Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Environ Toxicol ; 39(7): 3944-3955, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581179

RESUMO

Neonicotinoids are insecticides widely used in the world. Although neonicotinoids are believed to be toxic only to insects, their developmental neurotoxicity in mammals is a concern. Therefore, we examined the effects of developmental exposure to neonicotinoids on immune system in the brain and post-developmental behaviors in this study. Imidacloprid or clothianidin was orally administered to dams at a dosage of 0.1 mg/kg/day from embryonic day 11 to postnatal day 21. Imidacloprid decreased sociability, and both imidacloprid and clothianidin decreased locomotor activity and induced anxiety, depression and abnormal repetitive behaviors after the developmental period. There was no change in the number of neurons in the hippocampus of mice exposed to imidacloprid. However, the number and activity of microglia during development were significantly decreased by imidacloprid exposure. Imidacloprid also induced neural circuit dysfunction in the CA1 and CA3 regions of the hippocampus during the early postnatal period. Exposure to imidacloprid suppressed the expression of csf1r during development. Collectively, these results suggest that developmental exposure to imidacloprid decreases the number and activity of microglia, which can cause neural circuit dysfunction and abnormal behaviors after the developmental period. Care must be taken to avoid exposure to neonicotinoids, especially during development.


Assuntos
Inseticidas , Microglia , Neonicotinoides , Nitrocompostos , Animais , Neonicotinoides/toxicidade , Microglia/efeitos dos fármacos , Nitrocompostos/toxicidade , Camundongos , Inseticidas/toxicidade , Feminino , Guanidinas/toxicidade , Tiazóis/toxicidade , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Gravidez , Neurônios/efeitos dos fármacos
2.
Environ Int ; 181: 108308, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939439

RESUMO

Isothiazolinones are extensively used as preservatives and disinfectants in personal care products and household items. The unintended exposure of humans and animals to isothiazolinones has led to increasing concerns about their health hazards. The compound 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), a representative isothiazolinone, can simultaneously induce endocrine disruption and neurotoxicity. However, the underlying mechanisms and linkages remain unclear. Our purpose was to elucidate the role of miRNAs as the signaling communicator during the crosstalk between endocrine and nervous systems in response to DCOIT stress. H295R cells were exposed to DCOIT, after which the alterations in intracellular miRNA composition, exosome secretory machinery, and extracellular miRNA composition were examined. Then, a PC12 cell line of neuronal differentiation potential was cultured with the extract of extracellular miRNAs from DCOIT-exposed H295R cell media to explore the functional implications in neurogenesis. The results showed that DCOIT exposure resulted in 349 differentially expressed miRNAs (DEMs) in H295R cells, which were closely related to the regulation of multiple endocrine pathways. In the media of H295R cells exposed to DCOIT, 66 DEMs were identified, showing distinct compositions compared to intracellular DEMs with only 2 common DEMs (e.g., novel-m0541-5p of inverse changes in the cell and medium). Functional annotation showed that extracellular DEMs were not only associated with sex endocrine synchronization, but were also implicated in nervous system development, morphogenesis, and tumor. Incubating PC12 cells with the extracellular exosomes (containing miRNAs) from DCOIT-exposed H295R cells significantly increased the neurite growth, promoted neuronal differentiation, and shaped the transcriptomic fingerprint, implying that miRNAs may communicate transduction of toxic information of DCOIT in endocrine system to neurons. Overall, the present findings provide novel insight into the endocrine disrupting and neural toxicity of DCOIT. The miRNAs have the potential to serve as the epigenetic mechanism of systems toxicology.


Assuntos
MicroRNAs , Poluentes Químicos da Água , Animais , Ratos , Humanos , Poluentes Químicos da Água/toxicidade , Sistema Endócrino , Transdução de Sinais , Neurogênese , Tiazóis/toxicidade
3.
Int J Toxicol ; 42(4): 345-351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36723994

RESUMO

Neonicotinoid insecticides, known for their selectivity and low mammalian toxicity, have been widely used in recent years as alternatives to organophosphate insecticides. Although neonicotinoids are generally considered to be safe, data show that they can cause harmful effects on human and environmental health. Due to the lack of information on their mechanism of toxicity, the effects of imidacloprid and thiamethoxam on DNA methylation as the most used marker for epigenetic effects were investigated in human neuroblastoma (SH-SY5Y) cells. The cells were exposed to imidacloprid and thiamethoxam in concentrations of 100, 200, and 500 µM for 24 hours, then global DNA methylation and expression of genes involved in global DNA methylation (DNMT1, DNMT3a and DNMT3b) were investigated. Global DNA methylation significantly increased after imidacloprid exposure at 100 µM, and thiamethoxam exposures at 200 µM and 500 µM (>1.5-fold). Imidacloprid significantly decreased the expression of DNMT1 and DNMT3a, whereas thiamethoxam did not cause any significant changes in the expression of DNMT genes. Our findings suggested that alteration in global DNA methylation may be involved in the toxic mechanisms of imidacloprid and thiametoxam.


Assuntos
Inseticidas , Neuroblastoma , Animais , Humanos , Tiametoxam/toxicidade , Inseticidas/toxicidade , Metilação de DNA , Oxazinas/toxicidade , Tiazóis/toxicidade , Guanidinas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Mamíferos
4.
J Med Chem ; 65(3): 2434-2457, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35043615

RESUMO

A series of 2-phenylthiazole analogues were designed and synthesized as potential histone deacetylase 6 (HDAC6) inhibitors based on compound 12c (an HDAC6/tubulin dual inhibitor discovered by us recently) and CAY10603 (a known HDAC6 inhibitor). Among them, compound XP5 was the most potent HDAC6 inhibitor with an IC50 of 31 nM and excellent HDAC6 selectivity (SI = 338 for HDAC6 over HDAC3). XP5 also displayed high antiproliferative activity against various cancer cell lines including the HDACi-resistant YCC3/7 gastric cancer cells (IC50 = 0.16-2.31 µM), better than CAY10603. Further, XP5 (50 mg/kg) exhibited significant antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 63% without apparent toxicity. Moreover, XP5 efficiently enhanced the in vivo antitumor immune response when combined with a small-molecule PD-L1 inhibitor, as demonstrated by the increased tumor-infiltrating lymphocytes and reduced PD-L1 expression levels. Taken together, the above results suggest that XP5 is a promising HDAC6 inhibitor deserving further investigation.


Assuntos
Antineoplásicos/uso terapêutico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Imunidade/efeitos dos fármacos , Melanoma/tratamento farmacológico , Tiazóis/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/toxicidade , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/toxicidade , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Masculino , Melanoma/terapia , Camundongos , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacocinética , Tiazóis/toxicidade
5.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056802

RESUMO

A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a-f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of -7.7 to -8.7 kcal/mol for 3a-f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a-f ligands and the receptor's active amino acid residues. The main aim of using in silco molecular docking was to rank 3a-f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a-f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a-f.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Iminas/química , Tiazóis/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Alanina/análogos & derivados , Alanina/química , Antivirais/síntese química , Antivirais/farmacocinética , Antivirais/toxicidade , Sítios de Ligação , Simulação por Computador , Proteases 3C de Coronavírus/química , Citidina/análogos & derivados , Citidina/química , Hidroxilaminas/química , Iminas/síntese química , Iminas/farmacocinética , Iminas/toxicidade , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Tiazóis/síntese química , Tiazóis/farmacocinética , Tiazóis/toxicidade
6.
Exp Parasitol ; 228: 108142, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34375652

RESUMO

We investigated the in vitro activity and selectivity, and in vivo efficacy of ravuconazole (RAV) in self-nanoemulsifying delivery system (SNEDDS) against Trypanosoma cruzi. Novel formulations of this poorly soluble C14-α-demethylase inhibitor may improve its efficacy in the experimental treatment. In vitro activity was determined in infected cardiomyocytes and efficacy in vivo evaluated in terms of parasitological cure induced in Y and Colombian strains of T. cruzi-infected mice. In vitro RAV-SNEDDS exhibited significantly higher potency of 1.9-fold at the IC50 level and 2-fold at IC90 level than free-RAV. No difference in activity with Colombian strain was observed in vitro. Oral treatment with a daily dose of 20 mg/kg for 30 days resulted in 70% of cure for RAV-SNEDDS versus 40% for free-RAV and 50% for 100 mg/kg benznidazole in acute infection (T. cruzi Y strain). Long-term treatment efficacy (40 days) was able to cure 100% of Y strain-infected animals with both RAV preparations. Longer treatment time was also efficient to increase the cure rate with benznidazole (Y and Colombian strains). RAV-SNEDDS shows greater efficacy in a shorter time treatment regimen, it is safe and could be a promising formulation to be evaluated in other pre-clinical models to treat T. cruzi and fungi infections.


Assuntos
Doença de Chagas/tratamento farmacológico , Tiazóis/administração & dosagem , Triazóis/administração & dosagem , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Emulsões , Feminino , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Miócitos Cardíacos , Nanoestruturas , Ratos , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Tiazóis/toxicidade , Triazóis/farmacologia , Triazóis/uso terapêutico , Triazóis/toxicidade
7.
J Toxicol Environ Health A ; 84(22): 932-943, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34315345

RESUMO

Isothiazolinone (IT) biocides are potent antibacterial substances used as preservatives and disinfectants. These biocides exert differing biocidal effects and display environmental stability based upon chemical structure. In agreement with our recent study reporting that 2-n-octyl-4-isothiazolin-3-one (OIT) induced dysfunction of the blood-brain barrier (BBB), the potential adverse health effects of two IT biocides 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT) were compared using brain endothelial cells (ECs) derived from murine brain endothelial cell line (bEND.3). BIT possesses an unchlorinated IT ring structure and used as a preservative in cleaning products. DCOIT contains a chlorinated IT ring structure and employed as an antifouling agent in paints. Data demonstrated that DCOIT altered cellular metabolism at a lower concentration than BIT. Both BIT and DCOIT increased reactive oxygen species (ROS) generation at the mitochondrial and cellular levels. However, the effect of DCOIT on glutathione (GSH) levels appeared to be greater than BIT. While mitochondrial membrane potential (MMP) was decreased in both BIT- and DCOIT-exposed cells, direct disturbance in mitochondrial bioenergetic flux was only observed in BIT-treated ECs. Taken together, IT biocides produced toxicity in brain EC and barrier dysfunction, but at different concentration ranges suggesting distinct differing mechanisms related to chemical structure.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Desinfetantes/toxicidade , Mitocôndrias/efeitos dos fármacos , Tiazóis/toxicidade , Animais , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Desinfetantes/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glutationa/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/química
8.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065933

RESUMO

Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3ß4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3ß4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 µM, but it was stronger at 500 µM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3ß4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.


Assuntos
Epinefrina/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nicotina/toxicidade , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Agonismo Parcial de Drogas , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Masculino , Ratos , Tiazóis/toxicidade , Testes de Toxicidade Subaguda
9.
Toxicol Appl Pharmacol ; 424: 115589, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029620

RESUMO

Changes in the physical state of the cells can serve as important indicators of stress responses because they are closely linked with the changes in the pathophysiological functions of the cells. Physical traits can be conveniently assessed by analyzing the morphological features and the stresses at the cell-matrix and cell-cell adhesions in both single-cell and monolayer model systems in 2D. In this study, we investigated the mechano-stress responses of human bronchial epithelial cells, BEAS-2B, to two functionally distinct groups of biocides identified during the humidifier disinfectant accident, namely, guanidine (PHMG) and isothiazolinone (CMIT/MIT). We analyzed the physical traits, including cell area, nuclear area, and nuclear shape. While the results showed inconsistent average responses to the biocides, the degree of dispersion in the data set, measured by standard deviation, was remarkably higher in CMIT/MIT treated cells for all traits. As mechano-stress endpoints, traction and intercellular stresses were also measured, and the cytoskeletal actin structures were analyzed using immunofluorescence. This study demonstrates the versatility of the real-time imaging-based biomechanical analysis, which will contribute to identifying the temporally sensitive cellular behaviors as well as the emergence of heterogeneity in response to exogenously imposed stress factors. This study will also shed light on a comparative understanding of less studied substance, CMIT/MIT, in relation to a more studied substance, PHMG, which will further contribute to more strategic planning for proper risk management of the ingredients involved in toxicological accidents.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Desinfetantes/toxicidade , Guanidina/toxicidade , Tiazóis/toxicidade , Linhagem Celular , Células Epiteliais , Humanos
10.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806369

RESUMO

Isothiazolinone (IT) biocides are potent antibacterial substances commonly used as preservatives or disinfectants, and 2-n-Octyl-4-isothiazolin-3-one (OIT; octhilinone) is a common IT biocide that is present in leather products, glue, paints, and cleaning products. Although humans are exposed to OIT through personal and industrial use, the potentially deleterious effects of OIT on human health are still unknown. To investigate the effects of OIT on the vascular system, which is continuously exposed to xenobiotics through systemic circulation, we treated brain endothelial cells with OIT. OIT treatment significantly activated caspase-3-mediated apoptosis and reduced the bioenergetic function of mitochondria in a bEnd.3 cell-based in vitro blood-brain barrier (BBB) model. Interestingly, OIT significantly altered the thiol redox status, as evidenced by reduced glutathione levels and protein S-nitrosylation. The endothelial barrier function of bEnd.3 cells was significantly impaired by OIT treatment. OIT affected mitochondrial dynamics through mitophagy and altered mitochondrial morphology in bEnd.3 cells. N-acetyl cysteine significantly reversed the effects of OIT on the metabolic capacity and endothelial function of bEnd.3 cells. Taken together, we demonstrated that the alteration of the thiol redox status and mitochondrial damage contributed to OIT-induced BBB dysfunction, and we hope that our findings will improve our understanding of the potential hazardous health effects of IT biocides.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Desinfetantes/toxicidade , Tiazóis/toxicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Desinfetantes/antagonistas & inibidores , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tiazóis/antagonistas & inibidores , Proteínas de Junções Íntimas/metabolismo
11.
Ecotoxicol Environ Saf ; 217: 112234, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864981

RESUMO

The toxicity tests of nineteen commonly used pesticides were carried out to compare the sensitivity differences between predatory mite Neoseiulus cucumeris and its prey Tetranychus cinnabarinus by a "leaf spray method" in laboratory microcosms. For two avermectins, emamectin benzoate and abamectin, exhibited high bioactivity against T. cinnabarinusf with LR50 values of 0.04 and 0.05 g a.i./ha, respectively, but these two insecticides showed the opposite toxic effects to N. cucumeris. These two agents showed strong selectivity for the two test species with Selective Toxicity Rate (STR) values of 950 and 620, respectively. However, for five neonicotinoids, the LR50s of dinotefuran, thiamethoxam, imidacloprid, and acetamiprid were all greater than the recommended rates in the field except for clothianidin, and they showed no obvious toxicity difference to the two species with STR values ranging from 0.58 to 2.00. For two organophosphates, malathion is more toxic to N. cucumeris than T. cinnabarinus, however, dimethoate showed a higher toxic effect on T. cinnabarinus. In addition, the toxicity of four pyrethroids, bifenthrin, deltamethrin, cyhalothrin and gamma-cyhalothrin to N. cucumeris was higher than that of T. cinnabarinus, except for alpha-cypermethrin. For five acaricides, spirodiclofen, spirotetramat and pyridaben had no obvious selectivity to the two organisms, while diafenthiuron and chlorfenapyr were found to be highly toxic to T. cinnabarinus than N. cucumeris with STR values of 14.2 and 68.5, respectively. Thus, some pesticides above-mentioned like emamectin benzoate, abamectin, diafenthiuron and chlorfenapyr exhibited potential to be used in the management programs of T. cinnabarinus, especially in organically based production systems where there are fewer chemical control measures available, which need to combine with natural enemies to achieve the best control effect.


Assuntos
Praguicidas/toxicidade , Aranhas/fisiologia , Tetranychidae/fisiologia , Acaricidas/farmacologia , Animais , Guanidinas/toxicidade , Ácaros/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrilas/toxicidade , Nitrocompostos/toxicidade , Piretrinas/farmacologia , Piretrinas/toxicidade , Tiazóis/toxicidade
12.
Aquat Toxicol ; 235: 105820, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33819826

RESUMO

Amphibians are declining globally. Exposure to pesticides has been implicated in decreasing amphibian immune function, thus increasing their susceptibility to parasites and disease and thereby negatively affecting individuals and populations. Amphibians are likely exposed to neonicotinoids because these widely used insecticides are highly soluble in water and because amphibian freshwater habitats are often embedded in agroecosystems. Herein, we investigate the effects of long-term exposure to two individual neonicotinoids (clothianidin or thiamethoxam) at either low or high concentrations (2.5 or 250 µg/L) on northern leopard frog (Lithobates pipiens) blood cell profiles and concentrations of corticosterone, an energy-mediating hormone associated with stress. Larval frogs from Gosner stage 25 to 46 were exposed to pesticide and control treatments in outdoor mesocosms. Corticosterone concentrations were measured after 6 d of exposure, and blood cell profiles were assessed once frogs reached Gosner stage 46 (following 8 w of exposure). No significant changes were found in erythrocyte counts, leukocyte counts, monocyte to leukocyte ratios or corticosterone concentrations between treatments. However, exposure to either 2.5 or 250 µg/L of clothianidin, or 250 µg/L of thiamethoxam decreased neutrophil to lymphocyte ratios and neutrophil to leukocyte ratios, and exposure to 2.5 µg/L of clothianidin or 250 µg/L of thiamethoxam decreased eosinophil to leukocyte ratios. Our results indicate that long-term exposure to neonicotinoids can alter leukocyte profiles, indicative of a stress response. Future studies should investigate whether chronic exposure to neonicotinoids affect multiple measures of stress differently or influences the susceptibility of amphibians to parasites and pathogens. Our work underscores the importance of continued use of multiple measures of stress for different amphibian species when undertaking ecotoxicological assessments.


Assuntos
Praguicidas/toxicidade , Rana pipiens/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Anuros , Benchmarking , Células Sanguíneas , Corticosterona/sangue , Guanidinas/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Neonicotinoides/toxicidade , Praguicidas/farmacologia , Tiametoxam/farmacologia , Tiametoxam/toxicidade , Tiazóis/toxicidade
13.
Arch Toxicol ; 95(3): 1039-1053, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426623

RESUMO

Co-occurrence of pesticide residues in food commodities raises a potential safety issue as their mixture effects on human health are largely unknown. In a previous study, we reported the toxicological effects (pathology and histopathology) of imazalil (IMZ), thiacloprid (THI), and clothianidin (CTD) alone and in binary mixtures in a 28-day oral gavage study in female Wistar rats. Five dose levels (up to 350 mg/kg body weight/day) ranging from a typical toxicological reference value to a clear effect dose were applied. In the present study, we undertook a transcriptomics analysis of rat livers by means of total RNA sequencing (RNA-Seq). Bioinformatic data analysis involving Ingenuity Pathway Analysis (IPA) was used to gain mechanistic information on hepatotoxicity-related pathways affected after treatment with the pesticides, alone and in mixtures. Our data show that 2986 genes were differentially regulated by CTD while IMZ and THI had effects on 194 and 225 genes, respectively. All three individual compounds shared a common subset of genes whose network is associated with xenobiotic metabolism and nuclear receptor activation. Similar networks were retrieved for the mixtures. Alterations in the expression of individual genes were in line with the assumption of dose addition. Our results bring new insight into the hepatotoxicity mechanisms of IMZ, THI, and CTD and their mixtures.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Guanidinas/toxicidade , Imidazóis/toxicidade , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Tiazóis/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Guanidinas/administração & dosagem , Imidazóis/administração & dosagem , Neonicotinoides/administração & dosagem , Praguicidas/toxicidade , Ratos , Ratos Wistar , Análise de Sequência de RNA , Tiazinas/administração & dosagem , Tiazóis/administração & dosagem
14.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066398

RESUMO

Currently available toxicity data on humidifier disinfectants are primarily limited to polyhexamethylene guanidine phosphate-induced lung fibrosis. We, therefore, investigated whether the sterilizer component Kathon, which is a mixture of chloromethylisothiazolinone and methylisothiazolinone, induces fibrotic lung injury following direct lung exposure in an animal model. Mice were intratracheally instilled with either the vehicle or Kathon. Differential cell counts, cytokine analysis, and histological analysis of lung tissue were then performed to characterize the injury features, and we investigated whether Kathon altered fibrosis-related gene expression in lung tissues via RNA-Seq and bioinformatics. Cell counting showed that Kathon exposure increased the proportion of macrophages, eosinophils, and neutrophils. Moreover, T helper 2 (Th2) cytokine levels in the bronchoalveolar lavage were significantly increased in the Kathon groups. Histopathological analysis revealed increased perivascular/alveolar inflammation, eosinophilic cells, mucous cell hyperplasia, and pulmonary fibrosis following Kathon exposure. Additionally, Kathon exposure modulated the expression of genes related to fibrotic inflammation, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, extracellular signal regulated kinase (ERK)1 and ERK2 cascade, extracellular matrix (ECM)-receptor interaction pathway, transforming growth factor beta receptor signaling pathway, cellular response to tumor necrosis factor, and collagen fibril organization. Our results suggest that Kathon exposure is associated with fibrotic lung injury via a Th2-dependent pathway and is thus a possible risk factor for fibrosis.


Assuntos
Desinfetantes/toxicidade , Eosinófilos/efeitos dos fármacos , Umidificadores , Fibrose Pulmonar/induzido quimicamente , Células Th2/efeitos dos fármacos , Animais , Asma/genética , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Eosinófilos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Células Th2/patologia , Tiazóis/toxicidade
15.
PLoS One ; 15(7): e0229052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614853

RESUMO

Rice paddy irrigation ponds can sustain surprisingly high taxonomic richness and make significant contributions to regional biodiversity. We evaluated the impacts of pesticides and other environmental stressors (including eutrophication, decreased macrophyte coverage, physical habitat destruction, and invasive alien species) on the taxonomic richness of freshwater animals in 21 irrigation ponds in Japan. We sampled a wide range of freshwater animals (reptiles, amphibians, fishes, mollusks, crustaceans, insects, annelids, bryozoans, and sponges) and surveyed environmental variables related to pesticide contamination and other stressors listed above. Statistical analyses comprised contraction of highly correlated environmental variables, best-subset model selection, stepwise model selection, and permutation tests. Results showed that: (i) probenazole (fungicide) was a significant stressor on fish (i.e., contamination with this compound had a significantly negative correlation with fish taxonomic richness), (ii) the interaction of BPMC (insecticide; also known as fenobucarb) and bluegill (invasive alien fish) was a significant stressor on a "large insect" category (Coleoptera, Ephemeroptera, Hemiptera, Lepidoptera, Odonata, and Trichoptera), (iii) the interaction of BPMC and concrete bank protection was a significant stressor on an "invertebrate" category, (iv) the combined impacts of BPMC and the other stressors on the invertebrate and large insect categories resulted in an estimated mean loss of taxonomic richness by 15% and 77%, respectively, in comparison with a hypothetical pond with preferable conditions.


Assuntos
Invertebrados/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Biodiversidade , Carbamatos/toxicidade , Ecossistema , Monitoramento Ambiental , Espécies Introduzidas , Invertebrados/fisiologia , Lagoas , Tiazóis/toxicidade , Vertebrados/fisiologia
16.
Environ Mol Mutagen ; 61(6): 647-655, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32285515

RESUMO

Clothianidin (CHN) is a member of the neonicotinoid group of insecticides. Its oxidative and DNA damage potential for human lung cells are not known. Therefore, the present study was designed to examine the effects of CHN on DNA damage and oxidative stress in human bronchial epithelial cells (BEAS-2B) treated with CHN for 24, 72, and 120 hr. Our results indicate that CHN decreased cell viability in a concentration-dependent manner. CHN induced DNA single-strand breaks because alkaline comet parameters such as tail intensity, DNA in the tail, tail moment, and tail length increased. All CHN concentrations also significantly induced the formation of DNA double-strand breaks (DSBs) because it increased phosphorylated H2AX protein foci for all treatment times and p53-binding protein 1 foci for all treatments except for the lowest concentration (0.15 mM) of 120-hr treatment. DNA damage caused by DNA DSBs was not repaired in a 24-hr recovery period. CHN also induced oxidative stress by decreasing reduced glutathione and increasing lipid peroxidation. These results make it necessary to conduct studies about the detailed carcinogenic potential of CHN in humans because it can induce both oxidative and DNA damage.


Assuntos
Brônquios/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Guanidinas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tiazóis/toxicidade , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
17.
Food Chem Toxicol ; 140: 111306, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32229153

RESUMO

Humans are exposed to pesticide residues through various food products. As these residues can occur in mixtures, there is a need to investigate possible mixture effects on human health. Recent exposure studies revealed the preponderance of imazalil, thiacloprid, and clothianidin in food diets. In this study, we assessed their toxicity alone and in binary mixtures in a 28-day gavage study in female Wistar rats. Five dose levels (up to 350 mg/kg bw/day) ranging from a typical toxicological reference value to a clear effect dose were applied. Data show that the liver was a target organ of all pesticides and their mixtures. Increases in liver weight were observed and histopathological examination revealed centrilobular hepatocellular hypertrophy and cytoplasm degeneration for all treatment conditions. No accumulation of hepatic triglycerides was reported. Tissue residue analysis showed altered pesticide residues in the liver and the kidney when being in mixture as compared to the levels of pesticide residues for the single compound treatment, indicating possible toxicokinetic interactions. Overall, all mixtures appeared to follow the additivity concept, even though quantitative analysis was limited for some endpoints due to the semi-quantitative nature of the data, raising no specific concern for the risk assessment of the examined pesticides.


Assuntos
Guanidinas/toxicidade , Imidazóis/toxicidade , Fígado/efeitos dos fármacos , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Tiazinas/toxicidade , Tiazóis/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Rim/efeitos dos fármacos , Fígado/patologia , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Medição de Risco
18.
J Vet Med Sci ; 82(3): 360-372, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31983703

RESUMO

Neonicotinoid pesticides (NNs) act as agonists on nicotinic acetylcholine receptors (nAChRs) of insects, and there have been concerns about the effects of NNs on the health of mammals. Since nAChRs are expressed in immune cells, it is possible that NNs disturb the immune system. However, few reports have examined the immunotoxicity of clothianidin (CLO), a widely-used NN. Here, we report the effects of CLO on immune organs and type IV allergic reactions in ear auricles. We orally administered CLO at 0, 30 and 300 mg/kg/day (CLO-0, 30 and 300) to Sprague-Dawley rats for 28 days. The effects were evaluated by organ and body weights, histopathology, and immunohistochemistry (TCRαß, CD4, CD8, CD11b, CD68, CD103). In addition, some cecal contents were subjected to preliminary gut microbiota analysis, because microbiota contribute to host homeostasis, including the immunity. Our results showed loose stool, suppression of body weight gain, significant changes in organ weights (thymus: decreased; liver: increased) and changes of the gut microbiota in the CLO-300 group. There were no obvious histopathological changes in immune organs. Granulomas of the ear auricles were found in one rat of each of the CLO-30 and 300 groups, but CLO had no apparent effect on the thickness or immunohistochemistry in the ear auricles. We present new evidence that CLO affects the thymus and intestine, and might enhance the local inflammatory response. These findings should contribute to the appropriate evaluation of the safety of NNs in the future.


Assuntos
Guanidinas/toxicidade , Sistema Imunitário/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Administração Oral , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Granuloma/induzido quimicamente , Guanidinas/administração & dosagem , Hipersensibilidade Tardia/induzido quimicamente , Imuno-Histoquímica , Inseticidas/administração & dosagem , Masculino , Neonicotinoides/administração & dosagem , Agonistas Nicotínicos , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Tiazóis/administração & dosagem , Timo/efeitos dos fármacos
19.
Environ Mol Mutagen ; 61(3): 300-315, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31633836

RESUMO

Tricyclazole (8-methyl-[1,2,4]triazolo[3,4-b][1,3]benzothiazole) is a fungicide used globally on rice for treatment of the seasonal rice blast disease. Human exposure to this fungicide can occur via dietary and nondietary routes. In a battery of in vitro assays, tricyclazole did not induce gene mutations in bacteria (Ames test) or at the Hprt locus of CHO cells. It was also negative for the induction of micronuclei in human lymphocyte cultures and unscheduled DNA synthesis (UDS) in primary rat hepatocyte. Paradoxically, tricyclazole induced a mutagenic response at the Tk locus of the mouse lymphoma L5178Ycells (MLA), which occurred equally among small/large colony phenotypes. Selection of preexisting mutants leading to a false-positive response in the MLA was ruled out in follow-up experiments. In vivo, tricyclazole was negative in the rat liver UDS assay, mouse bone micronucleus test and a transgenic (MutaMouse) gene mutation assay in glandular stomach, liver, and kidney. Other supporting evidence for the lack of genotoxicity for tricyclazole comes from an in vivo study for sister chromatid exchanges in Chinese hamsters, and a dominant lethal test in the male germ cells of mice. The combined evidence from the genotoxicity studies together with the evidence from toxicokinetic, carcinogenicity, developmental, and reproductive toxicity studies confirm that mutagenicity does not occur in relevant in vivo systems. Data were also compared to potential animal and human exposure, mechanistic data on biological targets and data on analogues, confirming adequacy of the available data for hazard identification and risk assessment. Environ. Mol. Mutagen. 61:300-315, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Fungicidas Industriais/toxicidade , Mutagênicos/toxicidade , Tiazóis/toxicidade , Animais , DNA/genética , Dano ao DNA/efeitos dos fármacos , Humanos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos
20.
Toxicol In Vitro ; 62: 104661, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31629900

RESUMO

Methylisothiazolinone (MIT) has been used in wide spectrum of fields due to its ability to inhibit microbial proliferation with low toxicity. Meanwhile, in Korea, the concern about the hazardous effects of MIT was amplified by the occurrence of patients that have humidifier disinfectant-associated pulmonary disease. However, the toxic mechanism for the pathological lesion is still unclear. In our previous study, we identified that cell viability decreased more rapidly in bronchial epithelial cells (BEAS-2B cells) compared to keratinocytes and liver epithelial cells under the same exposure condition. In this study we demonstrated that MIT (2, 4 and 8 µg/mL) induced dose-dependent cytotoxicity 24 h after exposure to BEAS-2B cells. Additionally, MIT impaired structure and function of intracellular organelles via oxidative stress, ultimately leading to apoptotic cell death. We also found notable activation of matrix metalloproteinases (MMPs) and clear aggregation of nucleolus proteins in MIT-treated cells. Furthermore, MIT increased secretion of proinflammatory cytokines (Interleukin (IL)-1ß, IL-6, and interferon-γ) and a chemokine (IL-8), and microarray and the KEGG pathway analysis proposed possible carcinogenesis following exposure to MIT. Taken together, we conclude that MIT induces apoptotic cell death and inflammatory response by activating MMPs in BEAS-2B cells. We also suggest that further study is necessary to clarify the possible carcinogenesis of MIT.


Assuntos
Anti-Infecciosos/toxicidade , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Tiazóis/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA