Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Med Chem ; 155: 285-302, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894943

RESUMO

The worldwide prevalence of NDM-1-producing bacteria has drastically undermined the clinical efficacy of the last line antibiotic of carbapenems, prompting a need to devise effective strategy to preserve their clinical value. Our previous studies have shown that ebselen can restore the efficacy of meropenem against a laboratory strain that produces NDM-1. Here we report the construction of a focused compound library of 1,2-benzisoselenazol-3(2H)-one derivatives which comprise a total of forty-six candidate compounds. The structure-activity relationship of these compounds and their potential to serve as an adjuvant to enhance the antimicrobial efficacy of meropenem against a collection of clinical NDM-1-producing carbapenem-resistant Enterobacteriaceae isolates was examined. Drug combination assays indicated that these derivatives exhibited synergistic antimicrobial activity when used along with meropenem, effectively restoring the activity of carbapenems against the resistant strains tested in a Galleria mellonella larvae in vivo infection model. The mode of inhibition of one compound, namely 11_a38, which was depicted when tested on the purified NDM-1 enzyme, indicated that it could covalently bind to the enzyme and displaced one zinc ion from the active site. Overall, this study provides a novel 1,2-benzisoselenazol-3(2H)-one scaffold that exhibits strong synergistic antimicrobial activity with carbapenems, and low cytotoxicity. The prospect of application of such compounds as carbapenem adjuvants warrants further evaluation.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Tienamicinas/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Meropeném , Estrutura Molecular , Compostos Organosselênicos/química , Relação Estrutura-Atividade , Tienamicinas/química
2.
Water Res ; 128: 61-70, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091805

RESUMO

This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 103-104 L mol-1 cm-1. The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10-3 mol einsten-1. Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m-2.


Assuntos
Carbapenêmicos/efeitos da radiação , Imipenem/efeitos da radiação , Tienamicinas/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação , Carbapenêmicos/análise , Carbapenêmicos/química , Cromatografia Líquida , Substâncias Húmicas/análise , Imipenem/análise , Imipenem/química , Cinética , Meropeném , Fotólise , Rios/química , Luz Solar , Tienamicinas/análise , Tienamicinas/química , Águas Residuárias/química , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
3.
Molecules ; 22(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113046

RESUMO

Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/metabolismo , Óleos Voláteis/farmacologia , Tienamicinas/agonistas , Tienamicinas/farmacologia , Membrana Celular/ultraestrutura , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae/ultraestrutura , Meropeném , Óleos Voláteis/química , Tienamicinas/química
4.
Proc Natl Acad Sci U S A ; 112(33): 10354-8, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240322

RESUMO

Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of ß-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation. The C2 substituent has been demonstrated to be derived by stepwise truncation of CoA, but the timing of these events with respect to C2-S bond formation is not known. We show that ThnK of the three apparent cobalamin-dependent RS enzymes performs sequential methylations to build out the C6-ethyl side chain in a stereocontrolled manner. This enzymatic reaction was found to produce expected RS methylase coproducts S-adenosylhomocysteine and 5'-deoxyadenosine, and to require cobalamin. For double methylation to occur, the carbapenam substrate must bear a CoA-derived C2-thioether side chain, implying the activity of a previous sulfur insertion by an as-yet unidentified enzyme. These insights allow refinement of the central steps in complex carbapenem biosynthesis.


Assuntos
Carbapenêmicos/química , Metilação de DNA , Tienamicinas/biossíntese , Antibacterianos/química , Catálise , Cefalosporinas/química , Cromatografia Líquida , Clonagem Molecular , Desenho de Fármacos , Escherichia coli , Fermentação , Metilação , Penicilinas/química , S-Adenosilmetionina/química , Streptomyces , Espectrometria de Massas em Tandem , Tienamicinas/química , Vitamina B 12/química , beta-Lactamas/química
5.
Chem Pharm Bull (Tokyo) ; 63(4): 248-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25832020

RESUMO

The purpose of this study was to predict the stability of meropenem in a mixed infusion. The hydrolysis of meropenem in aqueous solution was found to be accelerated by pH, and by increasing concentrations of sodium bisulfite (SBS) and L-cysteine. Equations were derived for the degradation rate constants (kobs) of pH, SBS and L-cysteine, and fractional rate constants were estimated by the nonlinear least-squares method (quasi-Newton method using the solver in Microsoft Excel) at 25°C. The activation energy (Ea) and frequency factor (A) were calculated using the Arrhenius equation. The pH of the mixed infusion was estimated using the characteristic pH curve. From these results, an equation was derived giving the residual ratio (%) of meropenem at any time after mixing an infusion containing SBS and/or L-cysteine at any temperature, and in the pH range 4.0-10.0. A high correlation was shown to exist between the estimated and determined residual ratios (%).


Assuntos
Tienamicinas/química , Cisteína/química , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Hidrólise , Infusões Intravenosas , Meropeném , Sulfitos/química , Temperatura , Tienamicinas/administração & dosagem
6.
Anal Chem ; 85(22): 11014-9, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24131330

RESUMO

Carbapenems are broad spectrum antibiotics considered as a "last resort" medicine to treat bacterial infections. Carbapenem-hydrolyzing ß-lactamases (also called carbapenemases), however, can confer bacterial resistance and represent a serious health threat. Here, we report a novel approach using (18)O labeling and selected reaction monitoring to detect carbapenemase activity from pathogenic microorganisms in a rapid and quantitative manner. Four model bacterial strains bearing various classes of ß-lactamases were tested for their capability to hydrolyze Meropenem, an FDA-approved carbapenem drug. We were able to predict the Meropenem resistance of these bacteria on the basis of their carbapenemase activity, suggesting the great potential of our method in clinical diagnostics.


Assuntos
Bactérias/enzimologia , Infecções Bacterianas/diagnóstico , Proteínas de Bactérias/metabolismo , Radioisótopos de Oxigênio , Espectrometria de Massas em Tandem/métodos , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Bactérias/isolamento & purificação , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/classificação , Carbapenêmicos/química , Carbapenêmicos/farmacologia , Cromatografia Líquida , Resistencia a Medicamentos Antineoplásicos , Meropeném , Tienamicinas/química , Tienamicinas/farmacologia , beta-Lactamases/classificação
7.
Chem Res Toxicol ; 26(6): 963-75, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23668298

RESUMO

ß-Lactam antibiotics provide the cornerstone of treatment for respiratory exacerbations in patients with cystic fibrosis. Unfortunately, approximately 20% of patients develop multiple nonimmediate allergic reactions that restrict therapeutic options. The purpose of this study was to explore the chemical and immunological basis of multiple ß-lactam allergy through the analysis of human serum albumin (HSA) covalent binding profiles and T-cell responses against 3 commonly prescribed drugs; piperacillin, meropenem, and aztreonam. The chemical structures of the drug haptens were defined by mass spectrometry. Peripheral blood mononuclear cells (PBMC) were isolated from 4 patients with multiple allergic reactions and cultured with piperacillin, meropenem, and aztreonam. PBMC responses were characterized using the lymphocyte transformation test and IFN-γ /IL-13 ELIspot. T-cell clones were generated from drug-stimulated T-cell lines and characterized in terms of phenotype, function, and cross-reactivity. Piperacillin, meropenem, and aztreonam formed complex and structurally distinct haptenic structures with lysine residues on HSA. Each drug modified Lys190 and at least 6 additional lysine residues in a time- and concentration-dependent manner. PBMC proliferative responses and cytokine release were detected with cells from the allergic patients, but not tolerant controls, following exposure to the drugs. 122 CD4+, CD8+, or CD4+CD8+ T-cell clones isolated from the allergic patients were found to proliferate and release cytokines following stimulation with piperacillin, meropenem, or aztreonam. Cross-reactivity with the different drugs was not observed. In conclusion, our data show that piperacillin-, meropenem-, and aztreonam-specific T-cell responses are readily detectable in allergic patients with cystic fibrosis, which indicates that multiple ß-lactam allergies are instigated through priming of naïve T-cells against the different drug antigens. Characterization of complex haptenic structures on distinct HSA lysine residues provides a chemical basis for the drug-specific T-cell response.


Assuntos
Fibrose Cística/tratamento farmacológico , Hipersensibilidade a Drogas/imunologia , Haptenos/química , Hipersensibilidade/imunologia , Albumina Sérica/química , Linfócitos T/imunologia , Inibidores de beta-Lactamases/imunologia , beta-Lactamas/imunologia , Aztreonam/química , Aztreonam/imunologia , Fibrose Cística/complicações , Fibrose Cística/imunologia , Hipersensibilidade a Drogas/complicações , Haptenos/imunologia , Humanos , Hipersensibilidade/complicações , Meropeném , Estrutura Molecular , Piperacilina/química , Piperacilina/imunologia , Tienamicinas/química , Tienamicinas/imunologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamas/química , beta-Lactamas/uso terapêutico
8.
Vet Comp Orthop Traumatol ; 24(1): 39-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21103653

RESUMO

OBJECTIVES: To determine the elution properties of meropenem and to compare the elutions of meropenem-impregnated polymethylmethacrylate (PMMA) beads without sterilization (P-M-C) to those sterilized with steam (P-M-A) and ethylene oxide gas (P-M-EO). METHODS: A commercial bead mould was used to produce four groups of beads: one group without antibiotic (negative control), and three groups of meropenem-impregnated beads: P-M-C, P-M-A, and P-M-EO. The beads were placed in a phosphate buffered solution and eluent samples were collected. Concentrations of the antibiotic in eluent samples from the two sterilized groups and the control beads were determined using a microbiological assay at 1, 3, 6 and 12 hours and at 1, 2, 3, 6, 9, 12, 15, 18, 22, 26, and 30 days. RESULTS: The microbiological assay resulted in no zone of inhibition at all time periods for the P-M-A samples and the samples of PMMA without antimicrobial. The meropenem concentration on the eluent remained above 4 mcg/ml for 15 days in the P-M-C group and until day 18 for P-M-EO group. There was no statistical difference in AUC0-∞ (p<0.318), however significance did occur for MRT (p<0.005) when comparing P-M-C and P-M-EO with the later being higher. DISCUSSION: The meropenem incorporated in the PMMA beads eluted effectively and gradually decreased after the 24 hour peak, but remained above the concentration level of 4 mcg/ml for 15 days in the P-M-C group and until day 18 for P-M-EO group. Ethylene oxide does not adversely affect meropenem's elution from PMMA beads.


Assuntos
Antibacterianos/química , Óxido de Etileno/química , Temperatura Alta , Polimetil Metacrilato/química , Esterilização/métodos , Tienamicinas/química , Animais , Meropeném , Fatores de Tempo
9.
J Am Chem Soc ; 132(1): 12-3, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20017478

RESUMO

Carbapenems are a clinically important antibiotic family. More than 50 naturally occurring carbapenam/ems are known and are distinguished primarily by their C-2/C-6 side chains where many are only differentiated by the oxidation states of these substituents. With a limited palette of variations the carbapenem family comprises a natural combinatorial library, and C-2/C-6 oxidation is associated with increased efficacy. We demonstrate that ThnG and ThnQ encoded by the thienamycin gene cluster in Streptomyces cattleya oxidize the C-2 and C-6 moieties of carbapenems, respectively. ThnQ stereospecifically hydroxylates PS-5 (5) giving N-acetyl thienamycin (2). ThnG catalyzes sequential desaturation and sulfoxidation of PS-5 (5), giving PS-7 (7) and its sulfoxide (9). The enzymes are relatively substrate selective but are proposed to give rise to the oxidative diversity of carbapenems produced by S. cattleya, and orthologues likely function similarly in allied streptomyces. Elucidating the roles of ThnG and ThnQ will focus further investigations of carbapenem antibiotic biosynthesis.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Carbapenêmicos/biossíntese , Carbapenêmicos/química , Oxigenases/metabolismo , Heme , Oxirredução , Estereoisomerismo , Tienamicinas/biossíntese , Tienamicinas/química
10.
Rev. chil. infectol ; 16(3): 244-8, 1999. graf
Artigo em Espanhol | LILACS | ID: lil-257984

RESUMO

Meropenem es un compuesto del grupo carbapenem, con un amplio espectro antibacteriano y rápida actividad bactericida. Esta actividad es superior sobre bacilos gram negativos fermentadores como klebsiella sp y E. coli, e inferior sobre pseudomonas sp. Y A. baumannii. En cuanto a estas dos últimas bacterias, hay que hacer notar que la actividad de meropenem sobre pseudomonas sp pareciera ser bastante más rápida que la que ocurre sobre acinetobacter sp, aún cuando las CIM aparecen similares. La muerte bacteriana es más rápida sobre P. aeruginosa


Assuntos
Humanos , Infecções Bacterianas/tratamento farmacológico , Carbapenêmicos/química , Resistência beta-Lactâmica , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Imipenem/química , Porinas/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Tienamicinas/química
11.
J Antibiot (Tokyo) ; 43(10): 1254-70, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-2258325

RESUMO

Using PS-5 as starting material, the effects of chemical modification at the C-3 side chain were studied on the antibacterial activity against Gram-positive and Gram-negative bacteria including beta-lactamase-producers. Among 35 side chains tested, 4-pyridylthio showed the highest antibacterial activity against the Gram-positive bacteria, and D-cysteinyl against the Gram-negative microbes. In general, compared with acetamidoethylthio in PS-5, basic side chains showed improved antibacterial activity against the staphylococci and pseudomonads, whereas the antibiotic activity against the Gram-negative bacteria decreased with bulky side chains. The introduction of 6-aminopenicillanate and 7-aminocephalosporanate to the C-3 side chain of carbapenem significantly reduced the antibacterial activity against the beta-lactamase-producing microbes.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Tienamicinas/farmacologia , Relação Estrutura-Atividade , Tienamicinas/química , Tienamicinas/metabolismo , Inibidores de beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA