Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phytochem Anal ; 34(8): 950-958, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37463671

RESUMO

OBJECTIVES: Oxidative stress is one of the carcinogenic mechanisms underlying the development of glioblastoma multiforme (GBM), a highly aggressive brain tumor type associated with poor prognosis. Curcumin is known to be an efficient antioxidant, anti-inflammatory, and anticancer compound. However, its poor solubility in water, inappropriate pharmacokinetics, and low bioavailability limit its use as an antitumor drug. We prepared PLGA-based curcumin nanoparticles changed with folic acid and chitosan (curcumin-PLGA-CS-FA) and evaluated its effects on GBM tumor cells' redox status. METHODS: The nanoprecipitation method was used to synthesize CU nanoparticles (CU-NPs). The size, morphology, and stability were characterized by DLS, SEM, and zeta potential analysis, respectively. The CU-NPs' toxic properties were studied by MTT assay and measuring the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations. The study was completed by measuring the gene expression levels and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. RESULTS: The size, polydispersity index, and zeta potential of CU-NPs were 77.27 nm, 0.29, and -22.45 mV, respectively. The encapsulation efficiency was approximately 98%. Intracellular ROS and MDA levels decreased after CU-NP treatment. Meanwhile, the CU-NPs increased gene expression and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. CONCLUSION: CU-NPs might be effective in the prevention and treatment of glioblastoma cancer by modulating the antioxidant-oxidant balance.


Assuntos
Quitosana , Curcumina , Glioblastoma , Nanopartículas , Curcumina/farmacologia , Curcumina/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Glioblastoma/tratamento farmacológico , Catalase , Quitosana/metabolismo , Quitosana/uso terapêutico , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapêutico , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/uso terapêutico , Ácido Fólico/uso terapêutico , Oxirredução , Superóxido Dismutase/metabolismo , Superóxido Dismutase/uso terapêutico , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico
2.
ASN Neuro ; 15: 17590914231159226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823760

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease. Increasing studies suggest that mitochondrial dysfunction is closely related to the pathogenesis of AD. Thioredoxin-1 (Trx-1), one of the major redox proteins in mammalian cells, plays neuroprotection in AD. However, whether Trx-1 could regulate the mitochondrial biogenesis in AD is largely unknown. In the present study, we found that Aß25-35 treatment not only markedly induced excessive production of reactive oxygen species and apoptosis, but also significantly decreased the number of mitochondria with biological activity and the adenosine triphosphate content in mitochondria, suggesting mitochondrial biogenesis was impaired in AD cells. These changes were reversed by Lentivirus-mediated stable overexpression of Trx-1 or exogenous administration of recombinant human Trx-1. What's more, adeno-associated virus-mediated specific overexpression of Trx-1 in the hippocampus of ß-amyloid precursor protein/presenilin 1 (APP/PS1) mice ameliorated the learning and memory and attenuated hippocampal Aß deposition. Importantly, overexpression of Trx-1 in APP/PS1 mice restored the decrease in mitochondrial biogenesis-associated proteins, including adenosine monophosphate -activated protein kinase (AMPK), silent information regulator factor 2-related enzyme 1 (Sirt1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). In addition, Lentivirus-mediated overexpression of Trx-1 in rat adrenal pheochromocytoma (PC12) cells also restored the decrease of AMPK, Sirt1, and PGC1α by Aß25-35 treatment. Pharmacological inhibition of AMPK activity significantly abolished the effect of Trx-1 on mitochondrial biogenesis. Taken together, our data provide evidence that Trx-1 promoted mitochondrial biogenesis via restoring AMPK/Sirt1/PGC1α pathway in AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ratos , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Biogênese de Organelas , Sirtuína 1/metabolismo , Sirtuína 1/uso terapêutico , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico , Precursor de Proteína beta-Amiloide/metabolismo , Mamíferos/metabolismo
3.
J Adv Res ; 51: 181-196, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351536

RESUMO

INTRODUCTION: Hyperactivated histone deacetylases (HDACs) act as epigenetic repressors on gene transcription and are frequently observed in human hepatocellular carcinoma (HCC). Although multiple pharmacological HDAC inhibitors (HDACis) have been developed, none is available in human HCC. OBJECTIVES: To investigate the pharmacological effects of a fangchinoline derivative HL23, as a novel HDACi and its molecular mechanisms through TXNIP-mediated potassium deprivation in HCC. METHODS: Both in vitro assays and orthotopic HCC mouse models were used to investigate the effects of HL23 in this study. The inhibitory activity of HL23 on HDACs was evaluated by in silico studies and cellular assays. Chromatin immunoprecipitation (ChIP) was conducted to confirm the regulation of HL23 on acetylation mark at TXNIP promoter. Genome-wide transcriptome analysis together with bioinformatic analysis were conducted to identify the regulatory mechanisms of HL23. The clinical significance of TXNIP and HDACs was evaluated by analysing publicly available database. RESULTS: HL23 exerted compatible HDACs inhibition potency as Vorinostat (SAHA) while had superior anti-HCC effects than SAHA and sorafenib. Both in vitro and in vivo studies showed HL23 significantly suppressed HCC progression and metastasis. HL23 significantly upregulated TXNIP expression via regulating acetylation mark (H3K9ac) at TXNIP promoter. TXNIP was responsible for anti-HCC activity of HL23 through mediating potassium channel activity. HDAC1 was predicted to be the target of HL23 and HDAC1lowTXNIPhigh could jointly predict promising survival outcome of patients with HCC. Combination treatment with HL23 and sorafenib could significantly enhance sorafenib efficacy. CONCLUSION: Our study identified HL23 as a novel HDACi through enhancing acetylation at TXNIP promoter to trigger TXNIP-dependent potassium deprivation and enhance sorafenib efficacy in HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Histonas/metabolismo , Histonas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Acetilação , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Histona Desacetilases/metabolismo , Histona Desacetilases/uso terapêutico , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico
4.
Int Immunopharmacol ; 112: 109208, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087509

RESUMO

Pulmonary fibrosis is common in the development of inflammatory lung diseases with no effective clinical drug treatment currently. As an essential redox enzyme, thioredoxin (Trx) has been reported to be involved in pulmonary fibrosis, but the mechanism is to be revealed. Therefore, in bleomycin-indued pulmonary fibrosis model in C57 mice, Trx activity and nitrated Trx were examined.,p38-MAPK apoptosis pathway was determined in lung tissues. Additionally, before BLM administration, C57/BL6 mice were treated with aminoguanidine (AG, a peroxynitrite scavenger), recombinant human Trx-1 (rhTrx-1), or SIN-1 (a peroxynitrite donor) nitrated Trx-1 (N-Trx-1). In bleomycin (BLM)-induced pulmonary fibrosis model in C57/BL6 mice, we observed that nitrated Trx increased, while its activity decreased, with the increase of alveolar epithelial cells (AECs)apoptosis by p38-MAPK pathway. We demonstrated that AG or rhTrx-1, but not N-Trx-1 significantly reduced pulmonary fibrosis. Taken together, the results above revealed that blockade of Trx-1 nitration, or supplementation of exogenous rhTrx-1, might represent novel therapies to attenuate pulmonary fibrosis in idiopathic pulmonary fibrosis patients.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Ácido Peroxinitroso/metabolismo , Tiorredoxinas/uso terapêutico , Tiorredoxinas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Nitratos/metabolismo
5.
Br J Cancer ; 127(4): 637-648, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597868

RESUMO

BACKGROUND: Colorectal cancer (CRC) is prevalent worldwide and is often challenged by treatment failure and recurrence due to resistance to radiotherapy. Here, we aimed to identify the elusive underlying molecular mechanisms of radioresistance in CRC. METHODS: Weighted gene co-expression network analysis was used to identify potential radiation-related genes. Colony formation and comet assays and multi-target single-hit survival and xenograft animal models were used to validate the results obtained from the bioinformatic analysis. Immunohistochemistry was performed to examine the clinical characteristics of ALDH1L2. Co-immunoprecipitation, immunofluorescence and flow cytometry were used to understand the molecular mechanisms underlying radioresistance. RESULTS: Bioinformatic analysis, in vitro, and in vivo experiments revealed that ALDH1L2 is a radiation-related gene, and a decrease in its expression induces radioresistance in CRC cells by inhibiting ROS-mediated apoptosis. Patients with low ALDH1L2 expression exhibit resistance to radiotherapy. Mechanistically, ALDH1L2 interacts with thioredoxin (TXN) and regulates the downstream NF-κB signaling pathway. PX-12, the TXN inhibitor, overcomes radioresistance due to decreased ALDH1L2. CONCLUSIONS: Our results provide valuable insights into the potential role of ALDH1L2 in CRC radiotherapy. We propose that the simultaneous application of TXN inhibitors and radiotherapy would significantly ameliorate the clinical outcomes of patients with CRC having low ALDH1L2.


Assuntos
Neoplasias Colorretais , NF-kappa B , Animais , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Tolerância a Radiação/genética , Transdução de Sinais , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico
6.
Expert Opin Drug Discov ; 17(5): 437-442, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193453

RESUMO

INTRODUCTION: The thioredoxin system is increasingly recognized as an important executor for maintaining cell redox homeostasis and regulating multiple cell signaling pathways. Targeting this system for cancer treatment has therefore attracted much attention. AREAS COVERED: The authors focus on providing coverage and emphasizing the strategy of targeting the thioredoxin system to develop anticancer therapeutics in the past five years, especially from the perspective of discovering novel protein functions or new downstream regulatory pathways, and designing new therapeutic reagents. The authors also provide the readers with their expert perspectives for future development. EXPERT OPINION: The limited pharmacophore of inhibitors and the slow progress of clinical research partially restrict the development of anticancer drugs targeting the thioredoxin system, necessitating thus novel strategies to accelerate the system for treating cancer. Nevertheless, the synergistic targeting of thioredoxin system for cancer therapy is a promising strategy, particularly with regards to chemotherapy resistance and/or sensitization immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico
7.
Antioxid Redox Signal ; 34(14): 1083-1107, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115246

RESUMO

Significance: Thioredoxin (Trx) and thioredoxin reductase are two core members of the Trx system. The system bridges the gap between the universal reducing equivalent NADPH and various biological molecules and plays an essential role in maintaining cellular redox homeostasis and regulating multiple cellular redox signaling pathways. Recent Advance: In recent years, the Trx system has been well documented as an important regulator of many diseases, especially tumorigenesis. Thus, the development of potential therapeutic molecules targeting the system is of great significance for disease treatment. Critical Issues: We herein first discuss the physiological functions of the Trx system and the role that the Trx system plays in various diseases. Then, we focus on the introduction of natural small molecules with potential therapeutic applications, especially the anticancer activity, and review their mechanisms of pharmacological actions via interfering with the Trx system. Finally, we further discuss several natural molecules that harbor therapeutic potential and have entered different clinical trials. Future Directions: Further studies on the functions of the Trx system in multiple diseases will not only improve our understanding of the pathogenesis of many human disorders but also help develop novel therapeutic strategies against these diseases. Antioxid. Redox Signal. 34, 1083-1107.


Assuntos
Homeostase/genética , Neoplasias/genética , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética , Carcinogênese/genética , Humanos , NADP/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Transdução de Sinais/genética , Tiorredoxina Dissulfeto Redutase/uso terapêutico , Tiorredoxinas/uso terapêutico
8.
Chemistry ; 26(45): 10175-10184, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32097513

RESUMO

The thioredoxin system is highly conserved system found in all living cells and comprises NADPH, thioredoxin, and thioredoxin reductase. This system plays a critical role in preserving a reduced intracellular environment, and its involvement in regulating a wide range of cellular functions makes it especially vital to cellular homeostasis. Its critical role is not limited to healthy cells, it is also involved in cancer development, and is overexpressed in many cancers. This makes the thioredoxin system a promising target for cancer drug development. As such, over the last decade, many inhibitors have been developed that target the thioredoxin system, most of which are small molecules targeting the thioredoxin reductase C-terminal redox center. A few inhibitors of thioredoxin have also been developed. We believe that more efforts should be invested in developing protein/peptide-based inhibitors against both thioredoxin reductase and/or thioredoxin.


Assuntos
Antineoplásicos/farmacologia , NADP/química , Neoplasias/tratamento farmacológico , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/uso terapêutico , Antineoplásicos/química , Desenvolvimento de Medicamentos , Humanos , Oxirredução , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/metabolismo
9.
Adv Exp Med Biol ; 1074: 499-509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721982

RESUMO

Retinal degenerative diseases are a major cause of untreatable blindness due to a loss of photoreceptors. Recent advances in genetics and gene therapy for inherited retinal dystrophies (IRDs) showed that therapeutic gene transfer holds a great promise for vision restoration in people with currently incurable blinding diseases. Due to the huge genetic heterogeneity of IRDs that represents a major obstacle for gene therapy development, alternative therapeutic approaches are needed. This review focuses on the rescue of cone function as a therapeutic option for maintaining central vision in rod-cone dystrophies. It highlights recent developments in better understanding the mechanisms of action of the trophic factor RdCVF and its potential as a sight-saving therapeutic strategy.


Assuntos
Distrofias de Cones e Bastonetes/terapia , Terapia Genética , Vetores Genéticos/uso terapêutico , Células Fotorreceptoras Retinianas Cones/fisiologia , Tiorredoxinas/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Comunicação Celular , Dependovirus/genética , Proteínas do Olho/fisiologia , Heterogeneidade Genética , Glicólise , Humanos , Modelos Moleculares , Medicina de Precisão , Conformação Proteica , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/uso terapêutico , Pesquisa Translacional Biomédica , Resultado do Tratamento
10.
Oxid Med Cell Longev ; 2018: 1023025, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599892

RESUMO

BACKGROUND: The poor survival rate of mesenchymal stromal cells (MSC) transplanted into recipient lungs greatly limits their therapeutic efficacy for diseases like bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the effect of thioredoxin-1 (Trx-1) overexpression on improving the potential for bone marrow-derived mesenchymal stromal cells (BMSCs) to confer resistance against hyperoxia-induced cell injury. METHODS: 80% O2 was used to imitate the microenvironment surrounding-transplanted cells in the hyperoxia-induced lung injury in vitro. BMSC proliferation and apoptotic rates and the levels of reactive oxygen species (ROS) were measured. The effects of Trx-1 overexpression on the level of antioxidants and growth factors were investigated. We also investigated the activation of apoptosis-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinases (MAPK). RESULT: Trx-1 overexpression significantly reduced hyperoxia-induced BMSC apoptosis and increased cell proliferation. We demonstrated that Trx-1 overexpression upregulated the levels of superoxide dismutase and glutathione peroxidase as well as downregulated the production of ROS. Furthermore, we illustrated that Trx-1 protected BMSCs against hyperoxic injury via decreasing the ASK1/P38 MAPK activation rate. CONCLUSION: These results demonstrate that Trx-1 overexpression improved the ability of BMSCs to counteract hyperoxia-induced injury, thus increasing their potential to treat hyperoxia-induced lung diseases such as BPD.


Assuntos
Medula Óssea/metabolismo , Hiperóxia/prevenção & controle , Células-Tronco Mesenquimais/metabolismo , Tiorredoxinas/uso terapêutico , Animais , Humanos , Ratos , Ratos Sprague-Dawley , Tiorredoxinas/farmacologia , Transfecção
11.
Sci Transl Med ; 9(376)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179506

RESUMO

The incidence of high blood pressure with advancing age is notably high, and it is an independent prognostic factor for the onset or progression of a variety of cardiovascular disorders. Although age-related hypertension is an established phenomenon, current treatments are only palliative but not curative. Thus, there is a critical need for a curative therapy against age-related hypertension, which could greatly decrease the incidence of cardiovascular disorders. We show that overexpression of human thioredoxin (TRX), a redox protein, in mice prevents age-related hypertension. Further, injection of recombinant human TRX (rhTRX) for three consecutive days reversed hypertension in aged wild-type mice, and this effect lasted for at least 20 days. Arteries of wild-type mice injected with rhTRX or mice with TRX overexpression exhibited decreased arterial stiffness, greater endothelium-dependent relaxation, increased nitric oxide production, and decreased superoxide anion (O2•-) generation compared to either saline-injected aged wild-type mice or mice with TRX deficiency. Our study demonstrates a potential translational role of rhTRX in reversing age-related hypertension with long-lasting efficacy.


Assuntos
Envelhecimento/patologia , Vasos Sanguíneos/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Tiorredoxinas/uso terapêutico , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Glutationa/metabolismo , Humanos , Hipertensão/fisiopatologia , Artéria Mesentérica Superior/efeitos dos fármacos , Artéria Mesentérica Superior/patologia , Artéria Mesentérica Superior/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Oxirredução , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Superóxidos/metabolismo , Tiorredoxinas/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
12.
J Pharmacol Exp Ther ; 345(2): 271-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23442250

RESUMO

Idiopathic pulmonary fibrosis (IPF) is thought to involve inflammatory cells and reactive oxygen species (ROS), such as superoxide anion radical (O2(·-)). There is currently no effective treatment of IPF. We previously developed a human serum albumin (HSA)-thioredoxin 1 (Trx) fusion protein (HSA-Trx) designed to overcome the unfavorable pharmacokinetic and short pharmacological properties of Trx, an antioxidative and anti-inflammatory protein. In this study, we examined the therapeutic effect of HSA-Trx on an IPF animal model of bleomycin (BLM)-induced pulmonary fibrosis. A pharmacokinetic study of HSA-Trx or Trx in BLM mice showed that the plasma retention and lung distribution of Trxc was markedly improved by fusion with HSA. A weekly intravenous administration of HSA-Trx, but not Trx, ameliorated BLM-induced fibrosis, as evidenced by a histopathological analysis and pulmonary hydroxyproline levels. HSA-Trx suppressed active-transforming growth factor (TGF)-ß levels in the lung and inhibited the increase of inflammatory cells in bronchoalveolar lavage fluid, pulmonary inflammatory cytokines, and oxidative stress markers. An in vitro EPR experiment using phosphate-buffered saline-stimulated neutrophils confirmed the O2(·-) scavenging ability of HSA-Trx. Furthermore, post-treatment of HSA-Trx had a suppressive effect against BLM-induced fibrosis. These results suggest that HSA-Trx has potential as a novel therapeutic agent for IPF, because of its long-acting antioxidative and anti-inflammatory modulation effects.


Assuntos
Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Albumina Sérica/uso terapêutico , Tiorredoxinas/uso terapêutico , Animais , Antibióticos Antineoplásicos , Bleomicina , Western Blotting , Líquido da Lavagem Broncoalveolar/citologia , Progressão da Doença , Hidroxiprolina/metabolismo , Interleucina-6/análise , Interleucina-6/metabolismo , Pulmão/patologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Malondialdeído/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão , Fator de Crescimento Transformador beta/análise , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo
13.
Kidney Int ; 83(3): 446-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283135

RESUMO

Contrast-induced nephropathy (CIN), caused by a combination of the direct tubular toxicity of contrast media, a reduction in medullary blood flow, and the generation of reactive oxygen species, is a serious clinical problem. A need exists for effective strategies for its prevention. Thioredoxin-1 (Trx) is a low-molecular-weight endogenous redox-active protein with a short half-life in the blood due to renal excretion. We produced a long-acting form of Trx as a recombinant human albumin-Trx fusion protein (HSA-Trx) and examined its effectiveness in preventing renal injury in a rat model of ioversol-induced CIN. Compared with saline, a mixture of HSA and Trx, or Trx alone, intravenous HSA-Trx pretreatment significantly attenuated elevations in serum creatinine, blood urea nitrogen, and urinary N-acetyl-ß-D-glucosaminidase along with the decrease in creatinine clearance. HSA-Trx also caused a substantial reduction in the histological features of renal tubular injuries and in the number of apoptosis-positive tubular cells. Changes in the markers 8-hydroxy deoxyguanosine and malondialdehyde indicated that HSA-Trx significantly suppressed renal oxidative stress. In HK-2 cells, HSA-Trx decreased the level of reactive oxygen species induced by hydrogen peroxide, and subsequently improved cell viability. Thus, our results suggest that due to its long-acting properties, HSA-Trx has the potential to effectively prevent CIN.


Assuntos
Meios de Contraste/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Proteínas Recombinantes de Fusão/uso terapêutico , Albumina Sérica/uso terapêutico , Tiorredoxinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nefropatias/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
14.
Bioengineered ; 4(4): 254-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23328539

RESUMO

Thioredoxin (TRX) is small ubiquitous protein, which regulates cellular redox status and scavenges reactive oxygen species (ROS). TRX has been shown to exert suppressive effect on skin inflammation where oxidative stress is involved in its pathogenesis. We investigated the effect of TRX on UVB response. Ear swelling after UVB irradiation was significantly reduced in TRX-transgenic mouse compared with wild-type mouse. Furthermore, we have demonstrated that intraperitoneal administration of recombinant human thioredoxin (rhTRX) also reduced acute skin inflammatory reaction, such as skin erythema and edema. Histologically, inflammatory cells including neutrophils and lymphocytes were significantly reduced and average size of the caliber of blood vessels were also reduced in rhTRX-injected mice. The number of apoptotic keratinocytes, were significantly reduced in rhTRX-injected mice. Immunohistochemical intensity of 8-hydroxy-2'-deoxyguanosine was strikingly reduced in rhTRX-injected mouse. Western blotting showed that administration of rhTRX inhibited phosphorylation of p38 mitogen-activated protein kinases and c-Jun NH 2-terminal kinase, which play important roles in inflammatory and apoptotic signaling. These findings indicated that rhTRX attenuated inflammatory and apoptotic responses by UVB. Possible mechanisms for this might be via redox regulation of stress signaling and reduction of reactive oxygen species. We discussed the future use of TRX for sedative use of skin inflammation.


Assuntos
Inflamação/tratamento farmacológico , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico , Raios Ultravioleta , 8-Hidroxi-2'-Desoxiguanosina , Animais , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Proteínas Recombinantes/genética , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/genética
15.
Crit Care Med ; 41(1): 171-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222257

RESUMO

OBJECTIVES: Influenza virus infections can cause severe acute lung injury leading to significant morbidity and mortality. Thioredoxin-1 is a redox-active defensive protein induced in response to stress conditions. Animal experiments have revealed that thioredoxin-1 has protective effects against various severe disorders. This study was undertaken to evaluate the protective effects of recombinant human thioredoxin-1 administration on influenza A virus (H1N1)-induced acute lung injury in mice. DESIGN: Prospective animal trial. SETTING: Research laboratory. SUBJECTS: Nine-week-old male C57BL/6 mice inoculated with H1N1. INTERVENTION: The mice were divided into a vehicle-treated group and recombinant human thioredoxin-1-treated group. For survival rate analysis, the vehicle or recombinant human thioredoxin-1 was administered intraperitoneally every second day from day -1 to day 13. For lung lavage and pathological analyses, vehicle or recombinant human thioredoxin-1 was administered intraperitoneally on days -1, 1, and 3. MEASUREMENTS AND MAIN RESULTS: Lung lavage and pathological analyses were performed at 24, 72, and 120 hrs after inoculation. The recombinant human thioredoxin-1 treatment significantly improved the survival rate of H1N1-inoculated mice, although the treatment did not affect virus propagation in the lung. The treatment significantly attenuated the histological changes and neutrophil infiltration in the lung of H1N1-inoculated mice. The treatment significantly attenuated the production of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 1 in the lung and oxidative stress enhancement, which were observed in H1N1-inoculated mice. H1N1 induced expressions of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 1 in murine lung epithelial cells MLE-12, which were inhibited by the addition of recombinant human thioredoxin-1. The recombinant human thioredoxin-1 treatment started 30 mins after H1N1 inoculation also significantly improved the survival of the mice. CONCLUSIONS: Exogenous administration of recombinant human thioredoxin-1 significantly improved the survival rate and attenuated lung histological changes in the murine model of influenza pneumonia. The protective mechanism of thioredoxin-1 might be explained by its potent antioxidative and anti-inflammatory actions. Consequently, recombinant human thioredoxin-1 might be a possible pharmacological strategy for severe influenza virus infection in humans.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antioxidantes/uso terapêutico , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Tiorredoxinas/uso terapêutico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Animais , Antioxidantes/farmacologia , Quimiocina CXCL1/efeitos dos fármacos , Quimiocina CXCL1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Estudos Prospectivos , Proteínas Recombinantes/farmacologia , Análise de Sobrevida , Tiorredoxinas/farmacologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral/efeitos dos fármacos
16.
J Dermatol ; 39(10): 843-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22568890

RESUMO

Thioredoxin (TRX) is a small ubiquitous protein, which regulates cellular redox status and scavenges reactive oxygen species. The present study was conducted to investigate the effect of TRX on ultraviolet (UV)-B-mediated inflammatory and apoptotic responses. Ear swelling after UV-B irradiation was significantly reduced in TRX-transgenic mice compared to wild-type mice. Administration i.p. of recombinant human TRX also reduced acute skin inflammatory reaction, such as skin erythema and swelling. Histologically, numbers of inflammatory cells including neutrophils and lymphocytes were significantly reduced and the average size of the caliber of blood vessels were also reduced in recombinant human TRX-injected mice. The number of apoptotic keratinocytes, in terms of sunburn cells, activated-caspase-3-positive cells and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were all significantly reduced in recombinant human TRX-injected mice. Immunohistochemical intensity of 8-hydroxy-2'-deoxyguanosine was strikingly reduced in recombinant human TRX-injected mouse. Western blotting showed that administration of recombinant human TRX attenuated duration of phosphorylation of p38 mitogen-activated protein kinases and intensity of phosphorylation of c-Jun N-terminal kinase in the early phase, which play important roles in inflammatory and apoptotic signaling. Collectively, these findings indicated that recombinant human TRX attenuated inflammatory and apoptotic responses caused by UV-B. Possible mechanisms for this might be via redox regulation of stress signaling and reduction of reactive oxygen species.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Dermatológicos/uso terapêutico , Radiodermite/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Pele/efeitos da radiação , Queimadura Solar/tratamento farmacológico , Tiorredoxinas/uso terapêutico , Raios Ultravioleta/efeitos adversos , Animais , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Radiodermite/patologia , Pele/efeitos dos fármacos , Pele/patologia , Queimadura Solar/patologia
17.
J Mol Cell Cardiol ; 51(4): 570-3, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20955713

RESUMO

Thioredoxin 1 (Trx1) is a small molecule with reactive cysteines that reduces proteins with disulfide bonds through a thiol disulfide exchange reaction. Accumulating lines of evidence suggest that Trx1 protects the heart from ischemia/reperfusion injury, pathological hypertrophy, and inflammation; induces preconditioning effects and angiogenesis; and upregulates mitochondrial genes. Exogenously given recombinant Trx1 (r-Trx1) may protect the heart through its actions in both extracellular and intracellular spaces. In this brief review, the potential of Trx1 therapy for heart disease is discussed. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."


Assuntos
Cardiopatias/tratamento farmacológico , Tiorredoxinas/uso terapêutico , Animais , Cardiomegalia/prevenção & controle , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais , Tiorredoxinas/farmacologia , Tiorredoxinas/fisiologia
18.
Pharmacol Ther ; 127(3): 261-70, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20435060

RESUMO

Thioredoxin 1 (Trx 1) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys- that is ubiquitously present in the human body. Trx 1 is a defensive protein induced by various stresses and has anti-oxidative, anti-apoptotic and anti-inflammatory effects. The anti-oxidative effect of Trx 1 is mediated by the dithiol-disulfide exchange in the active site. Trx 1 is able to interact with certain molecules, one of which is thioredoxin-binding protein-2 (TBP-2)/Vitamin D3 upregulated protein 1 (VDUP1)/thioredoxin interacting protein (TXNIP). TBP-2 was originally identified as a negative regulator of Trx 1 and acts as a cell growth suppressor and a regulator in lipid/glucose metabolism. Trx 1 and TBP-2 play crucial roles in pathophysiological mechanisms in metabolic disorders, cancer and inflammation. Here we discuss pharmacological aspects of Trx 1 and TBP-2 in these diseases and propose potential therapeutic approaches for intractable oxidative stress-related disorders.


Assuntos
Proteínas de Transporte/fisiologia , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Tiorredoxinas/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacologia , Tiorredoxinas/uso terapêutico , Regulação para Cima
19.
J Mol Med (Berl) ; 87(8): 785-91, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19424677

RESUMO

Many biological functions in cells are regulated by the effects of the redox state on cellular signaling pathways. In the heart, pathological hypertrophy caused by a wide variety of stimuli is commonly mediated by nucleo-cytoplasmic translocation of class II histone deacetylases (HDACs) and subsequent de-suppression of transcription factors, including nuclear factor of activated T-cells and MEF2. One of the primary triggers of class II HDAC nuclear export is phosphorylation by HDAC kinases activated by hypertrophic stimuli. However, oxidative modification of conserved cysteine residues can also potentially induce nuclear export of class II HDACs. Thioredoxin 1 (Trx1), a 12 kDa anti-oxidant, inhibits pathological hypertrophy through reduction of cysteine residues in class II HDACs. In this review, we discuss the role of posttranslational modification of class II HDACs in mediating cardiac hypertrophy and the molecular mechanism by which Trx1 inhibits pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/fisiopatologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Sequência de Aminoácidos , Animais , Cardiomegalia/tratamento farmacológico , Histona Desacetilases/química , Humanos , Dados de Sequência Molecular , Oxirredução , Processamento de Proteína Pós-Traducional , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapêutico
20.
Hepatology ; 49(5): 1709-17, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19205032

RESUMO

UNLABELLED: Ethanol-induced liver injury is characterized by increased formation of reactive oxygen species (ROS) and inflammatory cytokines, resulting in the development of hepatic steatosis, injury, and cell death by necrosis and apoptosis. Thioredoxin (Trx), a potent antioxidant and antiinflammatory molecule with antiapoptotic properties, protects animals from a number of inflammatory diseases. However, the effects of ethanol on Trx or its role in ethanol-induced liver injury are not known. Female C57BL/6 mice were allowed ad libitum access to a Lieber-deCarli ethanol diet with 5.4% of calories as ethanol for 2 days to acclimate them to the diet, followed by 2 days with 32.4% of calories as ethanol or pair-fed control diet. Hepatic Trx-1 was decreased by ethanol feeding; daily supplementation with recombinant human Trx (rhTrx) prevented this ethanol-induced decrease. Therefore, we tested the hypothesis that administration of rhTrx during ethanol exposure would attenuate ethanol-induced oxidative stress, inflammatory cytokine production, and apoptosis. Mice were treated with a daily intraperitoneal injection of either 5 g/kg of rhTrx or phosphate-buffered saline (PBS). CONCLUSION: Ethanol feeding increased accumulation of hepatic 4-hydroxynonenal protein adducts, expression of hepatic tumor necrosis factor alpha, and resulted in hepatic steatosis and increased plasma aspartate aminotransferase and alanine aminotransferase. In ethanol-fed mice, treatment with rhTrx reduced 4-hydroxynonenal adduct accumulation, inflammatory cytokine expression, decreased hepatic triglyceride, and improved liver enzyme profiles. Ethanol feeding also increased transferase-mediated dUTP-biotin nick-end labeling-positive cells, caspase-3 activity, and cytokeratin-18 staining in the liver. rhTrx treatment prevented these increases. In summary, rhTrx attenuated ethanol-induced increases in markers of oxidative stress, inflammatory cytokine expression, and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Etanol/farmacologia , Hepatopatias Alcoólicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxinas/uso terapêutico , Animais , Citocinas/metabolismo , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Tiorredoxinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA