Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
PLoS One ; 19(8): e0308168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110703

RESUMO

The ovarian KGN granulosa-like tumour cell line is commonly used as a model for human granulosa cells, especially since it produces steroid hormones. To explore this further, we identified genes that were differentially expressed by KGN cells compared to primary human granulosa cells using three public RNA sequence datasets. Of significance, we identified that the expression of the antioxidant gene TXNRD1 (thioredoxin reductase 1) was extremely high in KGN cells. This is ominous since cytochrome P450 enzymes leak electrons and produce reactive oxygen species during the biosynthesis of steroid hormones. Gene Ontology (GO) analysis identified steroid biosynthetic and cholesterol metabolic processes were more active in primary granulosa cells, whilst in KGN cells, DNA processing, chromosome segregation and kinetochore pathways were more prominent. Expression of cytochrome P450 cholesterol side-chain cleavage (CYP11A1) and cytochrome P450 aromatase (CYP19A1), which are important for the biosynthesis of the steroid hormones progesterone and oestrogen, plus their electron transport chain members (FDXR, FDX1, POR) were measured in cultured KGN cells. KGN cells were treated with 1 mM dibutyryl cAMP (dbcAMP) or 10 µM forskolin, with or without siRNA knockdown of TXNRD1. We also examined expression of antioxidant genes, H2O2 production by Amplex Red assay and DNA damage by γH2Ax staining. Significant increases in CYP11A1 and CYP19A1 were observed by either dbcAMP or forskolin treatments. However, no significant changes in H2O2 levels or DNA damage were found. Knockdown of expression of TXNRD1 by siRNA blocked the stimulation of expression of CYP11A1 and CYP19A1 by dbcAMP. Thus, with TXNRD1 playing such a pivotal role in steroidogenesis in the KGN cells and it being so highly overexpressed, we conclude that KGN cells might not be the most appropriate model of primary granulosa cells for studying the interplay between ovarian steroidogenesis, reactive oxygen species and antioxidants.


Assuntos
Antioxidantes , Aromatase , Enzima de Clivagem da Cadeia Lateral do Colesterol , Células da Granulosa , Humanos , Feminino , Antioxidantes/metabolismo , Aromatase/genética , Aromatase/metabolismo , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/genética , Regulação Neoplásica da Expressão Gênica , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Tumor de Células da Granulosa/patologia , Esteroides/biossíntese , Progesterona/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
2.
Toxicol In Vitro ; 100: 105920, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173682

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive and metastatic in nature. Existing treatment modalities for TNBC are associated with severe side effects. Thioredoxin reductase (TRXR), the pivotal component of the thioredoxin system, remains overexpressed in various cancer cells including TNBC; promotes cell growth, proliferation, and metastasis, and inhibits apoptosis. Pestalotioprolide E is one of the potent macrolides, a class of secondary metabolites derived from an endophytic fungus Pestalotiopsis microspora with relatively unexplored biological activities. Our study revealed increased expression and activity of TRXR1 in MDA-MB-231 cells compared to the non-cancerous cells. In silico docking analysis and in vitro activity assay demonstrated that Pestalotioprolide E directly interacts with TRXR1 and inhibits its enzymatic activity. This inhibition induces apoptosis via TRX1/ASK1/P38MAPK death signaling cascade and retards metastasis through modulating VEGF, MMP-2, MMP-9, E-cadherin, N-cadherin in MDA-MB-231 cells. Taken together present study establishes TRXR1 as a molecular target for Pestalotioprolide E and its anticancer effect can be attributed to the inhibition of TRXR1 activity in MDA-MB-231.


Assuntos
Antineoplásicos , Apoptose , MAP Quinase Quinase Quinase 5 , Macrolídeos , Transdução de Sinais , Tiorredoxina Redutase 1 , Tiorredoxinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Macrolídeos/farmacologia , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/genética , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Apoptose/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Movimento Celular/efeitos dos fármacos , Feminino
3.
STAR Protoc ; 5(3): 103235, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116197

RESUMO

Selenoprotein thioredoxin reductase 1 (TXNRD1) is a promising therapeutic target, with several inhibitors reported to inhibit TXNRD1 activity. These inhibitors have the potential for applications such as anti-tumor medications. Here, we present a protocol for assessing irreversible inhibitors of TXNRD1. We describe four assays covering cellular TXNRD activity measurement, recombinant enzyme-based activity determination, differential scanning fluorimetry (DSF), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. This protocol will facilitate the screening and development of potential small-molecule inhibitors of TXNRD1.


Assuntos
Inibidores Enzimáticos , Espectrometria de Massas em Tandem , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fluorometria/métodos
4.
Redox Biol ; 75: 103277, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39059206

RESUMO

Sepsis is a common complication of infections that significantly impacts the survival of critically patients. Currently, effective pharmacological treatment strategies are lacking. Auranofin, known as an inhibitor of Thioredoxin reductase (TrxR), exhibits anti-inflammatory activity, but its role in sepsis is not well understood. Here, we demonstrate the significant inhibitory effect of Auranofin on sepsis in a cecal ligation and puncture (CLP) mouse model. In vitro, Auranofin inhibits pyroptosis triggered by Caspase-11 activation. Further investigations reveal that inhibiting TrxR1 suppresses macrophage pyroptosis induced by E. coli, while TrxR2 does not exhibit this effect. TrxR1, functioning as a reductase, regulates the oxidative-reductive status of Thioredoxin-1 (Trx-1). Mechanistically, the modulation of Trx-1's reductive activity by TrxR1 may be involved in Caspase-11 activation-induced pyroptosis. Additionally, inhibiting TrxR1 maintains Trx-1 in its oxidized state. The oxidized form of Trx-1 interacts with Caveolin-1 (CAV1), regulating outer membrane vesicle (OMV) internalization. In summary, our study suggests that inhibiting TrxR1 suppresses OMV internalization by maintaining the oxidized form of Trx-1, thereby restricting Caspase-11 activation and alleviating sepsis.


Assuntos
Auranofina , Oxirredução , Piroptose , Sepse , Tiorredoxinas , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Animais , Camundongos , Oxirredução/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Auranofina/farmacologia , Sepse/metabolismo , Humanos , Caspases Iniciadoras/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/genética , Modelos Animais de Doenças , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos
5.
Redox Biol ; 75: 103245, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38909408

RESUMO

Since the survival of lymphoma patients who experience disease progression or relapse remains very poor, new therapeutic approaches and effective drugs are urgently needed. Here we show that auranofin (AF), an anti-rheumatoid drug thought to inhibit thioredoxin reductases (TXNRDs) as its mechanism of action, exhibited potent activity against multiple cancer types, especially effective against B cell lymphoma. Surprisingly, a knockdown of TXNRD1 and TXNRD2 did not cause significant cytotoxicity, suggesting that abrogation of TXNRD enzyme per se was insufficient to cause cancer cell death. Further mechanistic study showed that the interaction of AF with TXNRD could convert this antioxidant enzyme to a ROS-generating molecule via disrupting its electron transport, leading to a leak of electrons that interact with molecular oxygen to form superoxide. AF also suppressed energy metabolism by inhibiting both mitochondria complex II and the glycolytic enzyme GAPDH, leading to a significant depletion of ATP and inhibition of cancer growth in vitro and in vivo. Importantly, we found that the AF-mediated ROS stress could induce PD-L1 expression, revealing an unwanted effect of AF in causing immune suppression. We further showed that a combination of AF with anti-PD-1 antibody could enhance the anticancer activity in a syngeneic immune-competent mouse B-cell lymphoma model. Our study suggests that AF could be a potential drug for lymphoma treatment, and its combination with immune checkpoint inhibitors would be a logical strategy to increase the therapeutic activity.


Assuntos
Artrite Reumatoide , Auranofina , Metabolismo Energético , Espécies Reativas de Oxigênio , Auranofina/farmacologia , Auranofina/uso terapêutico , Animais , Espécies Reativas de Oxigênio/metabolismo , Humanos , Camundongos , Metabolismo Energético/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Linhagem Celular Tumoral , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 1/genética , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Tiorredoxina Redutase 2/metabolismo , Tiorredoxina Redutase 2/genética , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Neoplasia ; 53: 101004, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733769

RESUMO

Thioredoxin reductases are frequently overexpressed in various solid tumors as a protective mechanism against heightened oxidative stress. Inhibitors of this system, such as Auranofin, are effective in eradicating cancer cells. However, the clinical significance of thioredoxin reductase 1 (TrxR1) in lung cancer, as well as the potential for its antagonist as a treatment option, necessitated further experimental validation. In this study, we observed significant upregulation of TrxR1 specifically in non-small cell lung cancer (NSCLC), rather than small cell lung cancer. Moreover, TrxR1 expression exhibited associations with survival rate, tumor volume, and histological classification. We developed a novel TrxR1 inhibitor named LW-216 and assessed its antitumor efficacy in NSCLC. Our results revealed that LW-216 is effectively bound with intracellular TrxR1 at sites R371 and G442, facilitating TrxR1 ubiquitination and suppressing TrxR1 expression, while not affecting TrxR2 expression. Treatment of LW-216-induced DNA damage and cell apoptosis in NSCLC cells through the generation of reactive oxygen species (ROS). Importantly, supplementation with N-acetylcysteine (NAC) or ectopic TrxR1 expression reversed LW-216-induced apoptosis. Furthermore, LW-216 displayed potent tumor growth inhibition in NSCLC cell-implanted mice, reducing TrxR1 expression in xenografts. Remarkably, LW-216 exhibited superior antitumor activity compared to Auranofin in vivo. Collectively, our research provides compelling evidence supporting the potential of targeting TrxR1 by LW-216 as a promising therapeutic strategy for NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Humanos , Linhagem Celular Tumoral , Células A549 , Células HEK293 , Animais , Camundongos , Camundongos Nus , Tiorredoxina Redutase 1/antagonistas & inibidores , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Xenoenxertos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias Pulmonares/tratamento farmacológico , Auranofina/farmacologia
7.
Biochem Pharmacol ; 223: 116194, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583812

RESUMO

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Assuntos
Compostos de Anilina , Diterpenos , Tiofenos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Tiorredoxina Redutase 1 , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico
8.
Biotechnol Appl Biochem ; 71(4): 948-959, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38682343

RESUMO

Cancer is a fatal disease that kills thousands of people worldwide. Despite the information produced by research on cancer treatment, applications in cancer treatment are limited. Therefore, scientists' efforts to develop more effective treatment approaches continue. In the study, we aimed to determine the anticancer potential of amino thiazole compounds on human glioblastoma (U-87 MG) and human dermal fibroblast (HDFa) cells and their inhibition effects on enzymes that cause multidrug resistance in cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide cell viability test was performed to understand the cytotoxic properties of thiazole derivatives. The cellular death mechanisms behind thiazole application were investigated using flow cytometry analysis. According to cell viability analysis, thiazole derivatives exhibited a greater effect on U-87 MG than the HDFa cell line in terms of cytotoxicity. Flow cytometry showed higher apoptotic cell death in U-87 MG cells than in the HDFa cell line. It can be concluded that thiazole compounds exert anticancer effects on U-87 MG and HDFa as well as show apoptotic properties. Their effects on thioredoxin reductase 1 (TrxR1), glutathione S-transferase (GST), and glutathione reductase (GR) activities, which are important in the development of chemotherapeutic methods, were also examined. From the results obtained, it was determined that the 2-amino-4-(p-tolyl)thiazole (T7) compound significantly suppressed both TrxR1 and GST activities, and the 2-amino-6-methylbenzothiazole (T8) compound significantly suppressed both TrxR1 and GST activities. Compound T7 was determined to be a selective inhibitor for TrxR1 and GST targeting, and compound T8 was determined to be a selective inhibitor for TrxR1 and GR targeting glioblastoma treatment.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Sobrevivência Celular , Glioblastoma , Glutationa Redutase , Glutationa Transferase , Tiazóis , Tiorredoxina Redutase 1 , Humanos , Tiazóis/farmacologia , Tiazóis/química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 1/metabolismo , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos
9.
Biomed Pharmacother ; 174: 116507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565059

RESUMO

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Auranofina , Neoplasias do Colo , Sinergismo Farmacológico , Compostos Heterocíclicos com 3 Anéis , Proteínas Proto-Oncogênicas c-akt , Pironas , Espécies Reativas de Oxigênio , Transdução de Sinais , Tiorredoxina Redutase 1 , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Auranofina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Morfolinas/farmacologia , Células HCT116
10.
Chem Biol Interact ; 395: 111004, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38636790

RESUMO

Head and neck squamous cell carcinoma (HNSCC) faces low response rates to anti-PD-1 immunotherapies, highlighting the need for enhanced treatment strategies. Auranofin, which inhibits thioredoxin reductase (TrxR) through its gold-based composition, has shown potential in cancer treatment. It targets the TrxR system, essential for safeguarding cells from oxidative stress. The overproduction of TrxR in cancerous cells supports their proliferation. However, auranofin's interference with this system can upset the cellular redox equilibrium, boost levels of reactive oxygen species, and trigger the death of cancer cells. This study is the first to highlight TXNRD1 as a crucial factor contributing to resistance to anti-PD-1 treatment in HNSCC. In this study, we identified targetable regulators of resistance to immunotherapy-induced ferroptosis in HNSCC. We observed a link of thioredoxin reductase 1 (TXNRD1) with tumoral PD-L1 expression and ferroptosis suppression in HNSCC. Moreover, HNSCC tumors with aberrant TXNRD1 expression exhibited a lack of PD-1 response, NRF2 overexpression, and PD-L1 upregulation. TXNRD1 inhibition promoted ferroptosis in HNSCC cells with NRF2 activation and in organoid tumors derived from patients lacking a PD-1 response. Mechanistically, TXNRD1 regulated PD-L1 transcription and maintained the redox balance by binding to ribonucleotide reductase regulatory subunit M2 (RRM2). TXNRD1 expression disruption sensitized HNSCC cells to anti-PD-1-mediated Jurkat T-cell activation, promoting tumor killing through ferroptosis. Moreover, TXNRD1 inhibition through auranofin cotreatment synergized with anti-PD-1 therapy to potentiate immunotherapy-mediated ferroptosis by mediating CD8+ T-cell infiltration and downregulating PD-L1 expression. Our findings indicate that targeting TXNRD1 is a promising therapeutic strategy for improving immunotherapy outcomes in patients with HNSCC.


Assuntos
Auranofina , Antígeno B7-H1 , Ferroptose , Neoplasias de Cabeça e Pescoço , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Ferroptose/efeitos dos fármacos , Auranofina/farmacologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Phytomedicine ; 128: 155317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537439

RESUMO

BACKGROUND: Sorafenib (Sora), a multi-target tyrosine kinase inhibitor, is widely recognized as a standard chemotherapy treatment for advanced hepatocellular carcinoma (HCC). However, drug resistance mechanisms hinder its anticancer efficacy. Derived from Withania somnifera, Withaferin A (WA) exhibits remarkable anti-tumor properties as a natural bioactive compound. This study aimed to examine the mechanisms that underlie the impacts of Sora and WA co-treatment on HCC. METHODS: Cell proliferation was evaluated through colony formation and MTT assays. Flow cytometry was employed to determine cellular apoptosis and reactive oxygen species (ROS) levels. The evaluation of apoptosis-related protein levels, DNA damage, and endoplasmic reticulum stress was conducte utilizing IHC staining and western blotting. Moreover, the caspase inhibitor Z-VAD-FMK, ATF4 siRNA, ROS scavenger N-acetyl cysteine (NAC), and TrxR1 shRNA were used to elucidate the underlying signaling pathways. To validate the antitumor effects of Sora/WA co-treatment, in vivo experiments were ultimately executed using Huh7 xenografts. RESULTS: Sora/WA co-treatment demonstrated significant synergistic antitumor impacts both in vivo and in vitro. Mechanistically, the enhanced antitumor impact of Sora by WA was achieved through the inhibition of TrxR1 activity, resulting in ROS accumulation. Moreover, ROS generation induced the activation of DNA damage and endoplasmic reticulum (ER) stress pathways, eventually triggering cellular apoptosis. Pre-treatment with the antioxidant NAC significantly inhibited ROS generation, ER stress, DNA damage, and apoptosis induced by Sora/WA co-treatment. Additionally, the inhibition of ATF4 by small interfering RNA (siRNA) attenuated Sora/WA co-treatment-induced apoptosis. In vivo, Sora/WA co-treatment significantly suppressed tumor growth in HCC xenograft models and decreased TrxR1 activity in tumor tissues. CONCLUSION: Our study suggests that WA synergistically enhances the antitumor effect of Sora, offering promising implications for evolving treatment approaches for HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Dano ao DNA , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático , Neoplasias Hepáticas , Camundongos Nus , Espécies Reativas de Oxigênio , Sorafenibe , Vitanolídeos , Vitanolídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Animais , Dano ao DNA/efeitos dos fármacos , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Tiorredoxina Redutase 1/metabolismo , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Fator 4 Ativador da Transcrição/metabolismo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5745-5755, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38308689

RESUMO

Hepatocellular carcinoma (HCC) represents one of the most common malignant tumors worldwide. Due to the limited number of available drugs and their side effects, the development of new chemotherapeutic strategies for HCC treatment has become increasingly important. This study is aimed at investigating whether diffractaic acid (DA), one of the secondary metabolites of lichen, exhibits a potential anticancer effect on HepG2 cells and whether its anticancer effect is mediated by inhibition of thioredoxin reductase 1 (TRXR1), which is a target of chemotherapeutic strategies due to overexpression in tumor cells including HCC. XTT assay results showed that DA exhibited strong cytotoxicity on HepG2 cells with an IC50 value of 78.07 µg/mL at 48 h. Flow cytometric analysis results revealed that DA displayed late apoptotic and necrotic effects on HepG2 cells. Consistent with these findings, real-time PCR results showed that DA did not alter the BAX/BCL2 ratio in HepG2 cells but upregulated the P53 gene. Moreover, the wound healing assay results revealed a strong anti-migratory effect of DA in HepG2 cells. Real-time PCR and Western blot analyses demonstrated that DA increased TRXR1 gene and protein expression levels, whereas enzyme activity studies disclosed that DA inhibited TRXR1. These findings suggest that DA has an anticancer effect on HepG2 cells by targeting the enzymatic inhibition of TRXR1. In conclusion, DA as a TRXR1 inhibitor can be considered an effective chemotherapeutic agent which may be a useful lead compound for the treatment of HCC.


Assuntos
Antineoplásicos , Apoptose , Carcinoma Hepatocelular , Movimento Celular , Neoplasias Hepáticas , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 1/metabolismo , Células Hep G2 , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
13.
Nat Aging ; 4(2): 185-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267705

RESUMO

Sterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age. TXNRD1's role in regulating tissue aging has been attributed to its enzymatic role in cellular redox regulation. Here, we show that TXNRD1 drives the SASP and inflammaging through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway independently of its enzymatic activity. TXNRD1 localizes to cytoplasmic chromatin fragments and interacts with cGAS in a senescence-status-dependent manner, which is necessary for the SASP. TXNRD1 enhances the enzymatic activity of cGAS. TXNRD1 is required for both the tumor-promoting and immune surveillance functions of senescent cells, which are mediated by the SASP in vivo in mouse models. Treatment of aged mice with a TXNRD1 inhibitor that disrupts its interaction with cGAS, but not with an inhibitor of its enzymatic activity alone, downregulated markers of inflammaging in several tissues. In summary, our results show that TXNRD1 promotes the SASP through the innate immune response, with implications for inflammaging. This suggests that the TXNRD1-cGAS interaction is a relevant target for selectively suppressing inflammaging.


Assuntos
Transdução de Sinais , Tiorredoxina Redutase 1 , Animais , Camundongos , Senescência Celular/genética , Imunidade Inata/genética , Inflamação/genética , Nucleotidiltransferases/genética , Tiorredoxina Redutase 1/metabolismo
14.
Int J Biol Sci ; 20(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164168

RESUMO

Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.


Assuntos
Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Morte Celular
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1525-1535, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37658214

RESUMO

Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy. This study investigated the anticancer impacts of diffractaic and vulpinic acids, lichen secondary metabolites, on the cervical cancer HeLa cell line. XTT findings demonstrated showed that diffractaic and vulpinic acids suppressed the proliferation of HeLa cells in a dose- and time-dependent manner and IC50 values were 22.52 µg/ml and 66.53 µg/ml at 48 h, respectively. Each of these lichen metabolites significantly suppressed migration. Diffractaic acid showed an increase in both the BAX/BCL2 ratio by qPCR analysis and the apoptotic cell population via flow cytometry analysis on HeLa cells. Concerning vulpinic acid, although it decreased the BAX/BCL2 ratio in this cells, it increased apoptotic cells according to the flow cytometry analysis results. Diffractaic and vulpinic acids significantly suppressed TrxR1 enzyme activity rather than the gene and protein expression levels in HeLa cells. This research demonstrated for the first time, that targeting TrxR1 with diffractaic and vulpinic acids was an effective therapeutic strategy for treating cervical cancer.


Assuntos
Furanos , Fenilacetatos , Tiorredoxina Redutase 1 , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Apoptose
16.
Neoplasma ; 70(5): 633-644, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38053374

RESUMO

Radiotherapy is widely used as the first-line treatment for nasopharyngeal carcinoma (NPC). However, the resistance of some patients to treatment lowers its clinical effectiveness. Compared to typical epithelial cells, NPC markedly lowers the Ras-association domain family 1A (RASSF1A) protein expression. RASSF1A overexpression sensitizes NPC cells to radiotherapy. Mechanistically, RASSF1A promotes the expression of Forkhead box O3a (FoxO3a) in the nucleus and inhibits the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway via binding to the Kelch-like ECH-associated protein 1 (Keap1) promoter. Through elevating intracellular ROS levels, RASSF1A overexpression inhibits the expression of thioredoxin reductase 1 (TXNRD1), a crucial Nrf2 target gene, and increases NPC sensitivity to radiation. Immunohistochemical staining of NPC tissue sections revealed that the expression of RASSF1A is negatively correlated with that of TXNRD1. The traditional Chinese medicine component andrographolide (AGP), which induces RASSF1A expression, increased the sensitivity of NPC cells to radiotherapy in vitro and in vivo. Our findings implied that RASSF1A increases the sensitivity of NPC to radiation by increasing FoxO3a expression in the nucleus, inhibiting the Nrf2/TXNRD1 signaling pathway, and elevating intracellular ROS levels. AGP targets RASSF1A and may be a promising adjuvant sensitizer for enhancing radiosensitivity in NPC.


Assuntos
Neoplasias Nasofaríngeas , Tiorredoxina Redutase 1 , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/metabolismo , Tiorredoxina Redutase 1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2 , Neoplasias Nasofaríngeas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tolerância a Radiação , Linhagem Celular Tumoral
17.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003379

RESUMO

Several cell-signaling mechanisms are activated by visible light radiation in human keratinocytes, but the key regulatory proteins involved in this specific cellular response have not yet been identified. Human keratinocytes (HaCaT cells) were exposed to blue or red light at low or high irradiance for 3 days in cycles of 12 h of light and 12 h of dark. The cell viability, apoptotic rate and cell cycle progression were analyzed in all experimental conditions. The proteomic profile, oxidative stress and mitochondrial morphology were additionally evaluated in the HaCaT cells following exposure to high-irradiance blue or red light. Low-irradiance blue or red light exposure did not show an alteration in the cell viability, cell death or cell cycle progression. High-irradiance blue or red light reduced the cell viability, induced cell death and cell cycle G2/M arrest, increased the reactive oxygen species (ROS) and altered the mitochondrial density and morphology. The proteomic profile revealed a pivotal role of Cytoplasmic thioredoxin reductase 1 (TXNRD1) and Aldo-keto reductase family 1 member C3 (AKR1C3) in the response of the HaCaT cells to high-irradiance blue or red light exposure. Blue or red light exposure affected the viability of keratinocytes, activating a specific oxidative stress response and inducing mitochondrial dysfunction. Our results can help to address the targets for the therapeutic use of light and to develop adequate preventive strategies for skin damage. This in vitro study supports further in vivo investigations of the biological effects of light on human keratinocytes.


Assuntos
Apoptose , Proteômica , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Queratinócitos/metabolismo , Luz , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/metabolismo
18.
Org Biomol Chem ; 21(48): 9630-9639, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38018884

RESUMO

Coumarin and its derivatives have emerged as promising candidates in drug discovery. While the activity of coumarins as anticancer agents with different biological targets has been thoroughly investigated, reports on the potential of coumarins in the inhibition of thioredoxin reductase (TrxR) are still scarce. We focus on the design and synthesis of 3,4-unsubstituted coumarin analogues with systematic incorporation of substituents at the fifth to eighth positions of coumarin, which allowed definitive structure-activity relationship analysis to be conducted. In the obtained library, the substitution at the sixth position of the coumarin core with an aromatic or a cyclopropyl group turned out to be more activity enhancing. A bulky aromatic substituent with a large CF3 group encourages ligand alignment in a manner that enables covalent bond formation with the catalytic TrxR1 residue, according to the docking results. Our observations indicate that the activity of a series of coumarin analogues towards thioredoxin reductase 1 (TrxR1) is dependent on the nature (size and electronic effect) and the position of the substituent and more importantly - the accessibility of the Michael acceptor functionality. Several compounds (with at least 90% inhibition of the rat TrxR1 enzyme at 200 µM concentration) were further examined in in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines. The analogue 6-(4-(trifluoromethyl)phenyl)-2H-chromen-2-one was selected as the lead compound for further optimization. The results presented herein pave the way for the development of the next generation of coumarin-based TrxR1 inhibitors, where modification of the Michael acceptor moiety and incorporation of different aryl substituents at the sixth position of the coumarin core are planned.


Assuntos
Antineoplásicos , Neoplasias , Ratos , Animais , Tiorredoxina Redutase 1/metabolismo , Antineoplásicos/química , Linhagem Celular , Neoplasias/tratamento farmacológico , Cumarínicos/farmacologia , Cumarínicos/química , Relação Estrutura-Atividade
20.
Redox Biol ; 63: 102711, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148740

RESUMO

Excess osteoclast activity is found in many bone metabolic diseases, and inhibiting osteoclast differentiation has proven to be an effective strategy. Here, we revealed that osteoclast precursors (pre-OCs) were more susceptible to thioredoxin reductase 1 (TXNRD1) inhibitors than bone marrow-derived monocytes (BMDMs) during receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis. Mechanistically, we found that nuclear factor of activated T-cells 1 (NFATc1) upregulated solute carrier family 7 member 11 (SLC7A11) expression through transcriptional regulation during RANKL-induced osteoclastogenesis. During TXNRD1 inhibition, the rate of intracellular disulfide reduction is significantly reduced. Increased cystine transport leads to increased cystine accumulation, which leads to increased cellular disulfide stress and disulfidptosis. We further demonstrated that SLC7A11 inhibitors and treatments that prevent disulphide accumulation could rescue this type of cell death, but not the ferroptosis inhibitors (DFO, Ferro-1), the ROS scavengers (Trolox, Tempol), the apoptosis inhibitor (Z-VAD), the necroptosis inhibitor (Nec-1), or the autophagy inhibitor (CQ). An in vivo study indicated that TXNRD1 inhibitors increased bone cystine content, reduced the number of osteoclasts, and alleviated bone loss in an ovariectomized (OVX) mouse model. Together, our findings demonstrate that NFATc1-mediated upregulation of SLC7A11 induces targetable metabolic sensitivity to TXNRD1 inhibitors during osteoclast differentiation. Moreover, we innovatively suggest that TXNRD1 inhibitors, a classic drug for osteoclast-related diseases, selectively kill pre-OCs by inducing intracellular cystine accumulation and subsequent disulfidptosis.


Assuntos
Osteoclastos , Tiorredoxina Redutase 1 , Camundongos , Animais , Osteoclastos/metabolismo , Tiorredoxina Redutase 1/metabolismo , Cistina , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/farmacologia , Regulação da Expressão Gênica , Diferenciação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA