Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 127, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443029

RESUMO

BACKGROUND: Streptomyces are well known for their potential to produce various pharmaceutically active compounds, the commercial development of which is often limited by the low productivity and purity of the desired compounds expressed by natural producers. Well-characterized promoters are crucial for driving the expression of target genes and improving the production of metabolites of interest. RESULTS: A strong constitutive promoter, stnYp, was identified in Streptomyces flocculus CGMCC4.1223 and was characterized by its effective activation of silent biosynthetic genes and high efficiency of heterologous gene expression. The promoter stnYp showed the highest activity in model strains of four Streptomyces species compared with the three frequently used constitutive promoters ermEp*, kasOp*, and SP44. The promoter stnYp could efficiently activate the indigoidine biosynthetic gene cluster in S. albus J1074, which is thought to be silent under routine laboratory conditions. Moreover, stnYp was found suitable for heterologous gene expression in different Streptomyces hosts. Compared with the promoters ermEp*, kasOp*, and SP44, stnYp conferred the highest production level of diverse metabolites in various heterologous hosts, including the agricultural-bactericide aureonuclemycin and the antitumor compound YM-216391, with an approximately 1.4 - 11.6-fold enhancement of the yields. Furthermore, the purity of tylosin A was greatly improved by overexpressing rate-limiting genes through stnYp in the industrial strain. Further, the yield of tylosin A was significantly elevated to 10.30 ± 0.12 g/L, approximately 1.7-fold higher than that of the original strain. CONCLUSIONS: The promoter stnYp is a reliable, well-defined promoter with strong activity and broad suitability. The findings of this study can expand promoter diversity, facilitate genetic manipulation, and promote metabolic engineering in multiple Streptomyces species.


Assuntos
Produtos Biológicos , Streptomyces , Tilosina/metabolismo , Produtos Biológicos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Regiões Promotoras Genéticas , Família Multigênica
2.
J Nat Prod ; 79(8): 2014-21, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27453999

RESUMO

The S-adenosyl-l-methionine-dependent O-methyltransferases TylE and TylF catalyze the last two methylation reactions in the tylosin biosynthetic pathway of Streptomyces fradiae. It has long been known that the TylE-catalyzed C2‴-O-methylation of the 6-deoxy-d-allose bound to demethylmacrocin or demethyllactenocin precedes the TylF-catalyzed C3‴-O-methylation of the d-javose (C2‴-O-methylated 6-deoxy-d-allose) attached to macrocin or lactenocin. This study reveals the unexpected substrate promiscuity of TylE and TylF responsible for the biosynthesis of d-mycinose (C3‴-O-methylated d-javose) in tylosin through the identification of a new minor intermediate 2‴-O-demethyldesmycosin (2; 3‴-methyl-demethyllactenocin), which lacks a 2‴-O-methyl group on the mycinose moiety of desmycosin, along with 2‴-O-demethyltylosin (1; 3‴-methyl-demethylmacrocin) that was previously detected from the S. fradiae mutant containing a mutation in the tylE gene. These results unveil the unique substrate flexibility of TylE and TylF and demonstrate their potential for the engineered biosynthesis of novel glycosylated macrolide derivatives.


Assuntos
Hexoses/biossíntese , Metiltransferases/metabolismo , Streptomyces/enzimologia , Tilosina/metabolismo , Antibacterianos/metabolismo , Hexoses/química , Leucomicinas/metabolismo , Metilação , Estrutura Molecular , Mutação , S-Adenosilmetionina/metabolismo , Streptomyces/genética , Tilosina/análogos & derivados
3.
Rev. argent. microbiol ; 42(4): 279-283, oct.-dic. 2010. graf, tab
Artigo em Espanhol | LILACS | ID: lil-634667

RESUMO

Las abejas melíferas son afectadas por gran cantidad de enfermedades infecciosas principalmente producidas por bacterias, hongos, virus y parásitos eucariotas. Dentro de las ocasionadas por procariotas, la loque americana es una enfermedad extremadamente grave que afecta a larvas y pupas de abejas; su agente causal es la bacteria esporulada Paenibacillus larvae. La administración de antibióticos es la principal alternativa para el control de esta enfermedad en colmenares con altos niveles de infección. El objetivo del presente trabajo fue determinar, mediante un método biológico, la unión de los antibióticos tilosina, tilmicosina y oxitetraciclina a las proteínas presentes en abejas adultas, larvas menores de 72 horas, larvas mayores de 72 horas, jalea de obreras, miel y polen, con la finalidad de diseñar un modelo de ruta cinética de los antibióticos. Los límites de sensibilidad de la técnica de valoración de estos antibióticos fueron 0,05 μg/ml para tilosina y tilmicosina, y 0,01 μg/ml para oxitetraciclina. Los coeficientes de correlación fueron superiores a 0,90 y los coeficientes de variación intra e inter-ensayo inferiores al 5%. Tanto tilosina como oxitetraciclina presentaron un porcentaje de unión a proteínas de un 15% en promedio en tejidos y subproductos de la colmena, lo cual resultó inferior a lo observado con tilmicosina (29% en promedio). En conclusión, por sus características químicas, su actividad antimicrobiana y su baja tasa de unión a las abejas, larvas y subproductos de la colmena, la tilosina presenta propiedades farmacocinéticas que podrían representar una ventaja terapéutica para el tratamiento de la loque americana en colmenas.


American Foulbrood (AFB) caused by the spore-forming bacterium Paenibacillus larvae is the most serious disease of bacterial origin affecting larvae and pupae of honeybees. Antibiotics are used in many countries for the control of AFB in high incidence areas, but their misuse may lead to antibiotic resistance of bacterial strains and honey contamination. The objective of the present work was to determine, through a biological method, the protein binding of tylosin, tilmicosin and oxytetracycline to worker jelly; honey; pollen; adult bees and larvae in order to propose their kinetic routes. The sensitivity limit of the technique used was 0.05 μg/ml for tylosin and tilmicosin and 0.01 μg/ml for oxytetracycline, respectively. The method had intra and inter-assay correlation coefficients over 0.90, respectively and a coefficient variation of intra-and inter-assay for all antibiotics and processed samples under 5%. Tylosin and oxytetracycline presented lower percentages of protein binding in tissues and hive products (average 15%) in relation to those observed for tilmicosin (29%). In conclusion, tylosin is useful for AFB control in honey bee colonies due to its chemical characteristics, antimicrobial activity and levels of protein binding in bees, larvae, and beehive products.


Assuntos
Animais , Antibacterianos/metabolismo , Abelhas/metabolismo , Proteínas de Insetos/metabolismo , Oxitetraciclina/metabolismo , Tilosina/análogos & derivados , Tilosina/metabolismo , Antibacterianos/farmacocinética , Abelhas/crescimento & desenvolvimento , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Mel/análise , Larva/metabolismo , Oxitetraciclina/farmacocinética , Ligação Proteica , Pólen/química , Pólen/metabolismo , Tilosina/farmacocinética
4.
J Mol Biol ; 378(5): 969-75, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18406425

RESUMO

RlmA(II) methylates the N1-position of nucleotide G748 in hairpin 35 of 23 S rRNA. The resultant methyl group extends into the peptide channel of the 50 S ribosomal subunit and confers resistance to tylosin and other mycinosylated macrolide antibiotics. Methylation at G748 occurs in several groups of Gram-positive bacteria, including the tylosin-producer Streptomyces fradiae and the pathogen Streptococcus pneumoniae. Recombinant S. pneumoniae RlmA(II) was purified and shown to retain its activity and specificity in vitro when tested on unmethylated 23 S rRNA substrates. RlmA(II) makes multiple footprint contacts with nucleotides in stem-loops 33, 34 and 35, and does not interact elsewhere in the rRNA. Binding of RlmA(II) to the rRNA is dependent on the cofactor S-adenosylmethionine (or S-adenosylhomocysteine). RlmA(II) interacts with the same rRNA region as the orthologous enzyme RlmA(I) that methylates at nucleotide G745. Differences in nucleotide contacts within hairpin 35 indicate how the two methyltransferases recognize their distinct targets.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias , Metiltransferases , Conformação de Ácido Nucleico , Conformação Proteica , RNA Ribossômico , Tilosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Biochemistry ; 39(38): 11621-8, 2000 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-10995229

RESUMO

The inhibition of peptide bond formation by tylosin, a 16-membered ring macrolide, was studied in a model system derived from Escherichia coli. In this cell-free system, a peptide bond is formed between puromycin (acceptor substrate) and AcPhe-tRNA (donor substrate) bound at the P-site of poly(U)-programmed ribosomes. It is shown that tylosin inhibits puromycin reaction as a slow-binding, slowly reversible inhibitor. Detailed kinetic analysis reveals that tylosin (I) reacts rapidly with complex C, i.e., the AcPhe-tRNA. poly(U).70S ribosome complex, to form the encounter complex CI, which then undergoes a slow isomerization and is converted to a tight complex, CI, inactive toward puromycin. These events are described by the scheme C + I <==> (K(i)) CI <==> (k(4), k(5)) CI. The K(i), k(4), and k(5) values are equal to 3 microM, 1.5 min(-1), and 2.5 x 10(-3) min(-1), respectively. The extremely low value of k(5) implies that the inactivation of complex C by tylosin is almost irreversible. The irreversibility of the tylosin effect on peptide bond formation is significant for the interpretation of this antibiotic's therapeutic properties; it also renders the tylosin reaction a useful tool in the study of other macrolides failing to inhibit the puromycin reaction but competing with tylosin for common binding sites on the ribosome. Thus, the tylosin reaction, in conjunction with the puromycin reaction, was applied to investigate the erythromycin mode of action. It is shown that erythromycin (Er), like tylosin, interacts with complex C according to the kinetic scheme C + Er <==> (K(er)) CEr <==> (k(6), k(7)) C*Er and forms a tight complex, CEr, which remains active toward puromycin. The determination of K(er), k(6), and k(7) enables us to classify erythromycin as a slow-binding ligand of ribosomes.


Assuntos
Antibacterianos/metabolismo , Eritromicina/metabolismo , Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Tilosina/metabolismo , Antibacterianos/química , Ligação Competitiva , Sinergismo Farmacológico , Eritromicina/química , Cinética , Biossíntese Peptídica/efeitos dos fármacos , Peptídeos/antagonistas & inibidores , Peptídeos/química , Inibidores da Síntese de Proteínas/química , Puromicina/química , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/química , Ribossomos/química , Ribossomos/efeitos dos fármacos , Soluções , Tilosina/química
6.
Mol Microbiol ; 14(4): 833-42, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7534372

RESUMO

The tylosin producer Streptomyces fradiae contains four known resistance genes, two of which (tlrA and tlrD) encode methyltransferases that act on ribosomal RNA at a common site. Expression of tlrA is regulated via transcriptional attenuation. A short transcript, only 411 nucleotides long, terminates 27 nucleotides into the methylase-coding sequence in the uninduced state. Induction of tlrA is proposed to involve a ribosome-mediated conformational change within the mRNA leader that allows transcription to continue beyond the attenuation site, resulting in a transcript about 1450 nucleotides long. Transplantation of tlrD and/or tlrA into Streptomyces albus revealed that the induction specificity of tlrA depends upon the state of the ribosomes and is significantly altered in strains also expressing tlrD.


Assuntos
Genes Bacterianos , Metiltransferases/genética , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Tilosina/farmacologia , Sequência de Bases , Sítios de Ligação , Sequência de Carboidratos , Mapeamento Cromossômico , Primers do DNA/genética , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Streptomyces/metabolismo , Transcrição Gênica , Tilosina/química , Tilosina/metabolismo
7.
Gene ; 102(1): 27-32, 1991 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-1864505

RESUMO

A tylosin(Ty)-producing strain of Streptomyces fradiae contains at least three genes, tlrA, tlrB, tlrC, specifying resistance to Ty (TyR). The complete nucleotide sequence of the TyR-encoding gene, tlrC, and the transcription start point of the gene were determined. The sequence contains an open reading frame coding for a protein of 548 amino acids (aa) with an Mr of 59129. The TlrC protein was identified by expression of the cloned gene by in vitro coupled transcription and translation in cell-free extracts derived from Streptomyces lividans. The N- and C-terminal halves of TlrC share extensive homology, suggesting that the protein evolved through tandem gene duplication. Each half of the deduced TlrC aa sequence also shows significant homology to numerous eukaryotic and prokaryotic membrane-associated, active-transport protein subunits. The homologous proteins include examples from the systems responsible for efflux of cytotoxic drugs from multidrug-resistant human cells and for export of hemolysin from Escherichia coli. The greatest similarity to TlrC is in regions containing the ATP-binding sites found in these proteins. These results suggest a role for the tlrC gene product as part of a multiple component, ATP-dependent transport system for the active excretion of Ty from the producing organism.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Resistência Microbiana a Medicamentos/genética , Streptomyces/genética , Tilosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Expressão Gênica/fisiologia , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Tilosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA