Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
J Med Invest ; 71(1.2): 29-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38735722

RESUMO

The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.


Assuntos
Envelhecimento , Timo , Timo/imunologia , Timo/crescimento & desenvolvimento , Humanos , Envelhecimento/fisiologia , Envelhecimento/imunologia , Animais , Células Epiteliais/fisiologia , Epitélio/imunologia , Linfócitos T/imunologia
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663730

RESUMO

GPCR-Gα protein-mediated signal transduction contributes to spatiotemporal interactions between immune cells to fine-tune and facilitate the process of inflammation and host protection. Beyond this, however, how Gα proteins contribute to the helper T cell subset differentiation and adaptive response have been underappreciated. Here, we found that Gα13 signaling in T cells plays a crucial role in inducing follicular helper T (Tfh) cell differentiation in vivo. T cell-specific Gα13-deficient mice have diminished Tfh cell responses in a cell-intrinsic manner in response to immunization, lymphocytic choriomeningitis virus infection, and allergen challenges. Moreover, Gα13-deficient Tfh cells express reduced levels of Bcl-6 and CXCR5 and are functionally impaired in their ability to adhere to and stimulate B cells. Mechanistically, Gα13-deficient Tfh cells harbor defective Rho-ROCK2 activation, and Rho agonist treatment recuperates Tfh cell differentiation and expression of Bcl-6 and CXCR5 in Tfh cells of T cell-specific Gα13-deficient mice. Conversely, ROCK inhibitor treatment hampers Tfh cell differentiation in wild-type mice. These findings unveil a crucial regulatory role of Gα13-Rho-ROCK axis in optimal Tfh cell differentiation and function, which might be a promising target for pharmacologic intervention in vaccine development as well as antibody-mediated immune disorders.


Assuntos
Diferenciação Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Células T Auxiliares Foliculares/citologia , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34261794

RESUMO

Lymphoid tissue inducer (LTi) cells are critical for inducing the differentiation of most secondary lymphoid organs (SLOs) in mice. In humans, JAK3 and γc deficiencies result in severe combined immunodeficiency (SCIDs) characterized by an absence of T cells, natural killer cells, innate lymphoid cells (ILCs), and presumably LTi cells. Some of these patients have undergone allogeneic stem cell transplantation (HSCT) in the absence of myeloablation, which leads to donor T cell engraftment, while other leukocyte subsets are of host origin. By using MRI to look for SLOs in nine of these patients 16 to 44 y after HSCT, we discovered that SLOs were exclusively found in the three areas of the abdomen that drain the intestinal tract. A postmortem examination of a child with γc-SCID who had died 3.5 mo after HSCT showed corticomedullary differentiation in the thymus, T cell zones in the spleen, and the appendix, but in neither lymph nodes nor Peyer patches. Tertiary lymphoid organs were observed in the lung. No RAR-related orphan receptor-positive LTi cells could be detected in the existing lymphoid structures. These results suggest that while LTi cells are required for the genesis of most SLOs in humans, SLO in the appendix and in gut-draining areas, as well as tertiary lymphoid organs, can be generated likely by LTi cell-independent mechanisms.


Assuntos
Tecido Linfoide/crescimento & desenvolvimento , Imunodeficiência Combinada Severa/imunologia , Adolescente , Adulto , Feminino , Humanos , Tecido Linfoide/diagnóstico por imagem , Tecido Linfoide/imunologia , Imageamento por Ressonância Magnética , Masculino , Imunodeficiência Combinada Severa/diagnóstico por imagem , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Baço/diagnóstico por imagem , Baço/crescimento & desenvolvimento , Baço/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Timo/diagnóstico por imagem , Timo/crescimento & desenvolvimento , Timo/imunologia , Transplante Homólogo , Adulto Jovem
4.
Clin Radiol ; 76(7): 477-487, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33762135

RESUMO

The appearance of the paediatric thymus changes as the normal process of thymic involution occurs. Thymic tissue may be orthotopic within the anterior mediastinum or ectopically located along the course of its embryological development. The variable appearance of orthotopic and ectopic thymic tissue in children on imaging studies may lead to misinterpretation of the normal thymus as pathology. Recognition of normal thymic tissue can mitigate unnecessary further diagnostic testing and patient anxiety. In this review, we discuss the embryological development and anatomical variants of normal thymus, and demonstrate the multimodality imaging features of the normal thymus in children, including positron-emission tomography, and diffusion-weighted imaging and in- and opposed-phase imaging on magnetic resonance imaging. We demonstrate the normal thymus mimicking pathological processes and discuss features that distinguish normal thymus, including thymic rebound hyperplasia, from pathology.


Assuntos
Coristoma/diagnóstico por imagem , Timo , Hiperplasia do Timo/diagnóstico por imagem , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Timo/diagnóstico por imagem , Timo/embriologia , Timo/crescimento & desenvolvimento
5.
J Biol Chem ; 296: 100419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33600795

RESUMO

Thymus organogenesis and T cell development are coordinated by various soluble and cell-bound molecules. Heparan sulfate (HS) proteoglycans can interact with and immobilize many soluble mediators, creating fields or gradients of secreted ligands. While the role of HS in the development of many organs has been studied extensively, little is known about its function in the thymus. Here, we examined the distribution of HS in the thymus and the effect of its absence on thymus organogenesis and T cell development. We found that HS was expressed most abundantly on the thymic fibroblasts and at lower levels on endothelial, epithelial, and hematopoietic cells. To study the function of HS in the thymus, we eliminated most of HS in this organ by genetically disrupting the glycosyltransferase Ext1 that is essential for its synthesis. The absence of HS greatly reduced the size of the thymus in fetal thymic organ cultures and in vivo, in mice, and decreased the production of T cells. However, no specific blocks in T cell development were observed. Wild-type thymic fibroblasts were able to physically bind the homeostatic chemokines CCL19, CCL21, and CXCL12 ex vivo. However, this binding was abolished upon HS degradation, disrupting the CCL19/CCL21 chemokine gradients and causing impaired migration of dendritic cells in thymic slices. Thus, our results show that HS plays an essential role in the development and growth of the thymus and in regulating interstitial cell migration.


Assuntos
Heparitina Sulfato/metabolismo , Timo/crescimento & desenvolvimento , Animais , Diferenciação Celular , Movimento Celular , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases , Linfócitos T/metabolismo , Timo/efeitos dos fármacos
6.
Exp Hematol ; 95: 1-12, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33454362

RESUMO

T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.


Assuntos
Hematopoese , Células Precursoras de Linfócitos T/citologia , Análise de Célula Única/métodos , Animais , Antígenos de Diferenciação de Linfócitos T/análise , Linhagem da Célula , Movimento Celular , Separação Celular , Células Cultivadas , Células Dendríticas/citologia , Feto/citologia , Feto/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Humanos , Camundongos , Células-Tronco Multipotentes/citologia , Células Precursoras de Linfócitos T/classificação , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Repressoras/fisiologia , Especificidade da Espécie , Timo/citologia , Timo/embriologia , Timo/crescimento & desenvolvimento , Transcriptoma , Proteínas Supressoras de Tumor/fisiologia
7.
Dev Comp Immunol ; 118: 104011, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33460678

RESUMO

The female sex steroid 17ß-oestradiol (E2) is involved in the regulation of numerous physiological functions, including the immune system development and performance. The role of oestrogens during ontogenesis is, however, not well studied. In rodents and fish, thymus maturation appears to be oestrogen-dependent. Nevertheless, little is known about the function of oestrogen in immune system development. To further the understanding of the role of oestrogens in fish immune system ontogenesis, fingerlings of European sea bass (Dicentrarchus labrax) were exposed for 30 days to 20 ng E2·L-1, at two ages tightly related to thymic maturation, i.e., 60 or 90 days post hatch (dph). The expression of nuclear and membrane oestrogen receptors was measured in the thymus and spleen, and the expression of several T cell-related gene markers was studied in both immune organs, as well as in the liver. Waterborne E2-exposure at 20.2 ± 2.1 (S.E.) ng·L-1 was confirmed by radioimmunoassay, leading to significantly higher E2-contents in the liver of exposed fish. The majority of gene markers presented age-dependent dynamics in at least one of the organs, confirming thymus maturation, but also suggesting a critical ontogenetic window for the implementation of liver resident γδ and αß T cells. The oestrogen receptors, however, remained unchanged over the age and treatment comparisons with the exception of esr2b, which was modulated by E2 in the younger cohort and increased its expression with age in the thymus of the older cohort, as did the membrane oestrogen receptor gpera. These results confirm that oestrogen-signalling is involved in thymus maturation in European sea bass, as it is in mammals. This suggests that esr2b and gpera play key roles during thymus ontogenesis, particularly during medulla maturation. In contrast, the spleen expressed low or non-detectable levels of oestrogen receptors. The E2-exposure decreased the expression of tcrγ in the liver in the cohort exposed from 93 to 122 dph, but not the expression of any other immune-related gene analysed. These results indicate that the proliferation/migration of these innate-like T cell populations is oestrogen-sensitive. In regard to the apparent prominent role of oestrogen-signalling in the late thymus maturation stage, the thymic differentiation of the corresponding subpopulations of T cells might be regulated by oestrogen. To the best of our knowledge, this is the first study investigating the dynamics of both nuclear and membrane oestrogen receptors in specific immune organs in a teleost fish at very early stages of immune system development as well as to examine thymic function in sea bass after an exposure to E2 during ontogenesis.


Assuntos
Bass/imunologia , Estradiol/metabolismo , Proteínas de Peixes/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Bass/crescimento & desenvolvimento , Bass/metabolismo , Feminino , Tolerância Imunológica , Fígado/crescimento & desenvolvimento , Fígado/imunologia , Linfopoese/imunologia , Masculino , Organogênese/imunologia , Timo/crescimento & desenvolvimento , Timo/imunologia
8.
Sci Rep ; 10(1): 21994, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319815

RESUMO

IL-2Rα, in part, comprises the high affinity receptor for IL-2, a cytokine important in immune proliferation, activation, and regulation. IL-2Rα deficient mice (IL-2Rα-KO) develop systemic autoimmune disease and die from severe anemia between 18 and 80 days of age. These mice develop kinetically distinct autoimmune progression, with approximately a quarter dying by 21 days of age and half dying after 30 days. This research aims to define immune parameters and cytokine signaling that distinguish cohorts of IL-2Rα-KO mice that develop early- versus late-stage autoimmune disease. To investigate these differences, we evaluated complete blood counts (CBC), antibody binding of RBCs, T cell numbers and activation, hematopoietic progenitor changes, and signaling kinetics, during autoimmune hemolytic anemia (AIHA) and bone marrow failure. We identified several alterations that, when combined, correlate to disease kinetics. Early onset disease correlates with anti-RBC antibodies, lower hematocrit, and reduced IL-7 signaling. CD8 regulatory T cells (Tregs) have enhanced apoptosis in early disease. Further, early and late end stage disease, while largely similar, had several differences suggesting distinct mechanisms drive autoimmune disease kinetics. Therefore, IL-2Rα-KO disease pathology rates, driven by T cell signaling, promote effector T cell activation and expansion and Treg dysfunction.


Assuntos
Subunidade alfa de Receptor de Interleucina-2/deficiência , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Animais , Apoptose , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Eritrócitos/metabolismo , Memória Imunológica , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Cinética , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Timo/crescimento & desenvolvimento
9.
Nat Commun ; 11(1): 6169, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268794

RESUMO

A repertoire of T cells with diverse antigen receptors is selected in the thymus. However, detailed mechanisms underlying this thymic positive selection are not clear. Here we show that the CCR4-NOT complex limits expression of specific genes through deadenylation of mRNA poly(A) tails, enabling positive selection. Specifically, the CCR4-NOT complex is up-regulated in thymocytes before initiation of positive selection, where in turn, it inhibits up-regulation of pro-apoptotic Bbc3 and Dab2ip. Elimination of the CCR4-NOT complex permits up-regulation of Bbc3 during a later stage of positive selection, inducing thymocyte apoptosis. In addition, CCR4-NOT elimination up-regulates Dab2ip at an early stage of positive selection. Thus, CCR4-NOT might control thymocyte survival during two-distinct stages of positive selection by suppressing expression levels of pro-apoptotic molecules. Taken together, we propose a link between CCR4-NOT-mediated mRNA decay and T cell selection in the thymus.


Assuntos
Apoptose/genética , Exorribonucleases/genética , Proteínas Repressoras/genética , Timócitos/imunologia , Timo/imunologia , Animais , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Diferenciação Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Exorribonucleases/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Poli A/genética , Poli A/imunologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Proteínas Repressoras/imunologia , Transdução de Sinais , Timócitos/citologia , Timo/citologia , Timo/crescimento & desenvolvimento , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/imunologia
10.
Proc Natl Acad Sci U S A ; 117(36): 22367-22377, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848068

RESUMO

The γδ T cells reside predominantly at barrier sites and play essential roles in immune protection against infection and cancer. Despite recent advances in the development of γδ T cell immunotherapy, our understanding of the basic biology of these cells, including how their numbers are regulated in vivo, remains poor. This is particularly true for tissue-resident γδ T cells. We have identified the ß2 family of integrins as regulators of γδ T cells. ß2-integrin-deficient mice displayed a striking increase in numbers of IL-17-producing Vγ6Vδ1+ γδ T cells in the lungs, uterus, and circulation. Thymic development of this population was normal. However, single-cell RNA sequencing revealed the enrichment of genes associated with T cell survival and proliferation specifically in ß2-integrin-deficient IL-17+ cells compared to their wild-type counterparts. Indeed, ß2-integrin-deficient Vγ6+ cells from the lungs showed reduced apoptosis ex vivo, suggesting that increased survival contributes to the accumulation of these cells in ß2-integrin-deficient tissues. Furthermore, our data revealed an unexpected role for ß2 integrins in promoting the thymic development of the IFNγ-producing CD27+ Vγ4+ γδ T cell subset. Together, our data reveal that ß2 integrins are important regulators of γδ T cell homeostasis, inhibiting the survival of IL-17-producing Vγ6Vδ1+ cells and promoting the thymic development of the IFNγ-producing Vγ4+ subset. Our study introduces unprecedented mechanisms of control for γδ T cell subsets.


Assuntos
Antígenos CD18 , Linfócitos Intraepiteliais , Timo , Animais , Antígenos CD18/genética , Antígenos CD18/imunologia , Antígenos CD18/metabolismo , Homeostase/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Linfócitos Intraepiteliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Timo/crescimento & desenvolvimento , Timo/imunologia , Timo/metabolismo
11.
Dev Dyn ; 249(10): 1243-1258, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32506584

RESUMO

BACKGROUND: The epithelial microenvironment is involved in thymus aging, but the possible role of EphB receptors that govern the thymic epithelium development has not been investigated. Herein, we study the changes undergone by the thymus of EphB-deficient mice throughout their life. RESULTS: Immune alterations occurring throughout life were more severe in mutant than in wild-type (WT) mice. Mutant thymuses exhibit lower cellularity than WT ones, as well as lower proportions of early thymic progenitors cells and double-positive (CD4+ CD8+ ) thymocytes, but higher of double-negative (CD4- CD8- ) and single-positive (CD4+ CD8- , CD4- CD8+ ) cells. Throughout life, CD4+ naïve cells decreased particularly in mutant mice. In correlation, memory T cells, largely CD8+ cells, increased. Aged thymic epithelium undergoes changes including appearance of big epithelial free areas, decrease of K8+ K5- areas, which, however, contain higher proportions of Ly51+ UEA1- cortical epithelial cells, in correlation with reduced Aire+ medullary epithelial cells. Also, aged thymuses particularly those derived from mutant mice exhibited increased collagen IV, fat-storing cells, and connective cells. CONCLUSIONS: The absence of EphB accelerates the alterations undergone throughout life by both thymic epithelium and thymocytes, and the proportions of peripheral naïve and memory T cells, all of which are hallmarks of immune aging.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptor EphB2/genética , Receptor EphB3/genética , Timo/crescimento & desenvolvimento , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Células Epiteliais/imunologia , Sistema Imunitário , Masculino , Camundongos , Mutação , Transdução de Sinais , Timócitos/citologia , Timo/imunologia , Timo/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(25): 14342-14353, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513716

RESUMO

Immature T cells undergo a process of positive selection in the thymus when their new T cell receptor (TCR) engages and signals in response to self-peptides. As the T cell matures, a slew of negative regulatory molecules, including the inhibitory surface glycoprotein CD5, are up-regulated in proportion to the strength of the self-peptide signal. Together these regulators dampen TCR-proximal signaling and help avoid any subsequent peripheral activation of T cells by self-peptides. Paradoxically, antigen-specific T cells initially expressing more CD5 (CD5hi) have been found to better persist as effector/memory cells after a peripheral challenge. The molecular mechanisms underlying such a duality in CD5 function is not clear. We found that CD5 alters the basal activity of the NF-κB signaling in resting peripheral T cells. When CD5 was conditionally ablated, T cells were unable to maintain higher expression of the cytoplasmic NF-κB inhibitor IκBα. Consistent with this, resting CD5hi T cells expressed more of the NF-κB p65 protein than CD5lo cells, without significant increases in transcript levels, in the absence of TCR signals. This posttranslationally stabilized cellular NF-κB depot potentially confers a survival advantage to CD5hi T cells over CD5lo ones. Taken together, these data suggest a two-step model whereby the strength of self-peptide-induced TCR signal lead to the up-regulation of CD5, which subsequently maintains a proportional reserve of NF-κB in peripheral T cells poised for responding to agonistic antigen-driven T cell activation.


Assuntos
Antígenos CD5/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Inibidor de NF-kappaB alfa/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Linfócitos T/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Antígenos CD5/genética , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular/imunologia , Feminino , Citometria de Fluxo , Lipopolissacarídeos/imunologia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Modelos Animais , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/imunologia , Fator de Transcrição RelA/metabolismo , Regulação para Cima
13.
Development ; 147(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32467240

RESUMO

The cortical and medullary thymic epithelial cell (cTEC and mTEC) lineages are essential for inducing T cell lineage commitment, T cell positive selection and the establishment of self-tolerance, but the mechanisms controlling their fetal specification and differentiation are poorly understood. Here, we show that notch signaling is required to specify and expand the mTEC lineage. Notch1 is expressed by and active in TEC progenitors. Deletion of Notch1 in TECs resulted in depletion of mTEC progenitors and dramatic reductions in mTECs during fetal stages, consistent with defects in mTEC specification and progenitor expansion. Conversely, forced notch signaling in all TECs resulted in widespread expression of mTEC progenitor markers and profound defects in TEC differentiation. In addition, lineage-tracing analysis indicated that all mTECs have a history of receiving a notch signal, consistent with notch signaling occurring in mTEC progenitors. These data provide strong evidence for a requirement for notch signaling in specification of the mTEC lineage.


Assuntos
Desenvolvimento Fetal/genética , Receptor Notch1/metabolismo , Timo/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese , Receptor Notch1/deficiência , Receptor Notch1/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento
14.
Development ; 147(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32467237

RESUMO

Thymus function depends on the epithelial compartment of the thymic stroma. Cortical thymic epithelial cells (cTECs) regulate T cell lineage commitment and positive selection, while medullary (m) TECs impose central tolerance on the T cell repertoire. During thymus organogenesis, these functionally distinct sub-lineages are thought to arise from a common thymic epithelial progenitor cell (TEPC). However, the mechanisms controlling cTEC and mTEC production from the common TEPC are not understood. Here, we show that emergence of the earliest mTEC lineage-restricted progenitors requires active NOTCH signaling in progenitor TEC and that, once specified, further mTEC development is NOTCH independent. In addition, we demonstrate that persistent NOTCH activity favors maintenance of undifferentiated TEPCs at the expense of cTEC differentiation. Finally, we uncover a cross-regulatory relationship between NOTCH and FOXN1, a master regulator of TEC differentiation. These data establish NOTCH as a potent regulator of TEPC and mTEC fate during fetal thymus development, and are thus of high relevance to strategies aimed at generating/regenerating functional thymic tissue in vitro and in vivo.


Assuntos
Desenvolvimento Embrionário/genética , Receptores Notch/metabolismo , Timo/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mutação com Ganho de Função , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Organogênese , Receptores Notch/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento
15.
Immunology ; 160(2): 198-208, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32145062

RESUMO

Nuclear factor (NF)-κB-inducing kinase (NIK) is known to be a critical regulator of multiple aspects of the immune response. Although the role of NIK in the development of medullary thymic epithelial cells (mTECs) has been well documented, the impact of NIK on the differentiation and function of cortical thymic epithelial cells (cTECs) remains ambiguous. To investigate the possible involvement of NIK in cTEC differentiation, we have compared the gene expression and function of cTECs from a NIK-mutant mouse, alymphoplasia (aly/aly) with those of cTECs from wild-type (WT) mice. Flow cytometric analyses revealed that expression levels of MHC class II, but not MHC class I or other TEC markers, were higher in aly/aly cells than in WT cells. Notably, the proportion of MHC class IIhi+ cTECs was elevated in aly/aly mice. We also demonstrated that expression of Ccl5 mRNA in the MHC class IIhi+ subset of aly/aly cTECs was decreased compared with that in WT cells, implying an abnormal pattern of gene expression in aly/aly cTECs. Analyses of bone marrow chimera using aly/aly or aly/+ mice as hosts suggested that Vß usage and CD5 expression on WT T-cells were altered when they matured in aly/aly thymi. These results collectively indicate that NIK may be involved in controlling the function of cTEC in selecting a proper T-cell repertoire.


Assuntos
Diferenciação Celular/imunologia , Células Epiteliais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/imunologia , Timo/crescimento & desenvolvimento , Animais , Transplante de Medula Óssea , Seleção Clonal Mediada por Antígeno , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Serina-Treonina Quinases/genética , Timo/citologia , Timo/imunologia , Quimeras de Transplante/imunologia , Quinase Induzida por NF-kappaB
16.
Cell Rep ; 30(9): 2889-2899.e6, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130894

RESUMO

Metabolic pathways regulate T cell development and function, but many remain understudied. Recently, the mitochondrial pyruvate carrier (MPC) was identified as the transporter that mediates pyruvate entry into mitochondria, promoting pyruvate oxidation. Here we find that deleting Mpc1, an obligate MPC subunit, in the hematopoietic system results in a specific reduction in peripheral αß T cell numbers. MPC1-deficient T cells have defective thymic development at the ß-selection, intermediate single positive (ISP)-to-double-positive (DP), and positive selection steps. We find that early thymocytes deficient in MPC1 display alterations to multiple pathways involved in T cell development. This results in preferred escape of more activated T cells. Finally, mice with hematopoietic deletion of Mpc1 are more susceptible to experimental autoimmune encephalomyelitis. Altogether, our study demonstrates that pyruvate oxidation by T cell precursors is necessary for optimal αß T cell development and that its deficiency results in reduced but activated peripheral T cell populations.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Homeostase , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Linfócitos T/metabolismo , Timo/crescimento & desenvolvimento , Timo/metabolismo , Animais , Proteínas de Transporte de Ânions/deficiência , Deleção de Genes , Glicólise , Hematopoese , Humanos , Inflamação/patologia , Células Jurkat , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Transportadores de Ácidos Monocarboxílicos/deficiência , Oxirredução , Fosforilação Oxidativa , Ácido Pirúvico/metabolismo , Timócitos/metabolismo
17.
Front Immunol ; 11: 302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194555

RESUMO

One of the main consequences of thymus aging is the decrease in naïve T cell output. This condition accelerates at the onset of puberty, and presents as a major clinical complication for cancer patients who require cytoablative therapy. Specifically, the extensive use of chemotherapeutics, such as cyclophosphamide, in such treatments damage thymic structure and eliminate the existing naïve T cell repertoire. The resulting immunodeficiency can lead to increased incidence of opportunistic infections, tumor growth relapse and/or autoimmune diseases, particularly in older patients. Thus, strategies aimed at rejuvenating the aged thymus following chemotherapeutic damage are required. Previous studies have revealed that sex hormone deprivation in male mice is capable of regenerating the thymic microenvironment following chemotherapy treatment, however, further investigation is crucial to identify gender-based differences, and the molecular mechanisms involved during thymus regeneration. Through phenotypic analyzes, we identified gender-specific alterations in thymocytes and thymic epithelial cell (TEC) subsets from the onset of puberty. By middle-age, females presented with a higher number of thymocytes in comparison to males, yet a decrease in their Aire+ medullary TEC/thymocyte ratio was observed. This reduction could be associated with an increased risk of autoimmune disease in middle-aged women. Given the concurrent increase in female Aire+ cTEC/thymocyte ratio, we proposed that there may be an impediment in Aire+ mTEChi differentiation, and Aire+ cTEChi as its upstream precursor. The regenerative effects of LHRH receptor antagonist, degarelix, on TEC subsets was also less pronounced in middle-aged females compared to males, possibly due to slower progression of thymic involution in the former, which presented with greater TEChi proportions. Furthermore, following cyclophosphamide treatment, degarelix enhanced thymocyte and mature TEC subset recovery, with faster recovery kinetics observed in females. These events were found to involve both reactivation and proliferation of thymic epithelial progenitor cells. Taken together, the findings from this study portray a relationship between gender disparity and thymus aging, and highlight the potential benefits of LHRH receptor antagonist treatment for thymic regeneration. Further research is required, however, to determine how gender may impact on the mechanisms underpinning these events.


Assuntos
Envelhecimento/imunologia , Antineoplásicos Alquilantes/toxicidade , Ciclofosfamida/toxicidade , Células Epiteliais/efeitos dos fármacos , Oligopeptídeos/uso terapêutico , Receptores LHRH/antagonistas & inibidores , Caracteres Sexuais , Timócitos/efeitos dos fármacos , Timo/efeitos dos fármacos , Animais , Atrofia , Contagem de Células , Células Cultivadas , Feminino , Hormônio Foliculoestimulante/sangue , Hormônios Esteroides Gonadais/fisiologia , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/farmacologia , Tolerância a Antígenos Próprios , Maturidade Sexual , Células Estromais , Timo/crescimento & desenvolvimento , Timo/patologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Proteína AIRE
18.
Anat Histol Embryol ; 49(4): 433-439, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32092175

RESUMO

Metallophilic macrophages (MMs) are a distinct cell type of the rodent thymus. Our previous research has focused on the morphological characteristics of MMs, as well as on the molecular mechanisms involved in the development and tissue positioning of these cells. However, the postnatal development of MMs has not been sufficiently studied. In the present study, we investigated the positioning of MMs in the rat thymus between postnatal day 0 (P0) and P30. On P0, MMs were evenly distributed all over the thymic tissue-that is, the cortex, cortico-medullary zone and medulla. From P0 to P15, the number of MMs in the thymic cortex significantly decreased, and after P15, this number did not change. Thus, the present study shows that on P15, MMs almost completely disappear from the thymic cortex and show their adult position in the cortico-medullary zone and in the medulla.


Assuntos
Macrófagos/citologia , Prata/metabolismo , Timo/citologia , Análise de Variância , Animais , Intervalos de Confiança , Feminino , Imuno-Histoquímica , Macrófagos/metabolismo , Masculino , Método de Monte Carlo , Ratos , Ratos Wistar , Análise de Regressão , Coloração pela Prata , Timo/crescimento & desenvolvimento
19.
Proc Natl Acad Sci U S A ; 117(5): 2570-2578, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964813

RESUMO

The thymus generates cells of the T cell lineage that seed the lymphatic and blood systems. Transcription factor regulatory networks control the lineage programming and maturation of thymic precursor cells. Whether extrathymic antigenic events, such as the microbial colonization of the mucosal tract also shape the thymic T cell repertoire is unclear. We show here that intestinal microbes influence the thymic homeostasis of PLZF-expressing cells in early life. Impaired thymic development of PLZF+ innate lymphocytes in germ-free (GF) neonatal mice is restored by colonization with a human commensal, Bacteroides fragilis, but not with a polysaccharide A (PSA) deficient isogenic strain. Plasmacytoid dendritic cells influenced by microbes migrate from the colon to the thymus in early life to regulate PLZF+ cell homeostasis. Importantly, perturbations in thymic PLZF+ cells brought about by alterations in early gut microbiota persist into adulthood and are associated with increased susceptibility to experimental colitis. Our studies identify a pathway of communication between intestinal microbes and thymic lymphocytes in the neonatal period that can modulate host susceptibility to immune-mediated diseases later in life.


Assuntos
Microbioma Gastrointestinal , Linfócitos/imunologia , Timo/crescimento & desenvolvimento , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroides fragilis/fisiologia , Diferenciação Celular , Colite/genética , Colite/imunologia , Colite/microbiologia , Colo/microbiologia , Humanos , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/imunologia , Timo/citologia , Timo/imunologia
20.
Front Immunol ; 11: 620894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519827

RESUMO

The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.


Assuntos
Linfopoese , Organogênese , Células Estromais/citologia , Linfócitos T/citologia , Timo/citologia , Animais , Microambiente Celular , Células Endoteliais/citologia , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Mamíferos , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Timo/irrigação sanguínea , Timo/embriologia , Timo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA