Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Nat Neurosci ; 27(6): 1103-1115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741020

RESUMO

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.


Assuntos
Encéfalo , Órgão Subcomissural , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/embriologia , Órgão Subcomissural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Timosina/metabolismo , Timosina/genética , Camundongos Transgênicos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Neurônios/metabolismo , Movimento Celular/fisiologia , Peptídeos/metabolismo , Camundongos Endogâmicos C57BL
2.
Aesthetic Plast Surg ; 48(11): 2179-2189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409346

RESUMO

BACKGROUND: Autologous fat grafting (AFG) has emerged as a highly sought-after plastic surgery procedure, although its success has been hampered by the uncertain fat survival rate. Current evidence suggests that adipose-derived stem cells (ADSCs) may contribute to fat retention in AFG. In previous studies, it was confirmed that thymosin beta 4 (Tß4) could enhance fat survival in vivo, although the precise mechanism remains unclear. METHODS: ADSCs were isolated from patients undergoing liposuction and their proliferation, apoptosis, anti-apoptosis, and migration were analyzed under Tß4 stimulation using cell counting kit-8, flow cytometry, wound healing assay, and real-time quantitative PCR. The mRNA levels of genes relating to angiogenesis and Hippo signaling were also determined. RESULTS: Tß4 at 100 ng/mL (p-value = 0.0171) and 1000 ng/mL (p-value = 0.0054) significantly increased ADSC proliferation from day 1 compared to the control group (0 ng/mL). In addition, the mRNA levels of proliferation-associated genes were elevated in the Tß4 group. Furthermore, Tß4 enhanced the anti-apoptotic ability of ADSCs when stimulated with Tß4 and an apoptotic induction reagent (0 ng/mL vs. 1000 ng/mL, p-value = 0.011). Crucially, the mRNA expression levels of angiogenesis-related genes and critical genes in the Hippo pathway were affected by Tß4 in ADSCs. CONCLUSIONS: Tß4 enhances adipose viability in AFG via facilitating ADSC proliferation and reducing apoptosis, and acts as a crucial positive regulator of ADSC-associated angiogenesis. Additionally, Tß4 could be accountable for the phenotypic adjustment of ADSCs by regulating the Hippo pathway. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Tecido Adiposo , Timosina , Adulto , Feminino , Humanos , Adipócitos , Tecido Adiposo/citologia , Tecido Adiposo/transplante , Apoptose/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Sobrevivência de Enxerto , Técnicas In Vitro , Células-Tronco , Timosina/genética , Timosina/farmacologia , Transplante Autólogo
3.
Exp Cell Res ; 434(1): 113871, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049080

RESUMO

Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin ß4 (Tß4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tß4 by examining Tß4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tß4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tß4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tß4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tß4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tß4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tß4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tß4 could be a new diagnostic marker for intestinal barrier defects.


Assuntos
Doenças Inflamatórias Intestinais , Timosina , Animais , Feminino , Humanos , Camundongos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , Sirolimo/administração & dosagem , Timosina/genética , Timosina/metabolismo , Regulação para Cima
4.
Genet Res (Camb) ; 2023: 5517445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026448

RESUMO

Glioma is a highly aggressive form of brain cancer characterized by limited treatment options and poor patient prognosis. In this study, we aimed to elucidate the oncogenic role of thymosin beta-10 (TMSB10) in glioma through comprehensive analyses of patient data from the TCGA and GTEx databases. Our investigation encompassed several key aspects, including the analysis of patients' clinical characteristics, survival analysis, in vitro and in vivo functional experiments, and the exploration of correlations between TMSB10 expression and immune cell infiltration. Our findings revealed a significant upregulation of TMSB10 expression in glioma tissues compared to normal brain tissues, with higher expression levels observed in tumors of advanced histological grades. Moreover, we observed positive correlations between TMSB10 expression and patient age, while no significant association with gender was detected. Additionally, TMSB10 exhibited marked elevation in gliomas with wild-type IDH and noncodeletion of 1p/19q. Survival analysis indicated that high TMSB10 expression was significantly associated with worse overall survival, disease-specific survival, and progression-free survival in glioma patients. Functionally, knockdown of TMSB10 in glioma cells resulted in reduced cellular growth rates and impaired tumor growth in xenograft models. Furthermore, our study revealed intriguing correlations between TMSB10 expression and immune cell infiltration within the tumor microenvironment. Specifically, TMSB10 showed negative associations with plasmacytoid dendritic cells (pDC) and γδ T cells (Tgd), while displaying positive correlations with neutrophils and macrophages. These findings collectively provide valuable insights into the oncogenic properties of TMSB10 in glioma, suggesting its potential as a therapeutic target and a biomarker for patient stratification.


Assuntos
Neoplasias Encefálicas , Glioma , Timosina , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Relevância Clínica , Glioma/genética , Glioma/patologia , Prognóstico , Análise de Sobrevida , Timosina/genética , Timosina/metabolismo , Microambiente Tumoral
5.
Front Immunol ; 14: 1170539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275863

RESUMO

Introduction: The biological function and prognosis roles of thymosin ß(TMSB) 10 are still unclear in pan-cancer. Methods: We retrieved The Cancer Genome Atlas and Genotype-tissue expression datasets to obtain the difference of TMSB10 expression between pan-cancer and normal tissues, and analyzed the biological function and prognosis role of TMSB10 in pan-cancer by using cBioPortal Webtool. Results: The expression of TMSB10 in tumor tissues was significantly higher than normal tissues, and showed the potential ability to predict the prognosis of patients in Pan-cancer. It was found that TMSB10 was significantly correlated with tumor microenvironment, immune cell infiltration and immune regulatory factor expression. TMSB10 is involved in the regulation of cellular signal transduction pathways in a variety of tumors, thereby mediating the occurrence of tumor cell invasion and metastasis. Finally, TMSB10 can not only effectively predict the anti-PD-L1 treatment response of cancer patients, but also be used as an important indicator to evaluate the sensitivity of chemotherapy. In vitro, low expression of TMSB10 inhibited clonogenic formation ability, invasion, and migration in glioma cells. Furthermore, TMSB10 may involve glioma immune regulation progression by promoting PD-L1 expression levels via activating STAT3 signaling pathway. Conclusions: Our results show that TMSB10 is abnormally expressed in tumor tissues, which may be related to the infiltration of immune cells in the tumor microenvironment. Clinically, TMSB10 is not only an effective prognostic factor for predicting the clinical treatment outcome of cancer patients, but also a promising biomarker for predicting the effect of tumor immune checkpoint inhibitors (ICIs) and chemotherapy in some cancers.


Assuntos
Glioma , Timosina , Humanos , Prognóstico , Imunoterapia , Timosina/genética , Inibidores de Checkpoint Imunológico , Microambiente Tumoral/genética
6.
Int Immunopharmacol ; 116: 109741, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709593

RESUMO

Our dream of defeating the processes of organ damage and aging remains a challenge scientists pursued for hundreds of years. Although the goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. Since initial approaches utilizing only progenitor cells appear limited, we propose interconnecting our collective knowledge regarding aging and embryonic development may lead to the discovery of molecules which provide alternatives to effectively reverse cellular damage. In this review, we introduce and summarize our results regarding Thymosin beta-4 (TB4) to support our hypothesis using the heart as model system. Accordingly, we investigated the developmental expression of TB4 in mouse embryos and determined the impact of the molecule in adult animals by systemically injecting the peptide following acute cardiac infarction or with no injury. Our results proved, TB4 is expressed in the developing heart and promotes cardiac cell migration and survival. In adults, the peptide enhances myocyte survival and improves cardiac function after coronary artery ligation. Moreover, intravenous injections of TB4 alter the morphology of the adult epicardium, and the changes resemble the characteristics of the embryo. Reactivation of the embryonic program became equally reflected by the increased number of cardiac vessels and by the alteration of the gene expression profile typical of the embryonic state. Moreover, we discovered TB4 is capable of epicardial progenitor activation, and revealed the effect is independent of hypoxic injury. By observing the above results, we believe, further discoveries and consequential postnatal administration of developmentally relevant candidate molecules such as TB4 may likely result in reversing aging processes and accelerate organ regeneration in the human body.


Assuntos
Infarto do Miocárdio , Timosina , Camundongos , Humanos , Animais , Infarto do Miocárdio/terapia , Infarto do Miocárdio/genética , Timosina/genética , Timosina/uso terapêutico , Timosina/metabolismo , Pericárdio , Peptídeos , Envelhecimento
7.
Int Immunopharmacol ; 116: 109785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720193

RESUMO

The PI3K/AKT and p53 pathways are key regulators of cancer cell survival and death, respectively. Contrary to their generally accepted roles, several lines of evidence, including ours in medulloblastoma, the most common childhood brain cancer, highlight non-canonical functions for both proteins and show a complex context-dependent dynamic behavior in determining cell fate. Interestingly, p53-mediated cell survival and AKT-mediated cell death can dominate in certain conditions, and these interchangeable physiological functions may potentially be manipulated for better clinical outcomes. This review article presents studies in which p53 and AKT behave contrary to their well-established functions. We discuss the factors and circumstances that may be involved in mediating these changes and the implications of these unique roles of p53 and AKT in devising therapeutic strategies. Lastly, based on our recent finding of Thymosin beta 4-mediated chemosensitivity via an AKT-p53 interaction in medulloblastoma cells, we also discuss the possible implications of Thymosin beta-4 in enhancing drug sensitivity in this deadly childhood disease.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Timosina , Humanos , Criança , Proteínas Proto-Oncogênicas c-akt/metabolismo , Meduloblastoma/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Timosina/genética , Timosina/metabolismo , Neoplasias Cerebelares/tratamento farmacológico
8.
Ann Clin Lab Sci ; 52(2): 230-239, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35414502

RESUMO

OBJECTIVE: Thymosin b10 (TMSB10), a member of the thymosin family, is mainly located in cells and participates in the assembly and occurrence of cytoskeleton. We aimed to investigate the regulatory mechanism of TMSB10 in ccRCC. METHODS: In this study, Xiantao Academic Tools were taken to perform the pan-cancer expression and immune infiltration analysis of TMSB10. Furthermore, it is found that there is a binding site for JUN in the promoter region of TMSB10 through the JASPAR database predictive analysis. The CHIP experiment is used to confirm that JUN regulates the expression of TMSB10 through transcription, and to further detect the mRNA expression level of TMSB10 and JUN in ccRCC cell lines by qRT-PCR. Proliferation and apoptosis function analysis was also carried out to determine the functional changes of ccRCC cell lines after the expression of TMSB10 was regulated by JUN transcription. RESULTS: The results show that TMSB10 is significantly up-regulated in a variety of cancers. Moreover, JUN regulates the high expression of TMSB10 through transcription and further promotes the proliferation of ccRCC cells and inhibits their apoptosis. CONCLUSIONS: In conclusion, this study shows that JUN transcription regulates the high expression of TMSB10 and promotes the progress of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Timosina , Apoptose/genética , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Prognóstico , Timosina/genética , Timosina/metabolismo , Timosina/farmacologia
9.
Circulation ; 145(7): 531-548, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35157519

RESUMO

BACKGROUND: Rheumatic heart valve disease (RHVD) is a leading cause of cardiovascular death in low- and middle-income countries and affects predominantly women. The underlying mechanisms of chronic valvular damage remain unexplored and regulators of sex predisposition are unknown. METHODS: Proteomics analysis of human heart valves (nondiseased aortic valves, nondiseased mitral valves [NDMVs], valves from patients with rheumatic aortic valve disease, and valves from patients with rheumatic mitral valve disease; n=30) followed by system biology analysis identified ProTα (prothymosin alpha) as a protein associated with RHVD. Histology, multiparameter flow cytometry, and enzyme-linked immunosorbent assay confirmed the expression of ProTα. In vitro experiments using peripheral mononuclear cells and valvular interstitial cells were performed using multiparameter flow cytometry and quantitative polymerase chain reaction. In silico analysis of the RHVD and Streptococcuspyogenes proteomes were used to identify mimic epitopes. RESULTS: A comparison of NDMV and nondiseased aortic valve proteomes established the baseline differences between nondiseased aortic and mitral valves. Thirteen unique proteins were enriched in NDMVs. Comparison of NDMVs versus valves from patients with rheumatic mitral valve disease and nondiseased aortic valves versus valves from patients with rheumatic aortic valve disease identified 213 proteins enriched in rheumatic valves. The expression of the 13 NDMV-enriched proteins was evaluated across the 213 proteins enriched in diseased valves, resulting in the discovery of ProTα common to valves from patients with rheumatic mitral valve disease and valves from patients with rheumatic aortic valve disease. ProTα plasma levels were significantly higher in patients with RHVD than in healthy individuals. Immunoreactive ProTα colocalized with CD8+ T cells in RHVD. Expression of ProTα and estrogen receptor alpha correlated strongly in circulating CD8+ T cells from patients with RHVD. Recombinant ProTα induced expression of the lytic proteins perforin and granzyme B by CD8+ T cells as well as higher estrogen receptor alpha expression. In addition, recombinant ProTα increased human leukocyte antigen class I levels in valvular interstitial cells. Treatment of CD8+ T cells with specific estrogen receptor alpha antagonist reduced the cytotoxic potential promoted by ProTα. In silico analysis of RHVD and Spyogenes proteomes revealed molecular mimicry between human type 1 collagen epitope and bacterial collagen-like protein, which induced CD8+ T-cell activation in vitro. CONCLUSIONS: ProTα-dependent CD8+ T-cell cytotoxicity was associated with estrogen receptor alpha activity, implicating ProTα as a potential regulator of sex predisposition in RHVD. ProTα facilitated recognition of type 1 collagen mimic epitopes by CD8+ T cells, suggesting mechanisms provoking autoimmunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Colágeno Tipo I/metabolismo , Receptor alfa de Estrogênio/metabolismo , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/metabolismo , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Sequência de Aminoácidos , Colágeno Tipo I/química , Biologia Computacional/métodos , Suscetibilidade a Doenças , Epitopos de Linfócito T/imunologia , Doenças das Valvas Cardíacas/diagnóstico , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Proteoma , Proteômica/métodos , Cardiopatia Reumática/diagnóstico , Cardiopatia Reumática/etiologia , Cardiopatia Reumática/metabolismo , Relação Estrutura-Atividade , Timosina/química , Timosina/genética , Timosina/metabolismo
10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008976

RESUMO

Thymosin ß4 (Tß4) was extracted forty years agofrom calf thymus. Since then, it has been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angiogenesis, and anti-inflammatory processes. Tß4 has also been implicated in tumor metastasis and neurodegeneration. However, the precise roles and mechanism(s) of action of Tß4 in these processes remain largely unknown, with the binding of the G-actin protein being insufficient to explain these multi-actions. Here we identify for the first time the important role of Tß4 mechanism in ferroptosis, an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions along the peptide and show that the presence of Tß4 in cell growing medium inhibits erastin and glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tß4 increases the expression of oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tß4 is an endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the literature data of parallel involvement of Tß4 and ferroptosis in different human pathologies, mainly cancer and neurodegeneration. Our findings confronted with literature data show that controlled Tß4 release could command on/off switching of ferroptosis and may provide novel therapeutic opportunities in cancer and tissue degeneration pathologies.


Assuntos
Ferroptose/efeitos dos fármacos , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Timosina/química , Timosina/farmacologia , Sequência de Aminoácidos , Ferroptose/genética , Expressão Gênica , Humanos , Ligação de Hidrogênio , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Análise Espectral , Relação Estrutura-Atividade , Timosina/genética
11.
Mol Carcinog ; 60(9): 597-606, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081824

RESUMO

Gastric cancer (GC) is histologically classified into intestinal-type gastric cancer (IGC) and diffuse-type gastric cancer (DGC), and the latter is poorly differentiated and highly metastatic. In this study, using quantitative real-time polymerase chain reaction, we described a complete protocol for in vivo CRISPR-Cas9-based knockout screening of essential genes for DGC metastasis. We functionally screened 30 candidate genes using our mouse DGC models lacking Smad4, p53, and E-cadherin. Pooled knockout mouse DGC cells were transplanted into a spleen of syngeneic immunocompetent mice to study clonal advantages in context of a complex process of liver metastasis. Tmsb4x (thymosin beta-4 X-linked), Hmox1, Ifitm3, Ldhb, and Itgb7 were identified as strong candidate genes that promote metastasis. In particular, Tmsb4x enhanced DGC metastasis and stomach organoid-generated tumor growth in in vivo transplantation models. Tmsb4x promoted tumor clonogenicity and anoikis resistance. In situ hybridization analysis showed that Tmsb4x is highly expressed in E-cadherin-negative mouse DGC models compared with mouse IGC and intestinal cancer models. E-cadherin deficiency also increased Tmsb4x expression in stomach organoids via Wnt signaling activation. Collectively, these results demonstrate that Tmsb4x promotes DGC metastasis. In addition, this experimental system will aid in the identification of novel target genes responsible for DGC metastasis.


Assuntos
Biomarcadores Tumorais , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Timosina/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Transdução de Sinais
12.
J Gastroenterol Hepatol ; 36(11): 3102-3112, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34114679

RESUMO

BACKGROUND AND AIM: The thymosin beta 10 (TMSB10) was originally identified from the thymus, which plays a key role in the development of many cancers. However, the underlying molecular mechanisms of TMSB10 involved in GC have not been understood. METHODS: We sought to determine the expression of TMSB10 in human GC tissues and illustrate whether it is correlated with the clinical pathologic characteristics and prognosis in GC patients. Its roles and potential mechanisms in regulating tumor growth, invasion, and angiogenesis were evaluated by TMSB10 knockdown/overexpression of GC cells in vitro and ex vivo. RESULTS: Marked overexpression of TMSB10 protein expression was observed in GC cells and tissues, which was associated with the advanced tumor stage and lymph nodes (LN) metastasis of GC patients. Furthermore, prognostic analysis showed that GC patients with high TMSB10 expression had a remarkably shorter survival and acted as an important factor for predicting poor overall survival in GC patients. Moreover, TMSB10 overexpression promoted, while TMSB10 knockdown the proliferation, EMT process, and angiogenesis of GC cells. CONCLUSION: The study highlights that TMSB10 may hold promise as potential prognosis prediction biomarker for the diagnosis of GC and a potential therapeutic target, which will facilitate the development of a novel therapeutic strategy against GC.


Assuntos
Neoplasias Gástricas , Timosina , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Invasividade Neoplásica , Neovascularização Patológica , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Timosina/biossíntese , Timosina/genética
13.
Mitochondrion ; 59: 123-134, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872798

RESUMO

Colorectal cancer (CRC) affects millions of people worldwide. Chemoresistance seriously impairs the therapeutic effects. Lipid droplets (LDs) abnormally accumulate in CRC supported chemoresistance. Exploring the mechanism of LD-induced chemoresistance is extremely important for improving prognosis of CRC patients. The expression of PTMA was increased in both CRC tissues and cells, which was positively correlated with LD production. PTMA facilitated chemoresistance to gemcitabine by inducing LD production in CRC cells. PTMA enhanced LD biogenesis and chemoresistance to gemcitabine by promoting SREBP-1-mediated lipogenesis and STAT3 activation in CRC.


Assuntos
Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Timosina/análogos & derivados , Acetilação , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Gotículas Lipídicas/metabolismo , Lipogênese , Prognóstico , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Timosina/genética , Timosina/metabolismo , Regulação para Cima
14.
Biosci Biotechnol Biochem ; 85(4): 805-813, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686397

RESUMO

PTEN/AKT signaling cascade is frequently activated in various cancers, including lung cancer. The downstream effector of this signaling cascade is poorly understood. ß-Thymosin 10 (TMSB10) functions as an oncogene or tumor suppressors in cancers, whereas its significance in lung cancer remains unknown. In this study, we showed that the activation of PTEN/AKT signaling promoted the expression of TMSB10. Based on the TCGA database, TMSB10 was upregulated in lung cancer tissues and its overexpression was correlated with poor prognosis of lung cancer patients. Functional experiments demonstrated that TMSB10 knockdown suppressed, while its overexpression promoted the proliferation, growth, and migration of lung cancer cells. Apoptosis and epithelial-mesenchymal transition were also regulated by TMSB10. We therefore suggest that TMSB10 is a novel oncogene for lung cancer. Targeting TMSB10 may benefit lung cancer patients with activated PTEN/AKT signaling.


Assuntos
Neoplasias Pulmonares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Timosina/fisiologia , Regulação para Cima , Apoptose/fisiologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Timosina/genética
15.
Nat Commun ; 12(1): 84, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398012

RESUMO

The disruption in blood supply due to myocardial infarction is a critical determinant for infarct size and subsequent deterioration in function. The identification of factors that enhance cardiac repair by the restoration of the vascular network is, therefore, of great significance. Here, we show that the transcription factor Zinc finger E-box-binding homeobox 2 (ZEB2) is increased in stressed cardiomyocytes and induces a cardioprotective cross-talk between cardiomyocytes and endothelial cells to enhance angiogenesis after ischemia. Single-cell sequencing indicates ZEB2 to be enriched in injured cardiomyocytes. Cardiomyocyte-specific deletion of ZEB2 results in impaired cardiac contractility and infarct healing post-myocardial infarction (post-MI), while cardiomyocyte-specific ZEB2 overexpression improves cardiomyocyte survival and cardiac function. We identified Thymosin ß4 (TMSB4) and Prothymosin α (PTMA) as main paracrine factors released from cardiomyocytes to stimulate angiogenesis by enhancing endothelial cell migration, and whose regulation is validated in our in vivo models. Therapeutic delivery of ZEB2 to cardiomyocytes in the infarcted heart induces the expression of TMSB4 and PTMA, which enhances angiogenesis and prevents cardiac dysfunction. These findings reveal ZEB2 as a beneficial factor during ischemic injury, which may hold promise for the identification of new therapies.


Assuntos
Isquemia/patologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células/genética , Dependovirus/metabolismo , Regulação da Expressão Gênica , Humanos , Isquemia/genética , Camundongos Knockout , Modelos Biológicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Timosina/análogos & derivados , Timosina/genética , Timosina/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
16.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33468581

RESUMO

Thymosin beta-4 (Tß4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tß4-overexpressing transgenic (Tg) mice to investigate the role of Tß4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tß4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tß4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tß4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tß4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1ß and TNF-α proteins was also reduced in Tß4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tß4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tß4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tß4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tß4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.


Assuntos
Resistência à Doença/genética , Expressão Ectópica do Gene , Legionella pneumophila/fisiologia , Doença dos Legionários/genética , Doença dos Legionários/microbiologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/microbiologia , Timosina/genética , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Humanos , Imuno-Histoquímica , Imunofenotipagem , Doença dos Legionários/patologia , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Pneumonia Bacteriana/patologia , Sepse/genética , Sepse/microbiologia , Sepse/patologia , Receptores Toll-Like/metabolismo
17.
Respir Res ; 21(1): 328, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33349268

RESUMO

BACKGROUND: Thymosin ß10 (TMSB10) has been reported to play a protumorigenic role in a majority of solid cancers. However, the existence of TMSB10 in immune microenvironment may contribute to the pathogenesis of lung adenocarcinoma has not been previously explored. METHOD: TAMs-associated TMSB10 expression was evaluated by immunohistochemistry (IHC) in 184 lung adenocarcinomas. Xenograft mice model was established to investigate the effect of TMSB10 shRNA on TAMs phenotypes. The macrophages phenotype associated cytokines IL-6, IL-8, IL-12 and TNF-α were detected by ELISA after treated with TMSB10 shRNA or scramble. Furthermore, the target proteins were detected by immunoblotting. RESULTS: We found that high TAMs-associated TMSB10 expression was significantly correlated with the advanced TNM stage and T3/T4 tumor size. And high TAMs-associated TMSB10 expression was significantly correlated with poor overall and progression-free survival of lung adenocarcinoma, acting as an independent prognostic factor for lung adenocarcinoma. Furthermore, we investigated the biological functions of TMSB10 in macrophages in vivo and in vitro. TMSB10 knockdown dramatically reduced TAMs, THP-1 and RAW264.7 cell proliferation, and promoted macrophages phenotype conversion of M2 to M1, and TMSB10 knockdown reduced the levels of p-Akt (Sec473), p-mTOR (Sec2448) and p-p70S6K (Thr389) without effect on Akt, mTOR and p70S6K expression. CONCLUSIONS: These results demonstrate that TAMs-associated TMSB10 promotes tumor growth through increasing TAMs M2 conversion and proliferation via PI3K/Akt signaling pathway, providing a promising tumor biomarker for predicting prognosis and a potential therapeutic target for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Timosina/biossíntese , Macrófagos Associados a Tumor/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células RAW 264.7 , Estudos Retrospectivos , Células THP-1 , Timosina/genética , Macrófagos Associados a Tumor/patologia
18.
IUBMB Life ; 72(11): 2432-2443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918845

RESUMO

OBJECTIVE: DNA methyltransferases (DNMTs) take on a relevant role in epigenetic control of cancer proliferation and cell survival. However, the molecular mechanisms underlying the establishment and maintenance of DNA methylation in human cancer remain to be fully elucidated. This study was to investigate that how DNMT1 affected the biological characteristics of colorectal cancer (CRC) cells via modulating methylation of microRNA (miR)-152-3p and thymosin ß 10 (TMSB10) expression. METHODS: DNMT1, miR-152-3p, and TMSB10 expression, and the methylation of miR-152-3p in CRC tissues and cells were detected. SW-480 and HCT-116 CRC cells were transfected with DNMT1 or miR-152-3p-related sequences or plasmids to explore their characters in biological functions of CRC cells. The binding relationship between DNMT1 and miR-152-3p and the targeting relationship between miR-152-3p and TMSB10 were analyzed. The tumor growth was also detected in vivo. RESULTS: Upregulated DNMT1, TMSB10, reduced miR-152-3p, and methylated miR-152-3p were detected in CRC tissues and cells. Silenced DNMT1 or upregulated miR-152-3p reduced TMSB10 expression and suppressed CRC progression and tumor growth. Moreover, elevated DNMT1 could reverse the effect of miR-152-3p upregulation on CRC development and tumor growth. DNMT1 maintained methylation of miR-152-3p. TMSB10 was the direct target gene of miR-152-3p. CONCLUSION: The study highlights that silenced DNMT1 results in non-methylated miR-152-3p to depress TMSB10 expression, thereby inhibiting CRC development, which provides a new approach for CRC therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Timosina/metabolismo , Adulto , Idoso , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Timosina/genética , Células Tumorais Cultivadas
19.
Int J Oncol ; 56(5): 1101-1114, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32319572

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most common urological malignancies. Identifying novel biomarkers and investigating the underlying mechanism of ccRCC development will be crucial to the management and treatment of ccRCC in patients. Thymosin b10 (TMSB10), a member of the thymosin family, is involved in various physiological processes, including tissue regeneration and inflammatory regulation. Moreover, it has been found to be upregulated in many types of carcinoma. However, its roles in ccRCC remain to be elucidated. The present study aimed to explore the expression of TMSB10 in ccRCC through mining The Cancer Genome Atlas (TCGA) and Oncomine databases, and to investigate the association between TMSB10 expression and clinicopathological factors. Furthermore, immunohistochemistry assays and western blotting were conducted to verify TMSB10 expression levels in human ccRCC tissues and cell lines. Functional analyses were also performed to identify the roles of TMSB10 in vitro. The results revealed that TMSB10 was significantly upregulated in RCC tissues and cell lines. The expression of TMSB10 was closely associated with various clinicopathological parameters. In addition, high expression of TMSB10 predicted poor clinical outcome. The receiver operating characteristic curve revealed that TMSB10 could sufficiently distinguish the tumor from normal kidney (area under the curve = 0.9543, P<0.0001). Furthermore, knockdown of TMSB10 impaired the proliferation of ccRCC cells, and attenuated cell and invasion in vitro. In addition, TMSB10 knockdown downregulated reduced the phosphorylation of PI3K and the expression of vascular endothelial growth factor. In conclusion, the present study demonstrated that high expression of TMSB10 could serve as a useful diagnostic and prognostic biomarker and a potential therapeutic target for ccRCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Timosina/genética , Regulação para Cima , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Masculino , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Timosina/metabolismo
20.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245208

RESUMO

Thymosin ß4 (Tß4) is a G-actin sequestering protein that contributes to diverse cellular activities, such as migration and angiogenesis. In this study, the beneficial effects of combined cell therapy with Tß4 and human adipose-derived stem cells (hASCs) in a mouse ischemic hindlimb model were investigated. We observed that exogenous treatment with Tß4 enhanced endogenous TMSB4X mRNA expression and promoted morphological changes (increased cell length) in hASCs. Interestingly, Tß4 induced the active state of hASCs by up-regulating intracellular signaling pathways including the PI3K/AKT/mTOR and MAPK/ERK pathways. Treatment with Tß4 significantly increased cell migration and sprouting from microbeads. Moreover, additional treatment with Tß4 promoted the endothelial differentiation potential of hASCs by up-regulating various angiogenic genes. To evaluate the in vivo effects of the Tß4-hASCs combination on vessel recruitment, dorsal window chambers were transplanted, and the co-treated mice were found to have a significantly increased number of microvessel branches. Transplantation of hASCs in combination with Tß4 was found to improve blood flow and attenuate limb or foot loss post-ischemia compared to transplantation with hASCs alone. Taken together, the therapeutic application of hASCs combined with Tß4 could be effective in enhancing endothelial differentiation and vascularization for treating hindlimb ischemia.


Assuntos
Membro Posterior/metabolismo , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Timosina/metabolismo , Timosina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Transplante de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/genética , Isquemia/terapia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Neovascularização Fisiológica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Timosina/genética , Timosina/uso terapêutico , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA