ/substrate complex in an in vitro enzyme activity assay, we show that NirJ indeed catalyzes the removal of the two propionate side chains under simultaneous SAM cleavage. However, under the reaction conditions employed, no keto group formation is observed indicating that an additional cofactor or enzyme is needed for this reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Nitrato Redutase/metabolismo , Propionatos/metabolismo , Rhodobacteraceae/enzimologia , S-Adenosilmetionina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Catálise , Cromatografia Líquida de Alta Pressão , Ditionita/farmacologia , Heme/biossíntese , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/isolamento & purificação , Modelos Químicos , Estrutura Molecular , Mutagênese Sítio-Dirigida , Nitrato Redutase/genética , Nitrato Redutase/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Substâncias Redutoras/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato , Tetrapirróis/metabolismo
11.
PLoS One ; 12(5): e0177589, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28520766

RESUMO

Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.


Assuntos
Apocynaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Transcriptoma , Apocynaceae/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Folhas de Planta , Salinidade , Tetrapirróis/metabolismo
12.
Biochemistry ; 56(6): 845-855, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28045510

RESUMO

Heme catabolism is an important biochemical process that many bacterial pathogens utilize to acquire iron. However, tetrapyrrole catabolites can be reactive and often require further processing for transport out of the cell or conversion to another useful cofactor. In previous work, we presented in vitro evidence of an anaerobic heme degradation pathway in Escherichia coli O157:H7. Consistent with reactions that have been reported for other radical S-adenosyl-l-methionine methyltransferases, ChuW transfers a methyl group to heme by a radical-mediated mechanism and catalyzes the ß-scission of the porphyrin macrocycle. This facilitates iron release and the production of a new linear tetrapyrrole termed "anaerobilin". In this work, we describe the structure and function of ChuY, an enzyme expressed downstream from chuW within the same heme utilization operon. ChuY is structurally similar to biliverdin reductase and forms a dimeric complex in solution that reduces anaerobilin to the product we have termed anaerorubin. Steady state analysis of ChuY exhibits kinetic cooperativity that is best explained by a random addition mechanism with a kinetically preferred path for initial reduced nicotinamide adenine dinucleotide phosphate binding.


Assuntos
Escherichia coli O157/enzimologia , Proteínas de Escherichia coli/metabolismo , Heme/metabolismo , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Tetrapirróis/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Biocatálise , Deutério , Dimerização , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , Estrutura Molecular , Peso Molecular , NADP/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Tetrapirróis/química
13.
Environ Microbiol ; 19(1): 106-118, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486032

RESUMO

The sulfate-reducing bacteria of the Desulfovibrio genus make three distinct modified tetrapyrroles, haem, sirohaem and adenosylcobamide, where sirohydrochlorin acts as the last common biosynthetic intermediate along the branched tetrapyrrole pathway. Intriguingly, D. vulgaris encodes two sirohydrochlorin chelatases, CbiKP and CbiKC , that insert cobalt/iron into the tetrapyrrole macrocycle but are thought to be distinctly located in the periplasm and cytoplasm respectively. Fusing GFP onto the C-terminus of CbiKP confirmed that the protein is transported to the periplasm. The structure-function relationship of CbiKP was studied by constructing eleven site-directed mutants and determining their chelatase activities, oligomeric status and haem binding abilities. Residues His154 and His216 were identified as essential for metal-chelation of sirohydrochlorin. The tetrameric form of the protein is stabilized by Arg54 and Glu76, which form hydrogen bonds between two subunits. His96 is responsible for the binding of two haem groups within the main central cavity of the tetramer. Unexpectedly, CbiKP is shown to bind two additional haem groups through interaction with His103. Thus, although still retaining cobaltochelatase activity, the presence of His96 and His103 in CbiKP , which are absent from all other known bacterial cobaltochelatases, has evolved CbiKP a new function as a haem binding protein permitting it to act as a potential haem chaperone or transporter.


Assuntos
Proteínas de Bactérias/genética , Desulfovibrio vulgaris/enzimologia , Desulfovibrio vulgaris/genética , Heme/análogos & derivados , Liases/genética , Tetrapirróis/metabolismo , Uroporfirinas/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Desulfovibrio vulgaris/metabolismo , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Histidina/metabolismo
14.
Plant Physiol ; 162(1): 63-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23569108

RESUMO

The NADPH-dependent thioredoxin reductase C (NTRC) is involved in redox-related regulatory processes in chloroplasts and nonphotosynthetic active plastids. Together with 2-cysteine peroxiredoxin, it forms a two-component peroxide-detoxifying system that acts as a reductant under stress conditions. NTRC stimulates in vitro activity of magnesium protoporphyrin IX monomethylester (MgPMME) cyclase, most likely by scavenging peroxides. Reexamination of tetrapyrrole intermediate levels of the Arabidopsis (Arabidopsis thaliana) knockout ntrc reveals lower magnesium protoporphyrin IX (MgP) and MgPMME steady-state levels, the substrate and the product of MgP methyltransferase (CHLM) preceding MgPMME cyclase, while MgP strongly accumulates in mutant leaves after 5-aminolevulinic acid feeding. The ntrc mutant has a reduced capacity to synthesize 5-aminolevulinic acid and reduced CHLM activity compared with the wild type. Although transcript levels of genes involved in chlorophyll biosynthesis are not significantly altered in 2-week-old ntrc seedlings, the contents of glutamyl-transfer RNA reductase1 (GluTR1) and CHLM are reduced. Bimolecular fluorescence complementation assay confirms a physical interaction of NTRC with GluTR1 and CHLM. While ntrc contains partly oxidized CHLM, the wild type has only reduced CHLM. As NTRC also stimulates CHLM activity in vitro, it is proposed that NTRC has a regulatory impact on the redox status of conserved cysteine residues of CHLM. It is hypothesized that a deficiency of NTRC leads to a lower capacity to reduce cysteine residues of GluTR1 and CHLM, affecting the stability and, thereby, altering the activity in the entire tetrapyrrole synthesis pathway.


Assuntos
Arabidopsis/enzimologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Metiltransferases , NADP/genética , NADP/metabolismo , Oxirredução , Peroxirredoxinas , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plastídeos/enzimologia , Plastídeos/genética , Plastídeos/metabolismo , Protoporfirinas/genética , Protoporfirinas/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/metabolismo , Tetrapirróis/genética , Tetrapirróis/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
15.
Nucl Med Biol ; 40(2): 280-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23265666

RESUMO

Tetrapyrroles are multisided natural products which are of relevance in clinical medicine. Owing to their specific accumulation in tumour tissue, porphyrins, metalloporphyrins and chlorins have been used as in photodynamic therapy and optical imaging. Moreover, their specific uptake into inflammatory atheromatous plaques via LDL endocytosis has been reported. The present study is concerned with the synthesis of (68)Ga labelled porphyrin derivatives and an in vitro assessment of the utility of radiotracers in positron emission tomography. A set of five porphyrin derivatives were labelled using (68)Ga from a commercially obtained radionuclide generator. Dedicated post-processing of the generator eluate was conducted to allow for labelling in aqueous media and also under anhydrous conditions. Challenge studies and incubation in human serum confirmed the stability of the tracers. Plasma protein binding was investigated in order to confirm the presence of freely diffusible radioligand in plasma. A preliminary microPET study in a tumour-bearing rat resulted in a clear visualisation of the tumour.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Tetrapirróis/química , Animais , Proteínas Sanguíneas/metabolismo , Estabilidade de Medicamentos , Radioisótopos de Gálio , Humanos , Marcação por Isótopo , Masculino , Radioquímica , Ratos , Tetrapirróis/metabolismo , Tetrapirróis/farmacocinética
16.
Proc Natl Acad Sci U S A ; 110(3): 918-23, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23256156

RESUMO

Cyanobacteriochromes are cyanobacterial tetrapyrrole-binding photoreceptors that share a bilin-binding GAF domain with photoreceptors of the phytochrome family. Cyanobacteriochromes are divided into many subclasses with distinct spectral properties. Among them, putative phototaxis regulators PixJs of Anabaena sp. PCC 7120 and Thermosynechococcus elongatus BP-1 (denoted as AnPixJ and TePixJ, respectively) are representative of subclasses showing red-green-type and blue/green-type reversible photoconversion, respectively. Here, we determined crystal structures for the AnPixJ GAF domain in its red-absorbing 15Z state (Pr) and the TePixJ GAF domain in its green-absorbing 15E state (Pg). The overall structure of these proteins is similar to each other and also similar to known phytochromes. Critical differences found are as follows: (i) the chromophore of AnPixJ Pr is phycocyanobilin in a C5-Z,syn/C10-Z,syn/C15-Z,anti configuration and that of TePixJ Pg is phycoviolobilin in a C10-Z,syn/C15-E,anti configuration, (ii) a side chain of the key aspartic acid is hydrogen bonded to the tetrapyrrole rings A, B and C in AnPixJ Pr and to the pyrrole ring D in TePixJ Pg, (iii) additional protein-chromophore interactions are provided by subclass-specific residues including tryptophan in AnPixJ and cysteine in TePixJ. Possible structural changes following the photoisomerization of the chromophore between C15-Z and C15-E are discussed based on the X-ray structures at 1.8 and 2.0-Å resolution, respectively, in two distinct configurations.


Assuntos
Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Sequência de Aminoácidos , Anabaena/química , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cianobactérias/química , Cianobactérias/genética , Cianobactérias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Eletricidade Estática , Tetrapirróis/metabolismo
17.
Exp Cell Res ; 319(4): 536-45, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23246570

RESUMO

Epidemiological studies report a negative association between circulating bilirubin concentrations and the risk for cancer and cardiovascular disease. Structurally related tetrapyrroles also possess in vitro anti-genotoxic activity and may prevent mutation prior to malignancy. Furthermore, few data suggest that tetrapyrroles exert anti-carcinogenic effects via induction of cell cycle arrest and apoptosis. To further investigate whether tetrapyrroles provoke DNA-damage in human cancer cells, they were tested in the single cell gel electrophoresis assay (SCGE). Eight tetrapyrroles (unconjugated bilirubin, bilirubin ditaurate, biliverdin, biliverdin-/bilirubin dimethyl ester, urobilin, stercobilin and protoporphyrin) were added to cultured Caco2 and HepG2 cells and their effects on comet formation (% tail DNA) were assessed. Flow cytometric assessment (apoptosis/necrosis, cell cycle, intracellular radical species generation) assisted in revealing underlying mechanisms of intracellular action. Cells were incubated with tetrapyrroles at concentrations of 0.5, 5 and 17µM for 24h. Addition of 300µM tertiary-butyl hydroperoxide to cells served as a positive control. Tetrapyrrole incubation mostly resulted in increased DNA-damage (comet formation) in Caco2 and HepG2 cells. Tetrapyrroles that are concentrated within the intestine, including protoporphyrin, urobilin and stercobilin, led to significant comet formation in both cell lines, implicating the compounds in inducing DNA-damage and apoptosis in cancer cells found within organs of the digestive system.


Assuntos
Dano ao DNA/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Neoplasias/patologia , Tetrapirróis/metabolismo , Tetrapirróis/farmacologia , Antioxidantes/farmacologia , Pigmentos Biliares/farmacologia , Bilirrubina/análogos & derivados , Bilirrubina/farmacologia , Células CACO-2 , Ensaio Cometa , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Células Hep G2 , Humanos , Neoplasias/genética , Concentração Osmolar , Protoporfirinas/farmacologia , Urobilina/farmacologia
18.
Plant Physiol ; 160(4): 1923-39, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23085838

RESUMO

Low Chlorophyll Accumulation A (LCAA) antisense plants were obtained from a screen for genes whose partial down-regulation results in a strong chlorophyll deficiency in tobacco (Nicotiana tabacum). The LCAA mutants are affected in a plastid-localized protein of unknown function, which is conserved in cyanobacteria and all photosynthetic eukaryotes. They suffer from drastically reduced light-harvesting complex (LHC) contents, while the accumulation of all other photosynthetic complexes per leaf area is less affected. As the disturbed accumulation of LHC proteins could be either attributable to a defect in LHC biogenesis itself or to a bottleneck in chlorophyll biosynthesis, chlorophyll synthesis rates and chlorophyll synthesis intermediates were measured. LCAA antisense plants accumulate magnesium (Mg) protoporphyrin monomethylester and contain reduced protochlorophyllide levels and a reduced content of CHL27, a subunit of the Mg protoporphyrin monomethylester cyclase. Bimolecular fluorescence complementation assays confirm a direct interaction between LCAA and CHL27. 5-Aminolevulinic acid synthesis rates are increased and correlate with an increased content of glutamyl-transfer RNA reductase. We suggest that LCAA encodes an additional subunit of the Mg protoporphyrin monomethylester cyclase, is required for the stability of CHL27, and contributes to feedback-control of 5-aminolevulinic acid biosynthesis, the rate-limiting step of chlorophyll biosynthesis.


Assuntos
Ácido Aminolevulínico/metabolismo , Retroalimentação Fisiológica , Oxirredutases Intramoleculares/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Protoporfirinas/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , Clorofila A , Sequência Conservada , Evolução Molecular , Fluorescência , Regulação da Expressão Gênica de Plantas , Oxirredutases Intramoleculares/química , Complexos de Proteínas Captadores de Luz/metabolismo , Dados de Sequência Molecular , Oxirredução , Fenótipo , Fotossíntese/genética , Plastídeos/metabolismo , Transporte Proteico , RNA Antissenso/metabolismo , Alinhamento de Sequência , Tetrapirróis/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
19.
Mol Microbiol ; 85(4): 734-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22715852

RESUMO

CrtJ from Rhodobacter capsulatus is a regulator of genes involved in the biosynthesis of haem, bacteriochlorophyll, carotenoids as well as structural proteins of the light harvesting-II complex. Fluorescence anisotropy-based DNA-binding analysis demonstrates that oxidized CrtJ exhibits ~20-fold increase in binding affinity over that of reduced CrtJ. Liquid chromatography electrospray tandem ionization mass spectrometric analysis using DAz-2, a sulfenic acid (-SOH)-specific probe, demonstrates that exposure of CrtJ to oxygen or to hydrogen peroxide leads to significant accumulation of a sulfenic acid derivative of Cys420 which is located in the helix-turn-helix (HTH) motif. In vivo labelling with 4-(3-azidopropyl)cyclohexane-1,3-dione (DAz-2) shows that Cys420 also forms a sulfenic acid modification in vivo when cells are exposed to oxygen. Moreover, a Cys420 to Ala mutation leads to a ~60-fold reduction of DNA binding activity while a Cys to Ser substitution at position 420 that mimics a cysteine sulfenic acid results in a ~4-fold increase in DNA binding activity. These results provide the first example where sulfenic acid oxidation of a cysteine in a HTH-motif leads to differential effects on gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Rhodobacter capsulatus/enzimologia , Fatores de Transcrição/metabolismo , Cromatografia Líquida , Sequências Hélice-Volta-Hélice , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Oxirredução , Oxigênio/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem , Tetrapirróis/metabolismo
20.
Bioconjug Chem ; 21(12): 2267-75, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21062033

RESUMO

Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.


Assuntos
Complexos de Coordenação/síntese química , Gadolínio/metabolismo , Imageamento por Ressonância Magnética/métodos , Tetrapirróis/síntese química , Adenocarcinoma/diagnóstico , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/radioterapia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Fibroblastos/efeitos dos fármacos , Fluorescência , Gadolínio/química , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Espectrometria de Massas , Microscopia Confocal , Técnicas de Diagnóstico Molecular , Peso Molecular , Fotoquimioterapia/métodos , Radiografia , Tetrapirróis/metabolismo , Tetrapirróis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA